Internal Quality Prediction Method of Damaged Korla Fragrant Pears during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Korla Fragrant Pears
2.2. Damage Test of Korla Fragrant Pears
2.3. Storage Tests of Korla Fragrant Pears
2.4. Measurement of Peeling Hardness
2.5. Measurement of SSC
2.6. ANFIS Model
2.7. Factors and Variables
2.8. Criteria for Evaluating the Optimal Detection Model
3. Results and Discussion
3.1. Quality Variation Laws of Damaged Korla Fragrant Pears during the Storage Period
3.1.1. Variation Laws of Hardness
3.1.2. Variation Laws of SSC
3.2. Storage Quality Prediction of Damaged Korla Fragrant Pears Based on ANFIS
3.2.1. Hardness Prediction
3.2.2. SSC Prediction
3.3. Comparative Analysis between the Optimal Internal Quality Assessment Models for Korla Fragrant Pears and Traditional Regression Model
3.4. Model Verification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wang, T.; Su, R.; Hu, C.; Chen, F.; Cheng, J. Quantitative evaluation of color, firmness, and soluble solid content of Korla fragrant pears via IRIV and LS-SVM. Agriculture 2021, 11, 731. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Y.; Liu, Y.; Zhang, H.; Zhang, Y.; Lan, H. Inhibitory effect of CaCl2 and carboxymethyl chitosan coating on the after-ripening of Korla fragrant pears in cold storage. Int. J. Food Sci. Technol. 2021, 56, 6777–6790. [Google Scholar] [CrossRef]
- Jia, X.H.; Wang, W.H.; Du, Y.M.; Tong, W.; Wang, Z.-H.; Gul, H. Optimal storage temperature and 1-MCP treatment combinations for different marketing times of Korla Xiang pears. J. Integr. Agric. 2018, 17, 693–703. [Google Scholar] [CrossRef]
- Liu, Y. Study on Mechanical Damage Mechanism and Effect Evaluation on Storage of Korla Fragrant Pear. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2021. [Google Scholar]
- NY/T 585-2002; Agricultural Industry Standard. Ministry of Agriculture of the PRC: Beijing, China, 2002; p. 3. Available online: http://www.csres.com/detail/71433.html (accessed on 20 December 2002).
- Yu, S.; Lan, H.; Li, X.; Zhang, H.; Zeng, Y.; Niu, H.; Niu, X.; Xiao, A.; Liu, Y. Prediction method of shelf life of damaged Korla fragrant pears. J. Food Process Eng. 2021, 44, e13902. [Google Scholar] [CrossRef]
- Shao, X. Study on Compression Damage and Quality Deterioration Mechanism of Citrus Reticulata Blanco. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2020. [Google Scholar]
- Pathare, P.; Mai, A. Bruise damage and quality changes in impact-bruised, stored tomatoes. Horticulturae 2021, 7, 113. [Google Scholar] [CrossRef]
- Guo, W.; Fang, L.; Liu, D.; Wang, Z. Determination of soluble solids content and firmness of pears during ripening by using dielectric spectroscopy. Comput. Electron. Agric. 2015, 117, 226–233. [Google Scholar] [CrossRef]
- Nicolaï, B.; Verlinden, B.; Desmet, M.; Saevels, S.; Saeys, W.; Theron, K.; Cubeddu, R.; Pifferi, A.; Torricelli, A. Time-resolved and continuous wave NIR reflectance spectroscopy to predict soluble solids content and firmness of pear. Postharvest Biol. Technol. 2008, 47, 68–74. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Y.; Tang, Y.; Li, X.; Li, W.; Li, C.; Zhang, Y.; Lan, H. Non-destructive quality assessment method for Korla fragrant pears based on electrical properties and adaptive neural-fuzzy inference system. Comput. Electron. Agric. 2022, 203, 107492. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Q.; Huang, J.; Zhu, J.; Liu, J. Nondestructive determination of SSC in Korla fragrant pear using a portable near-infrared spectroscopy system. Infrared Phys. Technol. 2021, 116, 103785. [Google Scholar] [CrossRef]
- Chen, J.; Feng, Z.; Wu, J.; Wang, Z.; Hu, X. Changes in the volatile compounds and physicochemical properties of Wujiuxiang pear fruits during storage. Trans. Chin. Soc. Agric. Eng. 2009, 25, 264–269. [Google Scholar]
- AlDairi, M.; Pathare, P.B.; AlMahdouri, A. The contribution of impact damage to the quality changes of stored banana fruit. Biol. Life Sci. Forum 2022, 16, 3. [Google Scholar]
- Zhang, F.; Li, B.; Yin, H.; Zou, J.; Ouyang, A. Study on the quantitative assessment of impact damage of yellow peaches using the combined hyperspectral technology and mechanical parameters. J. Spectrosc. 2022, 2022, 7526826. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, Y.; Lin, M.; Wu, D.; Chen, K. Non-destructive detection of damaged strawberries after impact based on analyzing volatile organic compounds. Sensors 2022, 22, 427. [Google Scholar] [CrossRef]
- Xu, F.; Fei, L.; Zhi, G.; Zhe, L. Influence of drop shock on physiological responses and genes expression of apple fruit. Food Chem. 2020, 303, 125424. [Google Scholar] [CrossRef]
- Mencarelli, F.; Massantini, R. Influence of impact surface and temperature on the ripening response of kiwifruit. Postharvest Biol. Tec. 1996, 8, 165–177. [Google Scholar] [CrossRef]
- Huang, Y.; Lan, Y.; Thomson, S.; Fang, A.; Hoffmann, W.; Lacey, R. Development of soft computing and applications in agricultural and biological engineering. Comput. Electron. Agric. 2010, 71, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, J.; Tang, Y.; Jiang, X.; Liao, J. Construction of a Chlorophyll Content Prediction Model for Predicting Chlorophyll Content in the Pericarp of Korla Fragrant Pears during the Storage Period. Agriculture 2022, 12, 1348. [Google Scholar] [CrossRef]
- Niu, H.; Liu, Y.; Wang, Z.; Zhang, H.; Zhang, Y.; Lan, H. Effects of harvest maturity and storage time on storage quality of Korla fragrant pear based on GRNN and ANFIS models: Part I Firmness Study. Food Sci. Technol. Res. 2020, 26, 363–372. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Niu, H.; Zhang, H.; Lan, H.; Zeng, Y.; Jia, F. Prediction method for nutritional quality of Korla pear during storage. Int. J. Agric. Biol. Eng. 2021, 14, 247–254. [Google Scholar] [CrossRef]
- Jiang, Z.; Zheng, H.; Mantri, N.; Qi, Z.; Zhang, X.; Hou, Z.; Chang, J.; Liu, H.; Liang, Z. Prediction of relationship between surface area, temperature, storage time and ascorbic acid retention of fresh-cut pineapple using adaptive neuro-fuzzy inference system (ANFIS). Postharvest Biol. Technol. 2016, 113, 1–7. [Google Scholar] [CrossRef]
- Wu, J. Study on Dynamic Viscoelastic Property and Impact Bruise of Korla Pear. Ph.D. Thesis, Northwest A&F University, Yangling, China, 2011. [Google Scholar]
- NY/T 2009-2011; Industry Standard—Agriculture. Fruit and Seedling Quality Supervision and Testing Center of Ministry of Agriculture: Beijing, China, 2011; p. 6. Available online: http://down.foodmate.net/standard/sort/5/33815.html (accessed on 20 December 2002).
- Taghinezhad, E.; Kaveh, M.; Szumny, A. Optimization and prediction of the drying and quality of turnip slices by convective-infrared dryer under various pretreatments by RSM and ANFIS Methods. Foods 2021, 10, 284. [Google Scholar] [CrossRef]
- Arabameri, M.; Nazari, R.; Abdolshahi, A.; Abdollahzadeh, M.; Mirzamohammadi, S.; Shariatifar, N.; Barba, F.; Mousavi, K. Oxidative stability of virgin olive oil: Evaluation and prediction with an adaptive neuro-fuzzy inference system (ANFIS). J. Sci. Food Agric. 2019, 99, 5358–5367. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, Y.; Jin, X.; Liu, Y.; Zhang, H.; Niu, H.; Lan, H. Comprehensive evaluation of Korla fragrant pears and optimization of plucking time during the harvest period. Int. J. Agric. Biol. Eng. 2022, 15, 242–250. [Google Scholar] [CrossRef]
- Lan, H.; Zhang, Q.; Tang, Y.; Liu, Y.; Zhang, H.; Jia, F. Research of the maturity law and the evaluation method for the ripeness of the Korla fragrant pear based on the effective accumulated temperature. Int. Agric. Eng. J. 2016, 25, 10–19. [Google Scholar]
- Linden, V.; Sila, D.; Duvetter, T.; Baerdemaeker, J.; Hendrickx, M. Effect of mechanical impact-bruising on polygalacturonase and pectinmethylesterase activity and pectic cell wall components in tomato fruit. Postharvest Biol. Technol. 2008, 47, 98–106. [Google Scholar] [CrossRef]
- Manrique, G.; Lajolo, F. Cell-wall polysaccharide modifications during postharvest ripening of papaya fruit (Carica papaya). Postharvest Biol. Technol. 2004, 12, 1000–1016. [Google Scholar] [CrossRef]
- Lan, H.; Wang, Z.; Niu, H.; Zhang, H.; Zhang, Y.; Tang, Y.; Liu, Y. A nondestructive testing method for soluble solid content in Korla fragrant pears based on electrical properties and artificial neural network. Food Sci. Nutr. 2020, 8, 5172–5181. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Zhou, Y.; Zhang, H.; Niu, H.; Lan, H. Prediction method of changes in storage quality of Korla fragrant pear based on kinetic modeling. Int. Agric. Eng. J. 2020, 29, 245–254. [Google Scholar]
- Yu, Y. Effects of Mechanical Damage on Postharvest Physiology and Biochemistry of DangShan Pear. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2011. [Google Scholar]
- Al-Saif, A.M.; Abdel-Sattar, M.; Eshra, D.H.; Sas-Paszt, L.; Mattar, M.A. Predicting the chemical attributes of fresh citrus fruits using artificial neural network and linear regression models. Horticulturae 2022, 8, 1016. [Google Scholar] [CrossRef]
- Mishra, P.; Woltering, E.; El Harchioui, N. Improved prediction of ‘Kent’ mango firmness during ripening by near-infrared spectroscopy supported by interval partial least square regression. Infrared Phys. Technol. 2020, 110, 103459. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, D.; Ren, X.; Shen, Y.; Cao, X.; Liu, H.; Li, J. Quality changes and shelf-life prediction model of postharvest apples using partial least squares and artificial neural network analysis. Food Chem. 2022, 394, 133526. [Google Scholar] [CrossRef] [PubMed]
Membership Functions | Training Stage | Prediction Stage | ||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
trimf | 0.0865 | 0.9853 | 0.1362 | 0.9752 |
trapmf | 0.1395 | 0.9609 | 0.2651 | 0.9129 |
gbellmf | 0.0867 | 0.9852 | 0.1750 | 0.9603 |
gaussmf | 0.0826 | 0.9866 | 0.1653 | 0.9640 |
gasuss2mf | 0.1156 | 0.9735 | 0.2293 | 0.9350 |
pimf | 0.1423 | 0.9593 | 0.2627 | 0.9143 |
dsigmf | 0.1125 | 0.9749 | 0.2152 | 0.9384 |
psigmf | 0.1129 | 0.9747 | 0.2329 | 0.9284 |
Membership Functions | Training Stage | Prediction Stage | ||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
trimf | 0.0178 | 0.9961 | 0.0315 | 0.9892 |
trapmf | 0.0686 | 0.9441 | 0.0866 | 0.9345 |
gbellmf | 0.0322 | 0.9877 | 0.0444 | 0.9836 |
gaussmf | 0.0236 | 0.9934 | 0.0343 | 0.9897 |
gasuss2mf | 0.0526 | 0.9672 | 0.0695 | 0.9606 |
pimf | 0.0677 | 0.9456 | 0.0865 | 0.9354 |
dsigmf | 0.0646 | 0.9505 | 0.0803 | 0.9408 |
psigmf | 0.0647 | 0.9504 | 0.0810 | 0.9401 |
Project | Hardness | SSC |
---|---|---|
R2 value of multiple linear regression model | 0.9720 | 0.9880 |
R2 value of partial least squares regression model | 0.8301 | 0.9782 |
R2 value of ANFIS model | 0.9752 | 0.9892 |
RMSE value of multiple linear regression model | 0.1434 | 0.0873 |
RMSE value of partial least squares regression model | 0.2985 | 0.0465 |
RMSE value of ANFIS model | 0.1362 | 0.0315 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Niu, X.; Tang, Y.; Li, S.; Lan, H.; Niu, H. Internal Quality Prediction Method of Damaged Korla Fragrant Pears during Storage. Horticulturae 2023, 9, 666. https://doi.org/10.3390/horticulturae9060666
Liu Y, Niu X, Tang Y, Li S, Lan H, Niu H. Internal Quality Prediction Method of Damaged Korla Fragrant Pears during Storage. Horticulturae. 2023; 9(6):666. https://doi.org/10.3390/horticulturae9060666
Chicago/Turabian StyleLiu, Yang, Xiyue Niu, Yurong Tang, Shiyuan Li, Haipeng Lan, and Hao Niu. 2023. "Internal Quality Prediction Method of Damaged Korla Fragrant Pears during Storage" Horticulturae 9, no. 6: 666. https://doi.org/10.3390/horticulturae9060666
APA StyleLiu, Y., Niu, X., Tang, Y., Li, S., Lan, H., & Niu, H. (2023). Internal Quality Prediction Method of Damaged Korla Fragrant Pears during Storage. Horticulturae, 9(6), 666. https://doi.org/10.3390/horticulturae9060666