Effect of Epiphytic Bacteria from Citrus against Green Mold Post-Harvest Diseases of Citrus
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Sampling of Citrus Fruit
2.2. Collection of Epiphytic Bacteria on the Peel
2.3. Fungal Pathogens
2.4. In Vitro Screening of Isolates
2.5. Effect of Isolated Bacteria on Orange Fruits
2.6. Morphological and Biochemical Characterization
2.7. Molecular Identification of Effectively Isolated Bacteria
2.8. Antifungal Activity of Isolated Bacteria Secondary Metabolites
2.9. Analysis of Antifungal Metabolites by HPLC
2.10. Statistical Analysis
3. Results
3.1. Screening of Bacteria for In Vitro Antagonistic Activity
3.2. Bioassay Effect of Isolated Bacteria on Orange Fruits
3.3. Phenotypic Characteristics and Pathogenicity of Bacteria Antagonists
3.4. Molecular Identification of Three Antagonistic Bacteria
3.5. Determination of Antifungal Metabolites of B. cereus by Using HPLC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Citrus Fruit Statistical Compendium 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- FAO. Citrus Fruit Fresh and Processed; Statistical Bulletin; FAO: Rome, Italy, 2017. [Google Scholar]
- Alijoo, B.; Abdossi, V.; Zarrinnia, V.; Kalateh Jari, S.; Chamani, M. Changes of Antioxidant Enzymes in ‘Thomson-Navel’ Orange during Induction of Resistance to Green Mold (Penicillium digitatum (Pers.) Sacc.) as Provoked by Jasmonic Acid, Epibrassinolide, Chitosan and Cinnamon Essential Oil. Acta Agric. Slov. 2019, 114, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.R.; Singh, D.; Singh, R. Biological Control of Postharvest Diseases of Fruits and Vegetables by Microbial Antagonists: A Review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Strano, M.C.; Altieri, G.; Allegra, M.; Di Renzo, G.C.; Paterna, G.; Matera, A.; Genovese, F. Postharvest Technologies of Fresh Citrus Fruit: Advances and Recent Developments for the Loss Reduction during Handling and Storage. Horticulturae 2022, 8, 612. [Google Scholar] [CrossRef]
- Costa, J.H.; Bazioli, J.M.; de Moraes Pontes, J.G.; Fill, T.P. Penicillium digitatum Infection Mechanisms in Citrus: What Do We Know so Far? Fungal Biol. 2019, 123, 584–593. [Google Scholar] [CrossRef]
- Zhu, C.; Sheng, D.; Wu, X.; Wang, M.; Hu, X.; Li, H.; Yu, D. Identification of Secondary Metabolite Biosynthetic Gene Clusters Associated with the Infection of Citrus Fruit by Penicillium digitatum. Postharvest Biol Technol. 2017, 134, 17–21. [Google Scholar] [CrossRef]
- Bhatta, U.K. Alternative Management Approaches of Citrus Diseases Caused by Penicillium digitatum (Green Mold) and Penicillium italicum (Blue Mold). Front. Plant Sci. 2022, 12, 833328. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, E.A.; Dawood, D.H.; Safwat, N.A. Antifungal Action and Induction of Resistance by β-Aminobutyric Acid against Penicillium digitatum to Control Green Mold in Orange Fruit. Pestic. Biochem. Physiol. 2021, 171, 104721. [Google Scholar] [CrossRef]
- Perez, M.F.; Perez Ibarreche, J.; Isas, A.S.; Sepulveda, M.; Ramallo, J.; Dib, J.R. Antagonistic Yeasts for the Biological Control of Penicillium digitatum on Lemons Stored under Export Conditions. Biol. Control 2017, 115, 135–140. [Google Scholar] [CrossRef]
- Poleatewich, A.; Backman, P.; Nolen, H. Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit. Microorganisms 2022, 11, 81. [Google Scholar] [CrossRef]
- Mamphogoro, T.P.; Babalola, O.O.; Aiyegoro, O.A. Exploitation of Epiphytic Bacterial Antagonists for the Management of Post-Harvest Diseases of Sweet Pepper and Other Fresh Produce—A Viable Option. Biocontrol. Sci. Technol. 2020, 30, 741–761. [Google Scholar] [CrossRef]
- Zhang, H.; Serwah Boateng, N.A.; Ngolong Ngea, G.L.; Shi, Y.; Lin, H.; Yang, Q.; Wang, K.; Zhang, X.; Zhao, L.; Droby, S. Unravelling the Fruit Microbiome: The Key for Developing Effective Biological Control Strategies for Postharvest Diseases. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4906–4930. [Google Scholar] [CrossRef] [PubMed]
- Long, C.-A.; Wu, Z.; Deng, B.-X. Biological Control of Penicillium Italicum of Citrus and Botrytis Cinerea of Grape by Strain 34–9 of Kloeckera Apiculata. Eur. Food Res. Technol. 2005, 221, 197–201. [Google Scholar] [CrossRef]
- Lastochkina, O.; Baymiev, A.; Shayahmetova, A.; Garshina, D.; Koryakov, I.; Shpirnaya, I.; Pusenkova, L.; Mardanshin, I.; Kasnak, C.; Palamutoglu, R. Effects of Endophytic Bacillus Subtilis and Salicylic Acid on Postharvest Diseases (Phytophthora Infestans, Fusarium Oxysporum) Development in Stored Potato Tubers. Plants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, J.; Wang, W.; Deng, L.; Yi, L.; Zeng, K. A Core Epiphytic Bacterial Consortia Synergistically Protect Citrus from Postharvest Disease. Food Chem. 2023, 407, 135103. [Google Scholar] [CrossRef]
- Sadfi-Zouaoui, N.; Essghaier, B.; Hajlaoui, M.R.; Fardeau, M.L.; Cayaol, J.L.; Ollivier, B.; Boudabous, A. Ability of Moderately Halophilic Bacteria to Control Grey Mould Disease on Tomato Fruits. J. Phytopathol. 2007, 156, 42–52. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Zhou, Y.; Yao, S.; Deng, L.; Zeng, K. Isolation, Identification and in Vitro Screening of Chongqing Orangery Yeasts for the Biocontrol of Penicillium digitatum on Citrus Fruit. Biol. Control 2017, 110, 18–24. [Google Scholar] [CrossRef]
- Lima, J.R.; Gondim, D.M.F.; Oliveira, J.T.A.; Oliveira, F.S.A.; Gonçalves, L.R.B.; Viana, F.M.P. Use of Killer Yeast in the Management of Postharvest Papaya Anthracnose. Postharvest Biol. Technol. 2013, 83, 58–64. [Google Scholar] [CrossRef]
- Grover, M.; Nain, L.; Singh, S.B.; Saxena, A.K. Molecular and Biochemical Approaches for Characterization of Antifungal Trait of a Potent Biocontrol Agent Bacillus Subtilis RP24. Curr. Microbiol. 2010, 60, 99–106. [Google Scholar] [CrossRef]
- Kong, H.-G.; Kim, J.-C.; Choi, G.-J.; Lee, K.-Y.; Kim, H.-J.; Hwang, E.-C.; Moon, B.-J.; Lee, S.-W. Production of Surfactin and Iturin by Bacillus Licheniformis N1 Responsible for Plant Disease Control Activity. Plant Pathol. J. 2010, 26, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Ongena, M.; Jacques, P. Bacillus lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends Microbiol. 2008, 16, 115–125. [Google Scholar] [CrossRef]
- Hammami, R.; Oueslati, M.; Smiri, M.; Nefzi, S.; Ruissi, M.; Comitini, F.; Romanazzi, G.; Cacciola, S.O.; Sadfi Zouaoui, N. Epiphytic Yeasts and Bacteria as Candidate Biocontrol Agents of Green and Blue Molds of Citrus Fruits. J. Fungi 2022, 8, 818. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Koh, Y.J.; Jung, J.S.; Hur, J.S. Control of Postharvest Fruit Rot Diseases of Kiwifruit by Antagonistic Bacterium Bacillus Subtilis. Acta Hortic. 2015, 1096, 377–382. [Google Scholar] [CrossRef]
- Lastochkina, O.; Seifikalhor, M.; Aliniaeifard, S.; Baymiev, A.; Pusenkova, L.; Garipova, S.; Kulabuhova, D.; Maksimov, I. Bacillus spp.: Efficient Biotic Strategy to Control Postharvest Diseases of Fruits and Vegetables. Plants 2019, 8, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, P.; Tozlu, E.; Kotan, R.; Kotan, M.Ş. Potential of Some Bacteria for Biological Control of Postharvest Citrus Green Mould Caused by Penicillium digitatum. Plant Prot. Sci. 2017, 53, 134–143. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.; Tabassum, B.; Fathi Abd_Allah, E. Bacillus subtilis: A Plant-Growth Promoting Rhizobacterium That Also Impacts Biotic Stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Habiba, S.; Noreen, R.; Ali, S.A.; Hasan, K.A.; Ara, J.; Sultana, V.; Ehteshamul-Haque, S. Protective Role of Epiphytic Fluorescent Pseudomonas on Natural Postharvest Decay of Tomato at Room Temperature. J. Appl. Bot. Food Qual. 2017, 90, 288–297. [Google Scholar] [CrossRef]
- Li, X.; Jing, T.; Zhou, D.; Zhang, M.; Qi, D.; Zang, X.; Zhao, Y.; Li, K.; Tang, W.; Chen, Y.; et al. Biocontrol Efficacy and Possible Mechanism of Streptomyces sp. H4 against Postharvest Anthracnose Caused by Colletotrichum Fragariae on Strawberry Fruit. Postharvest Biol. Technol. 2021, 175, 111401. [Google Scholar] [CrossRef]
- Benga, L.; Benten, W.P.M.; Engelhardt, E.; Köhrer, K.; Gougoula, C.; Sager, M. 16S Ribosomal DNA Sequence-Based Identification of Bacteria in Laboratory Rodents: A Practical Approach in Laboratory Animal Bacteriology Diagnostics. Lab. Anim. 2014, 48, 305–312. [Google Scholar] [CrossRef]
- Dunlap, C.A.; Bowman, M.J.; Rooney, A.P. Iturinic Lipopeptide Diversity in the Bacillus Subtilis Species Group—Important Antifungals for Plant Disease Biocontrol Applications. Front. Microbiol. 2019, 10, 1794. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, Y.; Xu, Y.; Zhang, G.; Shen, Q.; Zhang, R. Exploring Elicitors of the Beneficial Rhizobacterium Bacillus Amyloliquefaciens SQR9 to Induce Plant Systemic Resistance and Their Interactions with Plant Signaling Pathways. Mol. Plant-Microbe Interact. 2018, 31, 560–567. [Google Scholar] [CrossRef] [Green Version]
Isolates | % Reduction of P. digitatum Mycelium Growth |
---|---|
B11 | 42 ± 1 f |
B2 | 30 ± 0 h |
B3 | 30 ± 0 h |
B14 | 54 ± 0 e |
B15 | 89 ± 1 a |
B6 | 30 ± 1 h |
S13 | 68 ± 0 c |
S23 | 11 ± 1 j |
S19 | 24 ± 0 i |
S18 | 36 ± 1 g |
P1 | 60 ± 1 d |
P10 | 7 ± 1 k |
P17 | 70 ± 0 b |
Characteristic | Bacillus (B11, B2, B3, B14, B15, B6) | Streptomyces (S13, S23, S19, S18) | Pseudomonas (P1, P10, P17) |
---|---|---|---|
Gram reaction | + | + | − |
Fluorescent pigmentation on KB agar | Absent | Absent | Present |
Cell morphology | Rod-shaped | Filamentous | Rod-shaped |
Heat test for endospore formation | + | − | − |
Aerobic growth | Yes | Yes | Yes |
Oxidase test | + | − | + |
Catalase test | + | + | + |
HR on tobacco test | − | − | − |
Potato soft rot test | − | − | − |
Peak | Ret Time [min] | Area (mAU) | Height [mAU] |
---|---|---|---|
Bacillus cereus | 1.585 | 26.53763 | 5.82007 |
Iturin A | 1.412 | 26.89453 | 5.9432 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadian, S.; Supronienė, S.; Kulaitienė, J.; Hasanzadeh, N. Effect of Epiphytic Bacteria from Citrus against Green Mold Post-Harvest Diseases of Citrus. Horticulturae 2023, 9, 764. https://doi.org/10.3390/horticulturae9070764
Hadian S, Supronienė S, Kulaitienė J, Hasanzadeh N. Effect of Epiphytic Bacteria from Citrus against Green Mold Post-Harvest Diseases of Citrus. Horticulturae. 2023; 9(7):764. https://doi.org/10.3390/horticulturae9070764
Chicago/Turabian StyleHadian, Shervin, Skaidrė Supronienė, Jurgita Kulaitienė, and Nader Hasanzadeh. 2023. "Effect of Epiphytic Bacteria from Citrus against Green Mold Post-Harvest Diseases of Citrus" Horticulturae 9, no. 7: 764. https://doi.org/10.3390/horticulturae9070764
APA StyleHadian, S., Supronienė, S., Kulaitienė, J., & Hasanzadeh, N. (2023). Effect of Epiphytic Bacteria from Citrus against Green Mold Post-Harvest Diseases of Citrus. Horticulturae, 9(7), 764. https://doi.org/10.3390/horticulturae9070764