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Abstract: Civet coffee is the world’s most expensive and rarest coffee bean. Indonesia was the first
country to be identified as the origin of civet coffee. First, it is produced spontaneously by collecting
civet feces from coffee plantations near the forest. Due to limited stock, farmers began cultivating
civets to obtain safe supplies of civet coffee. Based on this, civet coffee can be divided into two types:
wild and fed. A combination of spectroscopy and chemometrics can be used to evaluate authenticity
with high speed and precision. In this study, seven samples from different regions were analyzed
using NIR Spectroscopy with various preparations: unroasted, roasted, unground, and ground. The
spectroscopic data were combined with unsupervised exploratory methods (hierarchical cluster
analysis (HCA) and principal component analysis (PCA)) and supervised classification methods
(support vector machine (SVM) and random forest (RF)). The HCA results showed a trend between
roasted and unroasted beans; meanwhile, the PCA showed a trend based on coffee bean regions.
Combining the SVM with leave-one-out-cross-validation (LOOCV) successfully differentiated 57.14%
in all sample groups (unground, ground, unroasted, unroasted–unground, and roasted–unground),
78.57% in roasted, 92.86% in roasted–ground, and 100% in unroasted–ground. However, using the
Boruta filter, the accuracy increased to 89.29% for all samples, to 85.71% for unground and unroasted–
unground, and 100% for roasted, unroasted–ground, and roasted–ground. Ultimately, RF successfully
differentiated 100% of all grouped samples. In general, roasting and grinding the samples before
analysis improved the accuracy of differentiating between wild and feeding civet coffee using NIR
Spectroscopy.

Keywords: Boruta algorithm; civet coffee; ground coffee; hierarchical cluster analysis; principal
component analysis; random forest; support vector machine

1. Introduction

Civet coffee, known as the world’s most expensive and rarest coffee, was first dis-
covered in Indonesia [1]. Civet coffee beans are eaten by civets or luwak (Paradoxurus
hermaphrodites), a nocturnal cat. They are then fermented in the digestive tract and come
out along with the feces. Civets will naturally choose the ripest and sweetest coffee cherries
to consume. Civets eat coffee cherries by opening the pulp and eating the beans and the
mucilage. Civets are unable to digest the beans, so the beans will come out intact with feces.
A natural process that occurs in the civets’ stomachs changes the chemical composition of
coffee beans, so they have a different taste than regular coffee beans [1–4].
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Initially, civet coffee was spontaneously produced by collecting the feces of civets
from coffee plantations near the forest. Due to limited stock, the farmers began feeding the
civets to obtain safe supplies of civet coffee. Based on this, civet coffee is divided into two
types: natural (wild) and feeding (caged) civet coffee products [5–7]. The small number of
supplies and the complex process of collecting civets’ feces make wild civet coffee more
expensive than feeding.

To protect the authenticity of wild civet coffee and consumers’ expectations of higher
prices, an easy and simple analytical method is required to discriminate between wild and
feeding civet coffee products. Near-infrared spectroscopy (NIRS) has been successfully
applied for various purposes, particularly in coffee, such as variety discrimination, adulter-
ation, and origin classification [2,8–11]. Spectroscopic data combined with chemometric
tools can rapidly assess the authenticity of a product while providing precise analytical
results. This approach has been widely used to identify and classify adulterants, ensure
agricultural product quality, and evaluate different product characteristics [12–15].

Hierarchical cluster analysis (HCA) and principal component analysis (PCA) are
unsupervised methods for classifying multivariate data based on similarities either among
samples or variables with unknown tendencies [16]. In contrast, supervised methods, such
as support vector machine (SVM) and random forest (RF), must be applied to generate
predictive classification. SVM is a group of supervised learning algorithms that can build a
model as initially trained [17]. RF is a bootstrapping algorithm that produces decision trees
for prediction or classification. RF has extremely rapid decision tree construction, making
training much faster than the training of artificial neural networks [16]. Choosing a suitable
model parameter is crucial when SVM and RF are used to solve real problems because it
might affect the accuracy and performance of the model [13].

NIR spectroscopic data combined with chemometric techniques have been successfully
applied to the characterization of geographical and botanical origins and the quality of
different coffees [10,18]. However, using non-parametric classification techniques, specific
differences can be found in highly similar samples [19,20]. SVM is used to discriminate
different types of coffee based on chemical or spectral features, ensuring the identification
and quality control, while RF can handle different data sources and capture non-linear
relationships to provide feature importance insights [18,21–24]. Hence, it is possible to use
NIRS combined with chemometric techniques to differentiate between wild and feeding
civet coffee. Therefore, this study aimed to determine the appropriate sample preparation
process and the best chemometric tools to enhance discrimination between wild and feeding
civet coffee using NIRS.

2. Materials and Methods
2.1. Coffee Samples

Four wild civet coffee samples and three feeding civet coffee samples were collected
from five different origins (Figure 1): Lampung (Lampung), Papandayan (West Java),
Halu (West Java), Cikuray (West Java), and Temanggung (Central Java), Indonesia. Coffee
cherries were harvested between June and August 2021 from trees approximately 5–7 years
old. All cherries then underwent a natural post-harvest process that involved drying under
sunlight for 4–6 weeks until their water content reached 12–13%. Subsequently, dried
cherries were hulled to remove coffee pulp and silver skin to collect green beans that were
suitable for sampling.

Half of the green beans were roasted at 210 ◦C for ±15 min (medium roasting) using a
D12 Roaster (Berto Coffee Roaster, Banten, Indonesia). Half of the green and roasted beans
were ground into a 0.35 µm mesh of particle size using a Retsch ZM 200 (Fisher Scientific
SL, Madrid, Spain). All samples were stored in a glass bottle with minimal headspace in a
cool room (4–7 ◦C). The exact geographical origin and sample pre-treatment of the studied
civet coffee are presented in Table 1.
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Figure 1. Sampling sites of the studied civet coffee: (A) Lampung (Lampung), (B) Papandayan
(West Java), (C) Halu (West Java), (D) Cikuray (West Java), and (E) Temanggung (Central Java),
Indonesia.

2.2. NIR Spectroscopy

Vis-NIR spectra were acquired using a FOSS XDS Rapid Content Analyzer with XDS
near-infrared technology (FOSS Analytical, Hilleroed, Denmark), equipped with a single
light beam analyzer and a rapid solid module with spot size (d = 17.25 mm). The spectra
were recorded in duplicate using dust sampling bucket vials (Figure S1) (Ø = 12 mm). The
samples were scanned in a Foss XDS from 400–2500 nm, averaging 32 scans (approximately
1 min) with a resolution of 0.5 nm.

2.3. Data Analysis

No data pre-treatment was performed. All collected data were analyzed using unsu-
pervised and supervised chemometric tools using RStudio software (R version 4.1.2, Boston,
MA, USA). HCA and PCA were applied as unsupervised methods, whereas SVM and RF
were applied as supervised methods. Data analysis was carried out using several packages:
ggplot2 and factoextra for graphical displays, prospectr to apply the first derivative and
Savitzky–Golay filter, mclust to perform model-based clustering, and caret to apply the
various algorithms for classification. The Boruta algorithm was also used as a pre-treatment
for the dataset. Each combination of parameter selection was examined using LOOCV
to optimize these hyperparameters, and the parameters with the highest cross-validation
accuracy were chosen.

Accuracy represents the percentage of experience that was accurately anticipated.
Various metrics have been proposed as performance indicators. The true positive rate
(TPR) is the percentage of sample labels (wild and feeding civet coffee) that the model
can identify. The proportion of correctly detected samples (TP) compared to all detected
samples (TP + FP) is known as the precision. The false positive rate (FPR) is the percentage
of incorrectly labeled samples, such as wild civet coffee classified as feeding civet coffee or
vice versa. The ideal model will strike a balance between high TPR and low FPR [21,25].

accuracy =
(TP + TN)

(TP + TN + FP + FN)

TP: True Positive
FP: False Positive
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TN: True Negative
FN: False Negative

Table 1. The origin, sample pre-treatment, and code of the studied civet coffee samples.

Variety Wild/Cultivated
Sample Pre-Treatment

Sample Code
Sampling Site

(Province, City, and Geographic
Coordinate System)Green/Roasted Whole/Ground

Arabica

Wild

Green
Whole ATWG

Temanggung,
Central Java

(−7.1752, 110.0170)

Ground ATWGG

Roasted
Whole ATWR

Ground ATWRG

Green
Whole APWG

Papandayan,
West Java

(−7.2994, 107.7987)

Ground APWGG

Roasted
Whole APWR

Ground APWRG

Green
Whole ACWG

Cikuray,
West Java

(−7.2851, 107.8740)

Ground ACWGG

Roasted
Whole ACWR

Ground ACWRG

Feeding

Green
Whole ATCG

Temanggung,
Central Java

(−7.1752, 110.0170)

Ground ATCGG

Roasted
Whole ATCR

Ground ATCRG

Green
Whole AXCG

Halu,
West Java

(−7.0179, 107.3353)

Ground AXCGG

Roasted
Whole AXCR

Ground AXCRG

Robusta

Wild

Green
Whole RLWG

Lampung,
Lampung

(−4.8421, 104.7406)

Ground RLWGG

Roasted
Whole RLWR

Ground RLWRG

Feeding

Green
Whole RLCG

Ground RLCGG

Roasted
Whole RLCR

Ground RLCRG

3. Results and Discussion

The original spectra of the coffee samples are shown in Figure 2. The red line shows
the signal from feeding civet coffee, while the blue line shows the signal from wild civet
coffee. The spectra of feeding and wild coffee mostly overlapped because of their similarity
in major chemical composition, grind size, post-harvest processing, roasting degree, and
other factors. Hence, more than a simple visual analysis was required to distinguish
between them. However, some data analyses must be performed to reach discrimination
models, as was conducted for the discrimination among different coffee varieties or roasting
degrees [26,27].
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Figure 2. Spectra of coffee samples without pre-treatment.

As shown in Figure 2, the coffee samples had similar spectra with slightly different
intensities. A similar occurrence was previously reported when the botanical spectra of
Robusta and Conilon overlapped [19], indicating that they had similar spectrochemical
properties. Low-grade Robusta shows a different spectral behavior from other Robusta,
demonstrating how effective bean processing can improve the quality of coffee beans. This
finding reveals that feeding and wild civet coffees contain the same major compounds, and
only minor differences appear in the Vis-NIR spectra owing to slight differences in their
levels or different minor compounds.

Vis-NIR spectra, encompassing both the visible and near-infrared ranges, play a crucial
role in analyzing the chemical composition of substances. These spectra were defined by
absorption bands arising from the vibrations of different chemical bonds [10]. The visible
range spans from 400 to 750 nm, whereas the NIR range extends from 750 to 2500 nm.
This spectroscopic region is invaluable for assessing compounds predominantly consisting
of C-H, S-H, O-H, and N-H bonds, which are closely associated with numerous organic
chemical constituents found in coffee, including carbohydrates, lipids, caffeine, chlorogenic
acid derivatives, and proteins. The absorption bands corresponding to these bonds provide
valuable information about the presence and concentration of these organic components in
coffee samples [10,26,28].

Examining Vis-NIR spectra can provide more information about the chemical compo-
sition of coffee and its organic components. These data are useful for quality assurance,
confirming the legitimacy of coffee samples, and analyzing the general composition and
traits of various coffee types. A quick and accurate evaluation of the chemical makeup of
coffee samples is made possible by the nondestructive and effective Vis-NIR spectroscopy
method [23,26].

The red line shows higher absorption at 450–550 nm. This result indicates that feeding
civet coffee is darker than wild civet coffee. In contrast, in the range of 1400–2500 nm,
the blue line generally exhibits higher absorbance than the red line, indicating that wild
civet coffee contains higher levels of chemical components than feeding civet coffee. These
observations highlight the need for quantitative analysis and data modeling techniques
to effectively discriminate between feeding and wild civet coffee, based on their Vis-
NIR spectra. By employing appropriate data analysis methods, it is possible to uncover
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subtle variations and establish classification models that leverage the unique spectral
characteristics of different coffee types.

3.1. Exploratory Analysis (Unsupervised Method: HCA and PCA)

The original spectra were modified for baseline variations using a Savitzky–Golay
filter to generate a second-order derivative. This preprocessing step enhances the spectral
features and removes any unwanted baseline effects, allowing for a more accurate analysis
of the Vis-NIR spectra. To explore and identify the differences among the Vis-NIR spectra,
an unsupervised pattern recognition approach was employed. Two commonly used tech-
niques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were
used in this investigation [11,29].

Full cross-validation was used during the HCA and PCA processes to provide robust
and reliable results. By applying HCA and PCA to the modified spectra, it becomes possible
to uncover hidden patterns, groupings, or clusters based on Vis-NIR data. Clustering plays
a crucial role in unsupervised machine learning as it helps uncover underlying patterns
or structures in a dataset without any prior knowledge or labelled examples. These
techniques serve as exploratory tools that pave the way for further analysis and subsequent
classification tasks [30,31]. In the context of the analysis of wild and feeding civet coffee
samples, HCA was employed to create a hierarchical classification based on the similarity
of the spectral data.

HCA aims to organize samples into a hierarchy of clusters, where each cluster con-
tains objects that are similar to each other and dissimilar to objects in other clusters. The
process starts with individual samples being treated as separate clusters and progressively
merging them based on their similarity, forming a dendrogram that depicts the hierarchical
relationships among the clusters. The hierarchical nature of the classification allows for
different levels of granularity, with smaller clusters nested within larger ones, providing a
comprehensive view of the data’s structure [12,32]. A hierarchical classification for wild
and feeding civet coffee samples was created based on the similarity of the spectral data of
the samples within a cluster (Figure 3).

Several linkage methods can be employed in HCA to determine the similarities or
dissimilarities between clusters or individual samples. One common measure used is the
Canberra distance, which considers the differences between feature values across samples.
To assess the quality of the clustering structure generated by HCA, the agglomerative
coefficients were calculated. It can measure how well samples or clusters are grouped
together based on their similarities. A value closer to 1 indicates a more solid clustering
structure, with samples in the same cluster highly similar to each other.

In this analysis, the inter-individual similarity matrix was calculated using Canberra
distance, which captures the dissimilarity between pairs of samples. The inter-group
measure, on the other hand, was determined using the average method, which calculates
the average dissimilarity between samples across clusters. By comparing the agglomerative
coefficients obtained from various linkage methods (such as single, complete, average,
ward, and centroid), it was found that the average method produced the highest coefficients,
with a value of 0.9591.

This finding shows that the clustering structure of the average linkage method was
relatively strong, demonstrating well-defined and unique clusters within the wild and
feeding civet coffee samples. The high agglomerative coefficients of the average linkage
method support the idea that the samples within each cluster have a great deal in common
and can be categorized as separate groups. This also implies that the average linkage
approach successfully reflects the underlying structure and patterns found in the spectrum
data of wild and feeding civet coffee samples. This provides confidence in the clustering
results derived through HCA.
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Figure 3. Dendrogram from HCA analysis combined with the average’s method and Canberra
distance: roasted unground (A), roasted ground (B), unroasted ground (C), and unroasted unground
(D). Green represents unroasted beans and brown represents roasted beans.

The resulting dendrogram (Figure 3) shows a clear trend of the samples being classified
according to their physical appearance. The main clusters identified in the dendrogram cor-
respond to the distinction between green, unroasted, and roasted beans. This classification
is in line with the expected trend, as roasting significantly alters the chemical and physical
properties of coffee beans. Within each main cluster, further subgroups were observed
based on the processing state of the beans. Cluster A and D represent the sub-groups of
whole or unground beans, while clusters B and C correspond to the sub-group of ground
beans. This division indicates the different forms in which coffee is commonly consumed,
with whole beans typically used for grinding and brewing, whereas ground beans are
directly used for making coffee. In any case, HCA cannot differentiate between wild and
feeding civet coffee.

Previous research has highlighted the specific wavelength ranges associated with the
moisture content and chemical bonds present in unroasted and roasted coffee. For example,
wavelengths around 980, 1200, and 1450 nm have been associated with higher moisture
content in unroasted coffee, while wavelengths around 1200 nm, 1360 nm, and 1450 nm are
characteristic of roasted coffee. However, these specific features related to wild and feeding
civet coffee were not captured by HCA in this study [23].

Another interesting observation from the dendrogram is the clustering pattern within
the lower group, which indicates similarities based on geographical factors. Coffee samples
from Arabica farms located in Papandayan, Cikuray, and Halu, all situated in West Java,
with altitudes ranging from 1500 to 2000 m.a.s.l., tend to cluster together. Similarly, Arabica
samples from Temanggung and Robusta samples from Lampung, both grown at lower
altitudes ranging from 600 to 1200 m.a.s.l., also form a distinct cluster. This result suggests
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that altitude and geographical proximity have contributed to the similarities observed in
the spectral characteristics of these coffee samples.

The HCA successfully classified coffee samples based on their physical attributes, such
as color and size and, to some extent, geographical factors. However, it did not differentiate
between wild and feeding civet coffee. Hence, another unsupervised pattern recognition
approach, viz., PCA, was applied to further explore and identify the differences among the
Vis-NIR spectra.

PCA is a powerful multivariate method used to analyze datasets with multiple cor-
related variables. Its primary objective is to reduce the dimensionality of the dataset by
transforming the original variables into a new set of variables known as principal compo-
nents (PCs). These PCs are linear combinations of the original variables and are chosen
such that they capture the maximum amount of variance present in the data [33]. The
PCA results for the wild and feeding civet coffee samples are shown in Figure 4. PCA was
performed to explore the relationships and patterns within the dataset.
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Figure 4. Scatter Plot from PCA analysis for the first two principal components (PC1 and PC2).
A: unroasted-ground, B: unroasted-unground, C: roasted-ground and roasted-unground.

Figure 4 shows the scatter plot obtained from the PCA analysis. The plot was di-
vided into three groups: A is a group of samples that were not roasted but ground
(unroasted–ground); B is a group of samples that were not roasted and not ground
(unroasted–unground); and C is a group of samples that were roasted (roasted–ground
and roasted–unground). PC 1 explained a significant portion of the variance in the dataset,
accounting for 69.5% of the data. PC 1 played a crucial role in grouping the samples based
on color. It distinguished between unroasted samples, characterized by their green color,
and roasted samples, which exhibited a dark brown color. Therefore, PC 1 effectively
captured the main source of variation related to the roasting process and its influence on
the color of coffee samples. PCA successfully revealed the major patterns in the dataset
related to roasting and grinding processes. The distinct separation of the unroasted–ground,
unroasted–unground, and roasted samples suggests that PCA can effectively discriminate
between the different processing conditions based on their spectral characteristics. It is
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important to note that PCA does not explicitly consider the classification of wild and
feeding civet coffee.

There are three critical factors in NIRS: the particle size, moisture content, and temper-
ature of the samples. Diffuse reflectance and transmittance result from a combination of
tool shape, sample size, sample shape, and sample distribution [34]. Samples with large
particles cannot spread as much radiation as they are absorbed [35]. This limitation can
lead to differences in the spectra and affect the accuracy of the analysis, which caused
the formation of groups A and B. Moreover, the moisture content of the sample affected
the NIRS results, which caused the formation of group C, which was roasted beans that
consisted of lower moisture content and experienced a significant thermic process, thereby
altering the chemical and physical characteristics [23]. The temperature of the samples can
also influence the NIRS results. Roasted beans, for example, undergo significant thermal
processing, resulting in chemical and physical changes compared with unroasted beans.
These changes can affect the spectral characteristics and contribute to the formation of
different groups during the analysis.

Given the results of HCA and PCA, it is necessary to apply multivariate techniques,
including supervised pattern recognition algorithms, to attempt to reach an accurate
classification and guarantee the generation of a mathematical model that may be used
to make predictions in the future. Two supervised classification methods, SVM and RF,
were applied and compared to predict the type of civet coffee (wild or feeding) based on
NIRS data. The accuracy metric was used to assess the created SVM and RF models, which
measured the proportion of correct predictions for all input data.

3.2. Multivariate Techniques (Supervised Method: SVM and RF)

SVM is a supervised technique frequently used to categorize data into multiple groups.
This is based on the concept of a hyperplane. The fundamental goal of SVM is to sepa-
rate the classes with a minimum classification error by identifying the best hyperplane
(boundary) that optimizes the margin between the support vectors (data points nearest to
the hyperplane). SVM is typically used with datasets in which the response variables can
be linearly separated [13,21]. For this purpose, each dataset was randomly divided into
70% of the training set and 30% of the test set.

To optimize these hyperparameters, each combination of parameter choices was
checked by leave-one-out cross-validation (LOOCV), and the parameters with the best
cross-validation accuracy were selected. LOOCV involves systematically excluding one
sample from the training set, training the model on the remaining samples, and testing
the performance of the model on the left-out sample. This process was repeated for each
sample in the dataset, and the hyperparameters that yielded the best cross-validation
accuracy were selected [23,25]. LOOCV is particularly suitable when working with a small
number of samples, because it maximizes the utilization of the available data for training
and validation. In such cases, LOOCV often outperforms other cross-validation techniques,
such as five-fold cross-validation, which may lead to higher variance owing to the limited
sample size. The performance of SVM for each group of samples is presented in Table 2. The
data results with all samples showed a very low accuracy (57%). This lower accuracy can
be attributed to the inclusion of numerous variables in the experiment, such as roasting and
grinding. Therefore, the samples were further divided into smaller groups, i.e., unground
and ground samples, to enhance the accuracy. However, the new group still needed higher
accuracy (57%), as the unroasted and roasted samples were still in the same group. The
accuracy of unroasted beans (57%) was lower than that of roasted beans (79%) because the
color similarity of the beans after roasting was more homogeneous than that of unroasted
beans. In addition, the difference in particle size (ground and whole beans) also affected the
level of accuracy. The accuracy of unroasted–unground (57%), roasted–unground (57%),
unroasted–ground (100%), and roasted–ground (93%) varied.
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Table 2. The comparison of model performances for classification of wild and feeding civet coffees
using various sample pre-treatments and chemometrics approaches.

Method
Accuracy (%)

All
Samples Beans Ground Green Roasted Green

Beans
Roasted
Beans

Green
Ground

Roasted
Ground

SVM 57 57 57 57 79 57 57 100 93

SVM Boruta 96 89 - - 100 86 100 100 100

RF 100 100 100 100 100 100 100 100 100

RF Boruta 100 100 - - 100 100 100 100 100

Accuracy was calculated using 70% of the training and 30% of the test sets. SVM: Support Vector Machine;
RF: Random Forest.

The accuracy of whole beans was lower than that of the ground. This disparity can be
explained by the presence of a significant amount of empty space in vials containing whole
beans, leading to biased NIR results. In contrast, the ground bean samples exhibited a more
homogeneous and flatter surface, enabling better coverage within the vial and yielding
more accurate NIR readings. The unroasted ground beans provided a higher accuracy than
the roasted ground beans. The roasted samples contained silver parts in the skin, which
contributed to the inhomogeneous ground sample. Different cases were observed for the
whole bean samples, where green and roasted beans were inhomogeneous in color due to
uneven fermentation.

The accuracy of the SVM classification model varied depending on the specific groups
and characteristics of the coffee samples, such as the degree of roasting, particle size, and
color homogeneity. These factors influence the accuracy and highlight the importance of
carefully considering sample attributes when developing classification models.

The Boruta filter is a wrapper for selecting all essential features. The important
features are estimated by comparing the importance of the original attribute with the
importance achieved at random, performed using permutations [23,26]. Based on the data
analysis, Boruta provided better results in all groups except ground and unroasted. This
indicates that variable importance was not observed in these groups. High accuracy was
achieved for all samples (96%), unground (89%), and unroasted–unground (86%); moreover,
roasted, roasted-unground, unroasted–ground, and roasted–ground reached 100% accuracy.
According to the explanation above, the most suitable sample to classify wild and feeding
civet coffee using NIR spectrophotometry combined with the SVM method was, therefore,
roasted and ground beans.

These findings highlight the significance of selecting appropriate features and con-
sidering the specific characteristics of samples when developing classification models. By
leveraging the Boruta filter and SVM algorithm, this study successfully identified the key
features and achieved high accuracy in distinguishing between wild and feeding civet
coffee samples. Because the SVM algorithm design prevents the selection of the most
relevant features for the model’s construction, a different non-parametric technique known
as RF was used to examine the variables that might define the distinctions between wild
and feeding civet coffee samples for classification.

RF is a nonparametric supervised method frequently used for regression and clas-
sification tasks. The RF model consists of numerous independent decision trees trained
using various randomly generated training sets produced by bootstrapping (sampling with
replacement). Each tree develops from a bootstrap sample obtained with replacement from
the original data, which means that two-thirds of the original data, also known as “inside
the bag” data, are used for training, and one-third of the original data, also known as “out
of the bag” (OOB) data, is used to make the final prediction. Therefore, a cross-validation
approach of these OOB instances can be utilized to calculate an unbiased generalization
error to assess the model performance [14,15,25].
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The RF algorithm operates by aggregating the predictions of multiple decision trees,
utilizing techniques such as averaging (for regression tasks) or voting (for classification
tasks), to make the final prediction. This ensemble approach enhances the model’s stability
and robustness, allowing it to handle complex relationships and improve overall prediction
accuracy. RF offers several advantages, including its ability to handle high-dimensional
data, deal with missing values, and capture nonlinear relationships between variables.
Additionally, the RF algorithm is less prone to overfitting compared to individual decision
trees, making it a reliable and widely used approach in various domains [27,36].

The performance of the RF for each group of samples is presented in Table 2. The data
showed that all groups had 100% accuracy, including all samples, unground, ground, un-
roasted, roasted, unroasted–unground, roasted–unground, unroasted–ground, and roasted–
ground. For the Boruta filter, important variables were not generated for ground and
unroasted; therefore, the system was unable to calculate the accuracy. However, high
accuracy (100%) was achieved for all samples, unground, roasted, unroasted–unground,
unroasted–ground, roasted–unground, and roasted–ground. Based on these results, it can
be concluded that NIR spectrophotometry combined with the RF algorithm is an effec-
tive and reliable method for classifying wild and feeding civet coffee samples. The high
accuracy achieved across various groups of samples demonstrated the robustness and
suitability of this approach for distinguishing between the two types of civet coffee.

4. Conclusions

A combination of NIR spectrophotometry and chemometric techniques facilitates
the analysis of civet coffee samples, enabling discrimination among different production
processes, including those involving wild and feeding civets. For the SVM method, 100%
accuracy was achieved when the samples were roasted and ground, and the Boruta filter
was applied, as shown for the SVM green ground, SVM Boruta roasted, roasted beans, green
ground, and roasted ground. This finding indicates that the physical state of the sample
influences the discrimination capability of the method. In contrast, the RF method required
no special treatment of the samples. RF shows 100% accuracy for unroasted, roasted,
unground, ground, or a combination of these sample variables. As it consistently performs
well across various sample conditions without the need for preprocessing methods, it
can be concluded that the RF approach for differentiating wild and civet coffees provides
reliable predictions. Therefore, the new method, which utilizes machine learning tools
applied to spectroscopic data, allows for the discrimination between wild and civet coffees.
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