Effects of 5-Aminolevulinic Acid (5-ALA) on Physicochemical Characteristics and Growth of Pomegranate (Punica granatum L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material via Experimental Closure
2.2. Determination of Physio-Chemical Parameters
2.3. Measurement of Anthocyanin Contents
2.4. Determination of Fruits Physio-Morphological Properties of Fruits
2.5. Determination of Physio-Chemical Fruit characteristics
2.5.1. Determinations of Total Sugars and Total Soluble Solids (TS and TSS) Contents
2.5.2. Measurement of Juice Titratable Acid Content (TAC), Soluble Protein Content (SPC), and pH
2.5.3. Determinations of Ascorbic Acid
2.5.4. Measurement of Total Phenols and Flavonoid
2.6. Determinations of Antioxidant Enzymatic Activities
2.7. Extraction of RNA and qRT-PCR Validations
2.8. Statistical Analysis
3. Results
3.1. 5-ALA Ameliorates the Physiological Characteristics of Pomegranate
3.2. 5-ALA Elevates Anthocyanin Content of Pomegranates
3.3. Differentially Expression of Genes
3.4. 5-ALA Promotes Physio-Morphological Characteristics
3.5. 5-ALA Enhances Physio-Chemical Characteristics of Pomegranate
3.5.1. Determinations of Total Sugars (TS), TSS, TA, Soluble Protein Content, and pH Contents
3.5.2. Determinations of Antioxidant Characteristics of Pomegranate
3.6. Determination of Antioxidant Enzymatic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morton, J.F.; Dowling, C.F. Fruits of Warm Climates; Florida Flair Books: Miami, FL, USA, 1987; pp. 352–355. [Google Scholar]
- Bourekoua, H.; Rózyło, R.; Gawlik-Dziki, U.; Benatallah, L.; Zidoune, M.N.; Dziki, D. Pomegranate seed powder as a functional component of gluten-free bread (Physical, sensorial and antioxidant evaluation). Int. J. Food Sci. Technol. 2018, 53, 1906–1913. [Google Scholar] [CrossRef]
- Shahamirian, M.; Eskandari, M.H.; Niakousari, M.; Esteghlal, S.; Gahruie, H.H.; Khaneghah, A.M. Incorporation of pomegranate rind powder extract and pomegranate juice into frozen burgers: Oxidative stability, sensorial and microbiological characteristics. J. Food Sci. Technol. 2019, 56, 1174–1183. [Google Scholar] [CrossRef] [PubMed]
- Asrey, R.; Kumar, K.; Sharma, R.R.; Meena, N.K. Fruit bagging and bag color affects physico-chemical, nutraceutical quality and consumer acceptability of pomegranate (Punica granatum L.) arils. J. Food Sci. Technol. 2020, 57, 1469–1476. [Google Scholar] [CrossRef]
- Turrini, F.; Boggia, R.; Donno, D.; Parodi, B.; Beccaro, G.; Baldassari, S.; Signorello, M.G.; Catena, S.; Alfei, S.; Zunin, P. From pomegranate marcs to a potential bioactive ingredient: A recycling proposal for pomegranate-squeezed marcs. Eur. Food Res. Technol. 2020, 246, 273–285. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). 2018. Available online: http://www.stats.gov.cn (accessed on 5 December 2022).
- Smart, R.E.; Smith, S.M.; Winchester, R.V. Light Quality and Quantity Effects on Fruit Ripening for Cabernet Sauvignon. Am. J. Enol. Vitic. 1988, 39, 250–258. [Google Scholar] [CrossRef]
- Arakawa, O. Effect of temperature on anthocyanin accumulation in apple fruit as affected by cultivar, stage of fruit ripening and bagging. J. Hortic. Sci. 1991, 66, 763–768. [Google Scholar] [CrossRef]
- Martín, P.; Delgado, R.; González, M.R.; Gallegos, J.I. Colour of ‘Tempranillo’ Grapes as affected by different nitrogen and potassium fertilization rates. Acta Hortic. 2004, 652, 153–160. [Google Scholar] [CrossRef]
- Chervin, C.; El-Kereamy, A.; Roustan, J.-P.; Latché, A.; Lamon, J.; Bouzayen, M. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci. 2004, 167, 1301–1305. [Google Scholar] [CrossRef] [Green Version]
- Sayed, O.M.; El Gammal, O.H.M.; Salama, A.S.M. Effect of proline and tryptophan amino acids on yield and fruit quality of Manfalouty pomegranate variety. Sci. Hortic. 2014, 169, 1–5. [Google Scholar] [CrossRef]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Abadía, J.; Khorasani, R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hortic. 2016, 210, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Maity, A.; Sharma, J.; Pal, R.K. Novel potassium solubilizing bio-formulation improves nutrient availability, fruit yield and quality of pomegranate (Punica granatum L.) in semi-arid ecosystem. Sci. Hortic. 2019, 255, 14–20. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Meybodi, D.N.; Teixeira da Silva, J.A. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S. Afr. J. Bot. 2019, 124, 350–358. [Google Scholar] [CrossRef]
- Hosein-Beigi, M.; Zarei, A.; Rostaminia, M.; Erfani-Moghadam, J. Positive effects of foliar application of Ca, B and GA3 on the qualitative and quantitative traits of pomegranate (Punica granatum L.) cv. ‘Malase-Torshe-Saveh’. Sci. Hortic. 2019, 254, 40–47. [Google Scholar] [CrossRef]
- Naeem, M.S.; Jin, Z.L.; Wan, G.L.; Liu, D.; Liu, H.B.; Yoneyama, K.; Zhou, W.J. 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). Plant Soil 2010, 332, 405–415. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, W.; Dawuda, M.M.; Hu, L.L.; Yu, J.H. 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: A review. Plant Growth Regul. 2019, 87, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.L.; Wang, H.C.; Tan, X.Y.; Zhang, C.L.; Naeem, M.S. 5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Plant Physiol. Biochem. 2018, 124, 88–99. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, X.; Liao, W.; Hu, L.; Dawuda, M.M.; Zhao, X.; Tang, Z.; Gong, T.; Yu, J. 5-Aminolevulinic acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Front. Plant Sci. 2018, 9, 635. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.P.; Liu, J.; Cao, R.X.; Huang, Y.J.; Hall, A.M.; Guo, C.B.; Wang, L.J. Effects of 5-aminolevulinic acid treatment on photosynthesis of strawberry. Photosynthetica 2017, 55, 276–284. [Google Scholar] [CrossRef]
- Ye, J.B.; Chen, Q.W.; Tao, T.T.; Wang, G.; Xu, F. Promotive effects of 5-Aminolevulinic acid on growth, photosynthetic gas exchange, chlorophyll, and antioxidative enzymes under salinity stress in Prunnus persica (L.) Batseh Seedling. Emir. J. Food Agric. 2016, 28, 786. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; He, S.; An, Y.; Wang, L. Exogenous 5-aminolevulinic acid improves strawberry tolerance to osmotic stress and its possible mechanisms. Physiol. Plant. 2019, 168, 948–962. [Google Scholar] [CrossRef] [Green Version]
- Akram, N.A.; Ashraf, M. Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J. Plant Growth Regul. 2013, 32, 663–679. [Google Scholar] [CrossRef]
- Xie, L.; Wang, Z.H.; Cheng, X.H.; Gao, J.J.; Zhang, Z.P.; Wang, L.J. 5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples. Plant Growth Regul. 2013, 69, 295–303. [Google Scholar] [CrossRef]
- Feng, X.X.; An, Y.Y.; Zheng, J.; Sun, M.; Wang, L.J. Proteomics and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-box gene, MdMADS1. Front. Plant Sci. 2016, 7, 1615. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Nishihara, E.; Watanabe, S.; Tanaka, T.; Takahashi, K.; Takeuchi, Y. Enhancement of growth and fruit maturity in 2-year-old grapevines cv. Delaware by 5-aminolevulinic acid. Plant Growth Regul. 2006, 49, 35–42. [Google Scholar] [CrossRef]
- Guo, L.; Cai, Z.X.; Zhang, B.B.; Xu, J.L.; Song, H.F.; Ma, R.J. The mechanism analysis of anthocyanin accumulation in peach accelerated by ALA. Acta Hortic. Sin. 2013, 40, 1043–1050. [Google Scholar]
- Ye, J.B.; Yang, X.H.; Chen, Q.W.; Xu, F.; Wang, G.Y. Promotive effects of 5-aminolevulinic acid on fruit quality and coloration of Prunus persica (L.) Batsch. Sci. Hortic. 2017, 217, 266–275. [Google Scholar] [CrossRef]
- Feng, S.; Li, M.F.; Wu, F.; Li, W.L.; Li, S.P. 5-Aminolevulinic acid affects fruit coloration, growth, and nutrition quality of Litchi chinensis Sonn. cv. Feizixiao in Hainan, tropical China. Sci. Hortic. 2015, 193, 188–194. [Google Scholar] [CrossRef]
- Al-Qurashi, A.D.; Awad, M.A. 5-Aminolevulinc acid increases tree yield and improves fruit quality of ‘Rabia’ and ‘Sukkariat-Yanbo’ date palm cultivars under hot arid climate. Sci. Hortic. 2011, 129, 441–448. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.Q.; Wang, L.J. Applications of 5-aminolevulinic acid on the physiological and biochemical characteristics of strawberry fruit during postharvest cold storage. Ciência Rural. 2016, 46, 2103–2109. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Feng, S.; Li, S.; Wu, F.; Wang, F.; Li, C.; Wang, L. Preharvest promotion or inhibition of colouration: Which is the more conducive to improving litchi postharvest quality? Sci. Hortic. 2019, 254, 124–132. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wang, Y.F.; Zhao, J.J.; Ma, L.; Wang, Y.J.; Zhang, X.; Nie, Y.T.; Guo, Y.P.; Mei, L.X.; Zhao, Z.Y. Effects of GeO2 on chlorophyll fluorescence and antioxidant enzymes in apple leaves under strong light. Photosynthetica 2018, 56, 1081–1092. [Google Scholar] [CrossRef]
- Leong, S.Y.; Oey, I. Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem. 2012, 133, 1577–1587. [Google Scholar] [CrossRef]
- Elfalleh, W.; Hannachi, H.; Guetat, A.; Tlili, N.; Guasmi, F.; Ferchichi, A.; Ying, M. Storage protein and amino acid contents of Tunisian and Chinese pomegranate (Punica granatum L.) cultivars. Genet. Resour. Crop. Evol. 2011, 59, 999–1014. [Google Scholar] [CrossRef]
- Rajakumar, D.V.; Rao, M.N. Dehydrozingerone and isoeugenol as inhibitors of lipid peroxidation and as free radical scavengers. Biochem. Pharmacol. 1993, 46, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.Y.; Lv, D.G.; Li, J.; Li, P.; Liu, F.Z. Condition optimization for spectrophotometric method of total flavonoids in apple fruit. J. Fruit Sci. 2010, 27, 466–470. (In Chinese) [Google Scholar]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Díaz-Vivancos, P.; Clemente-Moreno, M.J.; Rubio, M.; Olmos, E.; García, J.A.; Martínez-Gómez, P.; Hernández, J.A. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J. Exp. Bot. 2008, 59, 2147–2160. [Google Scholar] [CrossRef]
- Jaakola, L.; Pirttilä, A.M.; Halonen, M.; Hohtola, A. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol. 2001, 19, 201–203. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-time Quantitative PCR and the 2−∆∆CT Method. Methods 2010, 25, 402–408. [Google Scholar] [CrossRef]
- Kaur, R.; Kapoor, N.; Aslam, L.; Mahajan, R. Molecular characterization of PgUFGT gene and R2R3-PgMYB transcription factor involved in flavonoid biosynthesis in four tissues of wild pomegranate (Punica granatum L.). J. Genet. 2019, 98, 94. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Aslam, L.; Kapoor, N.; Mahajan, R. Identification and comparative expression analysis of chalcone synthase, flavanone 3-hydroxylase and dihydroflavonol 4-reductase genes in wild pomegranate (Punica granatum L.) organs. Braz. J. Bot. 2020, 43, 883–896. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Li, X.; Song, Y.; Wang, J.; Huang, J.; Xue, R. Exogenous application of 5-aminolevulinic acid alleviated damage to wheat chloroplast ultrastructure under drought stress by transcriptionally regulating genes correlated with photosynthesis and chlorophyll biosynthesis. Acta Physiol. Plant. 2022, 44, 1–12. [Google Scholar] [CrossRef]
- Buran, T.J.; Sandhu, A.K.; Azeredo, A.M.; Bent, A.H.; Williamson, J.G.; Gu, L. Effects of exogenous abscisic acid on fruit quality, antioxidant capacities, and phytochemical contents of southern high bush blueberries. Food Chem. 2012, 132, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Youssef, T.; Awad, M.A. Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-Aminolevulinic acid-based fertilizer. J. Plant Growth Regul. 2008, 27, 1–9. [Google Scholar] [CrossRef]
- An, Y.; Qi, L.; Wang, L. ALA pretreatment improves waterlogging tolerance of fig plants. PLoS ONE 2016, 11, e0147202. [Google Scholar] [CrossRef] [PubMed]
- Killiny, N.; Hijaz, F.; Nehela, Y.; Hajeri, S.; Gowda, S. Effects of δ-aminolevulinic acid dehydratase silencing on the primary and secondary metabolisms of citrus. Plant Direct 2018, 2, e00072. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Marquez, F.J.; Nishio, N.; Nagai, S. Promotive effects of 5-aminolevulinic acid on the growth and photosynthesis of Spirulina platensis. J. Ferment. Bioeng. 1995, 79, 453–457. [Google Scholar] [CrossRef]
- Wang, L.J.; Jiang, W.B.; Huang, B.J. Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol. Plant 2004, 121, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Liu, L.B.; Tao, H.H.; An, Y.Y.; Wang, L.J. Transcriptomic profiling of apple calli with a focus on the key genes for ALA-induced anthocyanin accumulation. Front. Plant Sci. 2021, 12, 640606. [Google Scholar] [CrossRef]
- Habiba, U.; Ali, S.; Rizwan, M.; Hussain, M.B.; Hussain, A.; Alam, P.; Alqarawi, A.A.; Hashem, A.; AbdAllah, E.F. The Ameliorative role of 5-Aminolevulinic acid (ALA) under Cr stress in two maize cultivars showing differential sensitivity to Cr stress tolerance. J. Plant Growth Regul. 2019, 38, 788–798. [Google Scholar] [CrossRef]
- Zheng, J.; An, Y.Y.; Feng, X.X.; Wang, L.J. Rhizospheric application with 5-aminolevulinic acid improves coloration and quality in ‘Fuji’ apples. Sci. Hortic. 2017, 224, 74–83. [Google Scholar] [CrossRef]
- Xu, F.; Cheng, S.; Zhu, J.; Zhang, W.; Wang, Y. Effects of 5-Aminolevulinic acid on chlorophyll, photosynthesis, soluble sugar and flavonoids of Ginkgo biloba. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Tavallali, V.; Jandoust, S.; Mehrjerdi, A.A. Foliar application of 5-aminolevulinic acid to promote bioactive potential and nutritional value of purslane, a vegetable for future. J. Appl. Bot. Food Qual. 2019, 92, 25–32. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Li, J.; Dawuda, M.M.; Ali, B.; Wu, Y.; Yu, J.; Tang, Z.; Lyu, J.; Xiao, X.; et al. Exogenous application of 5-Aminolevulinic acid promotes coloration and improves the quality of tomato fruit by regulating carotenoid metabolism. Front. Plant Sci. 2021, 12, 683868. [Google Scholar] [CrossRef]
Gene | Accession No. | FP Sequence (5′-3′) | RP Sequence (3′-5′) | Sizes in (bp) |
---|---|---|---|---|
PgActin | GU376750 | GATTCTGGTGATGGTGTGAG | GACAATTTCCCGTTCAGCAG | 168 |
PgCHS | KF841615 | CTGGGGCTGAAGGAGGAGAA | TCCGAACCCGAAGAGGACAC | 174 |
PgCHI | KF841616 | TTCTGGAAATCCGTGGGC | ATCCGCTGGGCGATTGAGT | 127 |
PgF3H | KF841617 | GCAACGGGAGGTTCAAGA | TGAGCGGGTACACTATGGC | 114 |
PgDFR | KF841618 | GGCATCGCAAAGCTCCTA | TCCCTGCAACACTCCACA | 179 |
PgANS | KF841619 | GAGGAAGGCAGGCTGGAGAA | TTAGGGCGCTGATGTCGGT | 136 |
PgUFGT | KF841620 | GGCTTTCGTGACGCATTG | TCCTTGGTTATGGCTCCC | 165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, Y.; He, H.; Lin, Z.; Sun, J.; Zhang, F.; Zhou, L.; Wang, Z.; Zhang, Z.; Zou, H. Effects of 5-Aminolevulinic Acid (5-ALA) on Physicochemical Characteristics and Growth of Pomegranate (Punica granatum L.). Horticulturae 2023, 9, 860. https://doi.org/10.3390/horticulturae9080860
Liu S, Liu Y, He H, Lin Z, Sun J, Zhang F, Zhou L, Wang Z, Zhang Z, Zou H. Effects of 5-Aminolevulinic Acid (5-ALA) on Physicochemical Characteristics and Growth of Pomegranate (Punica granatum L.). Horticulturae. 2023; 9(8):860. https://doi.org/10.3390/horticulturae9080860
Chicago/Turabian StyleLiu, Sushuang, Yanmin Liu, Hongtai He, Ziyi Lin, Jiong Sun, Feixue Zhang, Lili Zhou, Zebo Wang, Zaibao Zhang, and Huasong Zou. 2023. "Effects of 5-Aminolevulinic Acid (5-ALA) on Physicochemical Characteristics and Growth of Pomegranate (Punica granatum L.)" Horticulturae 9, no. 8: 860. https://doi.org/10.3390/horticulturae9080860
APA StyleLiu, S., Liu, Y., He, H., Lin, Z., Sun, J., Zhang, F., Zhou, L., Wang, Z., Zhang, Z., & Zou, H. (2023). Effects of 5-Aminolevulinic Acid (5-ALA) on Physicochemical Characteristics and Growth of Pomegranate (Punica granatum L.). Horticulturae, 9(8), 860. https://doi.org/10.3390/horticulturae9080860