
Citation: Bodor-Pesti, P.; Taranyi, D.;

Nyitrainé Sárdy, D.Á.; Le Phuong

Nguyen, L.; Baranyai, L. Correlation

of the Grapevine (Vitis vinifera L.)

Leaf Chlorophyll Concentration with

RGB Color Indices. Horticulturae

2023, 9, 899. https://doi.org/

10.3390/horticulturae9080899

Academic Editor: Paolo Sabbatini

Received: 19 June 2023

Revised: 16 July 2023

Accepted: 2 August 2023

Published: 7 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

horticulturae

Brief Report

Correlation of the Grapevine (Vitis vinifera L.) Leaf Chlorophyll
Concentration with RGB Color Indices
Péter Bodor-Pesti 1,*,† , Dóra Taranyi 1,†, Diána Ágnes Nyitrainé Sárdy 2, Lien Le Phuong Nguyen 3,4

and László Baranyai 3

1 Department of Viticulture, Institute for Viticulture and Oenology, Buda Campus, Hungarian University of
Agriculture and Life Sciences, Villányi Str. 29-43., H-1118 Budapest, Hungary;
taranyi.dora.agnes@uni-mate.hu

2 Department of Oenology, Institute for Viticulture and Oenology, Buda Campus, Hungarian University of
Agriculture and Life Sciences, Villányi Str. 29-43., H-1118 Budapest, Hungary;
nyitraine.sardy.diana.agnes@uni-mate.hu

3 Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Villányi Str.
35-43., H-1118 Budapest, Hungary; nguyen.le.phuong.lien@uni-mate.hu (L.L.P.N.);
baranyai.laszlo@uni-mate.hu (L.B.)

4 Industrial University of Ho Chi Minh City, Ho Chi Minh 727000, Vietnam
* Correspondence: bodor-pesti.peter@uni-mate.hu
† These authors contributed equally to this work.

Abstract: Spectral investigation of the canopy has an increasing importance in precision viticulture
to monitor the effect of biotic and abiotic stress factors. In this study, RGB (color model, red, green,
blue)-based vegetation indices were evaluated to find a correlation with grapevine leaf chlorophyll
concentration. ‘Hárslevelű’ (Vitis vinifera L.) leaf samples were obtained from a commercial vineyard
and digitalized. The chlorophyll concentration of the samples was determined with a portable
chlorophyll meter. Image processing and color analyses were performed to determine the RGB
average values of the digitized samples. According to the RGB values, 31 vegetation indices were
calculated and evaluated with a correlation test and multivariate regression. The Pearson correlation
between the chlorophyll concentration and most of the indices was significant (p < 0.01), with some
exceptions. The same results were obtained with the Spearman correlation as the relationship had high
significance (p < 0.01) for most of the indices. The highest Pearson correlation was obtained with the
index PCA2 (Principal Component Analysis 2), while Spearman correlation was the highest for RMB
(difference between red and blue) and GMB (difference between green and blue). The multivariate
regression model also showed a high correlation with the pigmentation. We consider that our results
would be applicable in the future to receive information about the canopy physiological status
monitored with on-the-go sensors.

Keywords: chlorophyll; precision viticulture; RGB; vegetation index

1. Introduction

Similar to the main purposes of precision agriculture (PA), precision viticulture (PV)
aims to reduce the environmental impact of production while increasing the yield and
quality of grape and wine. To achieve these goals, remote sensing-based decision support
systems (DSSs) are usually established to provide information for differentiated nutrient
and water supply, plant protection, and harvest [1]. Among passive devices, RGB, thermal,
multispectral, and hyperspectral cameras are the most widespread devices used to receive
information about biomass and plant physiology or to predict yield and, moreover, to
support microclimatic monitoring and terroir zoning [2–6]. Physical traits of the plants
such as size, shape, and color are investigated most frequently on the whole canopy or
individual leaves, shoots, and moreover on bunches, berries, or even on seeds or roots.
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RGB-based image capturing and evaluation provide useful information in viticul-
ture, for example, in canopy architecture analysis [7], predicting fruit maturity and berry
composition [8], evaluating the morphometric diversity of genotypes [9], or describing
the effect of postharvest treatments [10,11]. For these purposes, both UAV-mounted cam-
eras [12], on-to-go human-driven multi-sensor platforms [13], and tabletop-stand-built
DSLR cameras [14,15] are involved.

The grapevine canopy is built up by the individual leaves developed on the main and
lateral shoots. Morphological traits—in particular, individual leaf size, leaf shape, lobature,
hirsuteness, and coloration of the leaf—may be typical to the cultivar [16]. Nevertheless,
vineyard structure [17], cultivation practices [18], and further factors could significantly
modify these attributes. Concerning the leaf coloration, the main pigment is the chloro-
phyll produced in the epidermal cells [19], while anthocyanins are also present in some
cases on the young organs such as shoot tips, primarily for photoprotective purposes [20].
Chlorophyll concentration is a key indicator of the nutrient status and lime-induced iron
chlorosis [21,22], fungal infections [23], and water stress [24]; therefore, evaluating the sea-
sonal pattern has high importance in viticultural DSSs. Several studies based on portable
chlorophyll meters concluded that those devices have a huge benefit compared to the labora-
tory spectrophotometric investigations as these handheld tools are easy to use, lightweight,
fast, and reliable. Among others, for example, Porro et al. [25], Zulini et al. [26], and Ates
and Kaya [21], have used the Minolta SPAD-502 leaf chlorophyll meter in viticultural
research. In addition to the undoubted advantages, it should be noted that the portable
chlorophyll meters also have some disadvantages, too. One could be the small size of the
sensor opening which requires multiple measurements to be taken on the samples. For
example, the Apogee MC10 measurement area is 63.9 mm2, the TYS-A Handheld Plant
Chlorophyll Meter measures 4 mm2, and the CCM-200 plus Chlorophyll Content Meter
uses a 9.52 mm (3/8”) diameter circle (71 mm2). Considering that the average leaf size of,
for example, grapevine (Vitis vinifera L.) cultivar ‘Chardonnay’ ranges from 46.5 to 80.2 cm2,
influenced by the bud load of the plants [18], several measurements are suggested on a
single leaf to characterize the lamina pigmentation.

Remote and proximal sensing-based chlorophyll evaluations are more frequently ap-
plied in PV. Several studies emphasized that chlorophyll concentration correlates with RGB
values and RGB-based vegetation indices, which was evaluated according to digital image
analysis on, for example, wheat and rye [27], barley [28], apple [29], pomegranate [30],
birch [31], sugar beet [32], and, moreover, on amaranth and quinoa [33]. Nevertheless,
results are not coincident and in the different reports, the correlation of the color indices
with the chlorophyll concentration does not point in the same direction.

For this reason, we aimed to evaluate the correlation of different RGB vegetation
indices with the leaf chlorophyll concentration of the ‘Hárslevelű’ grapevine (Vitis vinifera
L.) cultivar. Evaluation of the individual leaf coloration has certain limitations, and different
symptoms develop at different phenological stages of the organs and at different positions
on the shoot. For example, nutrient deficiency of the mobile elements appears on older
leaves, while those elements which are immovable show symptoms on the young organs
such as the shoot tip. For this reason, monitoring the whole canopy would be more
beneficial than the individual organs. In line with this, we aimed to find those RGB-
based vegetation indices which could be applied in field investigations according to digital
cameras to predict the chlorophyll concentration of the canopy.

2. Materials and Methods
2.1. Sampling and Digitalization

Leaf samples were obtained from a commercial vineyard without irrigation in Tata
(Hungary) in September 2022. Weather conditions were obtained from a meteorological
station located at the sampling plot. The precipitation was 233.8 mm (between 1 January
2022 and 30 September 2022), the total heat sum from April 2022 until the sampling
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(September 2022) was 3036.43 ◦C (with 2945 ◦C active heat sum), the leaf wetness hour
(time) was 2 h on average, and the relative humidity was 57% on average.

The 6 year-old ‘Hárslevelű’ grapevine (Vitis vinifera L., white Hungarian grapevine
variety) plantation was trained on an umbrella training system with 2.5 × 1 m row and plant
distance. Asymptomatic, healthy leaf blades with different age, i.e., phenological stages,
were collected and stored in plastic bags at 4 ◦C until further analysis. From each leaf, 3 to 4
leaf discs of equal size (r = 10 mm; 314.2 mm2) were cut, and altogether 200 leaf discs were
digitalized with a SonySLT-A58 camera to sRGB file format. Illumination was standardized
in a dark room with two LED light panels (Nanlite Compac 20, ta = 45 ◦C/113 ◦F. Color
Temperature: 5600 K, Guangdong NanGuang Photo&Video Systems Co. Ltd., Shantou
City, China). Camera settings were uniform for all pictures: ISO (ISO100), F-value (f/5.6),
exposition time (1/100 s). Color temperature was standardized with a ColorChecker
Passport Photo 2 (X-Rite, Grand Rapids, MI, USA).

2.2. Chlorophyll Concentration Measurement

The chlorophyll concentration of each disc was measured in 3 replications with an
Apogee MC10 (Apogee Instruments, S/N:1999, Logan, UT, USA). The instrument is cali-
brated to define the µmol of chlorophyll per m2 units. The measurement area is 63.9 mm2,
resolution is ±10 µmol/m2, and the chlorophyll concentration was determined using a
generic equation (Apogee) [34]. The average of the 3 measurements was considered as the
chlorophyll concentration of the disc.

2.3. Image Analysis and RGB-Based Color Index Calculation

Digital image processing was performed using Scilab (version 6.1.1., Scilab Enterprises,
Rungis, France) with Image Processing and Computer Vision Toolbox (IPCV, version 4.1.2).
A graphical user interface was made to process recorded pictures of the sample discs.
Samples of 24 discs per picture were arranged in a grid layout. The resolution was adjusted
to 350 DPI. To prevent any effect of changing illumination, images were preprocessed to
standardize color. Acquisition used the same white background for all samples, and this
background was used in preprocessing. The average color of the top ribbon of 5-pixel
height was used as reference. Segmentation of discs was performed with thresholding on
the blue color layer. The results were saved in text files with CSV (comma, space delimited
values) format. The average red, green, and blue intensity values; the center coordinates
(X, Y); and the surface area (in pixels) were saved for each sample disc.

2.4. Statistical Analysis

Statistical analysis was performed using R (version 4.2.1., R Foundation for Statistical
Computing, Vienna, Austria). Correlation tests were run to discover relationship between
chlorophyll content and measured color parameters. The Pearson’s linear correlation and
Spearman’s rank correlation values were computed with their significance. The former
test is appropriate to describe the linear correlation of two variables, while the latter one
describes the strength and direction of a monotonic relationship. As, for example, many
of the vegetation indices ranged from −1 to 1, we consider that relationship between the
pigmentation and color indices are not fully linear. Therefore, the Spearman correlation
method was also included in this study. The PLS package (version 2.8-1) was used to
perform multivariate regression (MVR) analysis. Parameters were evaluated according to
their contribution to the model. The standard deviation of the coefficients of the parameters
in utilized latent variables was calculated and compared. Cross-validation was performed
following the bootstrapping method with 5000 repetitions of random resampling using
80% (n = 160) and 20% (n = 40) of data for calibration and validation, respectively.

3. Results and Discussion

In this study, the leaf chlorophyll concentration of the ‘Hárslevelű’ grapevine cultivar
was investigated with a portable chlorophyll meter to find a correlation between the
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measured values and RGB-based vegetation indices. In this experiment, the average
chlorophyll concentration was 242 µmol/m2 (min: 0 µmol/m2, max: 380.5 µmol/m2). The
coefficient of variation (c.v.) of the chlorophyll concentration was 40%. The chlorophyll
concentration of the leaves varies among the plant species or even among cultivars. For
instance, Casanova-Gascon et al. [22] found that green pigmentation has high variability
among grapevine cultivars. For example, ‘Cabernet Sauvignon’ and ‘Aglianico’ had high
chlorophyll concentration, while ‘Sauvignon’ had low values. In their study, the pigment
content ranged from 0.1450 mg/100 mg to 0.3774 mg/100 mg for ‘Macabeo’ and ‘Aglianico’,
respectively. Comparison of the results of different reports have limitations as the unit of
chlorophyll concentration varies in the different papers. Chavarria et al. [35], for example,
interpreted the results in mg/L−1, while Casanova-Gascon [22] expressed the data in
mg/100 mg dry weight.

Based on the RGB values obtained from the digital images, altogether 31 vegetation
indices were calculated according to Sánchez-Sastre et al. [32], Lu et al. [36], and citations
therein (Table 1). In our experiment, the color values ranged from 47.37 to 240.86, from
59.18 to 199.68, and from 21.22 to 76.62 for the R, G, and B channels, respectively. These
data show slight difference compared to those introduced by Fuentes et al. [37], who
reported 94.9 to 128.9, from 111.2 to 145.3, and from 11.8 to 28.2 minimum and maximum
average values for the three channels, R, G, and B, respectively. It must be highlighted
that our study utilized a wide range of samples, since different developmental stages were
collected, which could cause the wide range of the channel values. In this study, the highest
variability was observed in the red channel as the coefficient of variation (c.v.) was 53.47%;
contrary to this, the blue channel was the least variable with a c.v. of 20.76%. In recent
years, several methods were developed for the evaluation of grapevine leaf coloration.
Doğan and Uyak [38] used L*a*b* color attributes to introduce noticeable differences among
10 grapevine cultivars. This approach was complemented with the RGB values by Fuentes
et al. [37], who used machine learning classification for grapevine cultivars according
to leaf morpho-colorimetry. In this study, sRGB (standard RGB (red, green, blue) color
space) was investigated. The sRGB color space is defined in the standard IEC 61966-2-1
for measurement and representation of color in multimedia devices. According to its
standardization, sRGB values identify the same color with any instrument.

As a result, 31 indices were used to correlate the sRGB values with the chlorophyll
concentration of the leaf samples. The highest variability was observed in the case of SLR5
(Stepwise Linear Regression 5), where the minimum value was −85.22 and the maximum
value was 361.78 (c.v. 179.53%). The least variable index was the CIVE (Color Index for
Vegetation Extraction), with a c.v. of 0.13%.

Table 1 presents Pearson’s and Spearman’s correlation values for all parameters and
the standard deviation of their coefficients in the multivariate regression (SD MVR) model.
We found that Pearson correlation is significant (p < 0.01) in most of the indices with the
chlorophyll content except for SLR2 (Stepwise Linear Regression 2), where significance
was p < 0.05, and g (green chromaticity), GLI (green leaf index), and CIVE, where signifi-
cance was not fulfilled. Spearman correlation showed same results with high significance
(p < 0.01), except for SLR4 (Stepwise Linear Regression 4) and SLR5. The highest correlation
(−0.9709; p < 0.01) was obtained with the index PCA2 reported by Sánchez-Sastre et al. [32],
where they found −0.9065 to be the coefficient of correlation. Concerning the Spearman
correlation, the highest correlation was obtained with the RMB and GMB (−0.9183, p < 0.01).
Our data were compared with recent publications, and it was found that the correlation
with pigmentation varies among different reports (Table 1). For example, Kawashima
et al. [27] and Sala et al. [31] showed negative correlation with the R, G, and B channels;
in contrast with this, Cheng et al. [29] found that both chlorophyll a+b and SPAD values
have a positive correlation with chlorophyll concentration. Other indices also showed dif-
ferences among the reports. Prediction of the chlorophyll concentration using multivariate
regression showed high accuracy (R2 = 0.9562, RMSE = 20.24) for calibration (Figure 1).
Cross-validation with bootstrapping also achieved high accuracy in terms of R2 = 0.9476
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(with 95% confidence interval of 0.9471–0.9482) and RMSE = 21.93 (with 95% confidence
interval of 21.83–22.02). The evaluation of the contribution of parameters to the MVR
model revealed that SLR2 obtained the highest sensitivity. It is followed by SLR4, SLR5,
RGRI (Red Green Ratio Index), SLR1 (Stepwise Linear Regression 1), and VARI (visible
atmospherically resistant index), in this order. These parameters resulted with a standard
deviation higher than 0.3.

Horticulturae 2023, 9, x FOR PEER REVIEW  8  of  10 
 

 

 

Figure 1. MVR prediction result for chlorophyll concentration using LV = 10. 

4. Conclusions 

In this study, sRGB values and 31 vegetation indices were correlated to the chloro-

phyll concentration of leaves obtained from the ‘Hárslevelű’ grapevine cultivar. We found 

that most of the  indices had significant correlation with pigmentation. The parameters’ 

contribution to the MVR (Multivariate Regression) model showed that SLR2 is the most 

sensitive followed by SLR4, SLR5, RGRI, SLR1, and VARI. Based on former reports and 

our recent results, we conclude that those vegetation indices which could predict the leaf 

pigmentation are possibly species- or cultivar-specific. This finding foreshadows the need 

for more detailed intraspecific color investigations of the grapevine leaf and canopy. We 

consider that ground-based or areal monitoring of vineyards according to RGB vegetation 

indices would provide a cheap and reliable methodology for growers to evaluate the in-

dividual leaf and, moreover, the canopy’s physiological status and discover the reasons 

of different symptoms causing disorder in the pigmentation.   

Author Contributions: Conceptualization, P.B.-P.; methodology, P.B.-P. and L.B.;  software, L.B.; 

statistical analysis, L.B. and L.L.P.N.; investigation, P.B.-P. and D.T., writing—original draft prepa-

ration, P.B.-P., L.B., D.T. and L.L.P.N.; writing—review and editing, P.B.-P., L.B., D.T., L.L.P.N. and 

D.Á.N.S.; visualization, L.B. and P.B.-P.; supervision: D.Á.N.S. All authors have read and agreed to 

the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Data is available upon request to the corresponding author. 

Figure 1. MVR prediction result for chlorophyll concentration using LV = 10.

Table 1. RGB-based vegetation indices calculated in this study according to Sánchez-Sastre et al. [32],
Lu et al. [36], and citations therein, and correlation values and standard deviation of coefficients
(SD MVR) for all parameters and direction of the relationship of the vegetation indices with chloro-
phyll concentration reported in earlier studies.

Index Formula

Present Study

[27] [28]

[29]

[30] [31] [32]Pearson’s
Corr.

Spearman’s
Corr. SD MVR † ††

Red—R 0–255 −0.9468 ** −0.8942 ** 0.2027 - + + + - - -

Green—G 0–255 −0.9678 ** −0.9109 ** 0.2214 - + + + + - -

Blue—B 0–255 0.0501 0.4790 ** 0.2013 - + + + - - +

Red chromaticity—r R/(R + G + B) −0.9431 ** −0.8723 ** 0.0003 - + - - -

Green
chromaticity—g G/(R + G + B) −0.0079 −0.4178 ** 0.0007 - - - +
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Table 1. Cont.

Index Formula

Present Study

[27] [28]

[29]

[30] [31] [32]Pearson’s
Corr.

Spearman’s
Corr. SD MVR † ††

Blue chromaticity—b B/(R + G + B) 0.8805 ** 0.8898 ** 0.0009 + + + +

RMG (Difference
between red
and green)

R − G −0.7832 ** −0.4217 ** 0.2663 - + + -

RMB (Difference
between red

and blue)
R − B −0.9656 ** −0.9183 ** 0.1041 - - - -

GMB (Difference
between green

and blue)
G − B −0.9656 ** −0.9183 ** 0.1041 - - - -

NRGVI (Normalized
red-green

difference index)
(R − G)/(R + G) −0.8921 ** −0.6729 ** 0 - + - - -

NRBVI (Normalized
red-blue

difference index)
(R − B)/(R + B) −0.9043 ** −0.8931 ** 0.0036 - - - + -

NGBVI (Normalized
green-blue

difference index)
(G − B)/(G + B) −0.8437 ** −0.8810 ** 0.0027 - - - - -

(R − G)/(R + G + B) (R − G)/(R + G + B) −0.8734 ** −0.6042 ** 0.0004 - - - -

(R − B)/(R + G + B) (R − B)/(R + G + B) −0.9271 ** −0.8966 ** 0.0012 - - - -

(G − B)/(R + G + B) (G − B)/(R + G + B) −0.7453 ** −0.8412 ** 0.0016 - - - -

RGRI (Red-Green
Ratio Index) R/G −0.8838 ** −0.6729 ** 0.3204 + + - -

GLI
(Green leaf index)

(2G − R − B)/
(2G + R + B) 0.0045 −0.4178 ** 0.0567 +

VARI (Visible
atmospherically
resistance index)

(G − R)/
(G + R − B) 0.9160 ** 0.7482 ** 0.3116 +

IPCA
0.994|R − B| +
0.961|G − B| +
0.914|G − R|

−0.9671 ** −0.9182 ** 0.1879 -

ExR (Excess red
vegetation index) 1.4r − g −0.8734 ** −0.6042 ** 0.0006 -

ExB (Excess blue
vegetation index) 1.4b − g 0.7453 ** 0.8412 ** 0.0022 +

ExG (Excess green
vegetation index) 2g − r − b −0.9431 ** −0.8723 ** 0.0013 +

ExGR (Excess green
minus Excess red) ExG − ExR −0.9244 ** −0.8972 ** 0.0017 +

Gray 0.2898r + 0.5870g +
0.1140b −0.6522 ** −0.7845 ** 0.0004 -

CIVE (Color Index
for Vegetation

Extraction)

0.441r − 0.811g +
0.385b + 18.78 −0.103 0.3466 ** 0.0008 -
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Table 1. Cont.

Index Formula

Present Study

[27] [28]

[29]

[30] [31] [32]Pearson’s
Corr.

Spearman’s
Corr. SD MVR † ††

PCA1 (Principal
Compoment
Analysis 1)

−0.977b + 0.916((G
− B)/(G + B)) +

0.995((R − B)/(R +
B)) + 0.771((R −

G)/(R + G))

−0.9060 ** −0.8940 ** 0.007 -

PCA2 (Principal
Compoment
Analysis 2)

0.999|R − B| +
0.92|G − B| +
0.886|R − G|

−0.9709 ** −0.9163 ** 0.1569 -

I1 R + G − 2B −0.9706 ** −0.9162 ** 0.1755 -

SLR1 (Stepwise
Linear Regression 1)

−60.430 − 0.7316B
+ 69.680b + 112.800g

+ 28.270((G − B)/
(G + B)) − 23.890((R

− B)/(R + B)) +
68.380((R − G)/

(R + G))

−0.8920 ** −0.6728 ** 0.3164 +

SLR2 (Stepwise
Linear Regression 2)

−46.240 − 2.678B +
1.05G + 52.570b +

87.420g + 20.720((G
− B)/(G + B)) −

18.240((R − B)/(R +
B)) + 52.500((R −

G)/(R + G))

−0.1812 * 0.2924 ** 0.3849 +

SLR3 (Stepwise
Linear Regression 3)

−25.373 + 30.106b +
46.539g + 12776((G
− B)/(G + B)) −

10.507((R − B)/(R +
B)) + 28.821((R −

G)/(R + G))

−0.2822 ** 0.2148 ** 0.2778 +

SLR4 (Stepwise
Linear Regression 4)

−44.312 + 51.689b +
81.995g + 21.751((G
− B)/(G + B)) −

18.156((R − B)/(R +
B)) + 50.425((R −

G)/(R + G))

−0.4961 ** −0.1038 0.3728 +

SLR5 (Stepwise
Linear Regression 5)

−41.048 + 46.964b +
76.841g + 19.998((G
− B)/(G + B)) −

17.173((R − B)/(R +
B)) + 47.162((R −

G)/(R + G))

−0.4242 ** −0.0289 0.36 +

I2

0.55 + 11.4((G −
B)/(G + B)) −

12.5((R − B)/(R +
B)) + 9((R − G)/

(R + G))

0.7945 ** 0.8455 ** 0.0156 +

Where * indicates significant correlation at p < 0.05, ** indicates significant correlation at p < 0.001, Cheng et al. [29]
correlated Chl. (a+b) (†), and SPAD values (††) to the RGB-based indices.

4. Conclusions

In this study, sRGB values and 31 vegetation indices were correlated to the chlorophyll
concentration of leaves obtained from the ‘Hárslevelű’ grapevine cultivar. We found
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that most of the indices had significant correlation with pigmentation. The parameters’
contribution to the MVR (Multivariate Regression) model showed that SLR2 is the most
sensitive followed by SLR4, SLR5, RGRI, SLR1, and VARI. Based on former reports and
our recent results, we conclude that those vegetation indices which could predict the leaf
pigmentation are possibly species- or cultivar-specific. This finding foreshadows the need
for more detailed intraspecific color investigations of the grapevine leaf and canopy. We
consider that ground-based or areal monitoring of vineyards according to RGB vegetation
indices would provide a cheap and reliable methodology for growers to evaluate the
individual leaf and, moreover, the canopy’s physiological status and discover the reasons
of different symptoms causing disorder in the pigmentation.
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38. Doğan, A.; Uyak, C. A different approach for grape leaf color. J. Agric. Fac. Gaziosmanpasa Univ. 2020, 37, 44–52.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1371/journal.pone.0102012
https://doi.org/10.1093/aob/mcl097
https://doi.org/10.1007/s10341-021-00580-8
https://doi.org/10.3390/beverages4040090
https://doi.org/10.1094/PHYTO-96-1060
https://www.ncbi.nlm.nih.gov/pubmed/18943493
https://www.ncbi.nlm.nih.gov/pubmed/22319867
https://doi.org/10.17660/ActaHortic.2001.564.28
https://doi.org/10.1006/anbo.1997.0544
https://doi.org/10.18805/ag.D-305
https://doi.org/10.2478/fhort-2020-0006
https://doi.org/10.3390/agriengineering2010009
https://doi.org/10.1007/s11120-014-9970-2
https://www.apogeeinstruments.com/chlorophyll-meter-support/#specifications
https://www.apogeeinstruments.com/chlorophyll-meter-support/#specifications
https://doi.org/10.1590/S0100-29452012000300003
https://doi.org/10.1016/j.jag.2021.102592
https://doi.org/10.1016/j.compag.2018.06.035

	Introduction 
	Materials and Methods 
	Sampling and Digitalization 
	Chlorophyll Concentration Measurement 
	Image Analysis and RGB-Based Color Index Calculation 
	Statistical Analysis 

	Results and Discussion 
	Conclusions 
	References

