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Abstract: This research examined the elimination of methyl orange (MO) utilizing a novel magnetic
biochar adsorbent (MLPB) derived from lemon peels via an impregnation-pyrolysis method. Material
characterization was conducted using SEM, XRD, TGA, FTIR, and nitrogen adsorption isotherms.
SEM-EDX analysis indicates that MLPB is a homogeneous and porous composite comprising Fe, O,
and C, with iron oxide uniformly dispersed throughout the material. Also, MLPB is porous with
an average pore diameter of 4.65 nm and surface area value (111.45 m2/g). This study evaluated
pH, MO concentration, and contact time to analyze the adsorption process, kinetics, and isothermal
behavior. Under optimal conditions, MLPB was able to remove MO dye from aqueous solutions
with an efficiency of 90.87%. Results showed optimal MO removal at pH 4, suggesting a favorable
electrostatic interaction between the adsorbent and dye. To ascertain the adsorption kinetics, the
experimental findings were compared using several adsorption models, first- and second-orders,
and intra-particle diffusion. According to the findings, the pseudo-second-order model described
the adsorption kinetic promoting the formation of the chemisorption phase well. Modeling of intra-
particle diffusion revealed that intra-particle diffusion is not the only rate-limiting step. A study
involving isothermal systems showed that Langmuir is a good representation of experimental results;
the maximum adsorption capacity of MLPB was 17.21 mg/g. According to the results, after four cycles
of regeneration, the produced magnetic material regained more than 88% of its adsorption ability.

Keywords: magnetic biochar; methyl orange; adsorption isotherms; adsorption kinetics; regeneration;
breakthrough

1. Introduction

Recently, environmentally friendly chemical processes that enable dye removal from
wastewater have been attracting considerable attention in areas where water pollution is
a major concern [1]. Hazardous and non-biodegradable organic dyes can cause cancer,
mutagenesis, and teratogenetic effects and pose significant risks to human health and
marine life [1,2]. In order to solve the ecological, biological, and industrial problems
caused by dye discharge, dyes need to be properly removed from wastewater. Azo dyes
are commonly employed as coloring agents in fabrics, inks, paints, and polymers [1–3].
There is a greater consumption of azo dyes in the textile industry than any other dye class
due to their ease of application, minimal energy consumption, and availability of a wide
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range of colors [4]. There are several problems associated with these dyes in wastewater,
including aesthetic issues, effects on the demise of aquatic life, light penetration, and the
photosynthetic activity of algae and aquatic plants [3,4]. The anionic dye methyl orange
(MO) is an example of an industrially relevant toxic dye with known harmful effects
on humans [5]. The removal of methyl orange has been carried out using numerous
techniques, including precipitation, coagulation, flocculation, photodegradation, biological
degradation, catalytic degradation, and adsorption [5].

In wastewater treatment, adsorption is considered one of the most effective tech-
niques [3,5–7]. The reason is that it is simple, has a low cost, and requires less maintenance
than other methods. It is also highly selective, consumes relatively few chemicals, is a fast
kinetic, and is sensitive to dye concentrations even at low levels [5,6]. A wide range of
adsorbents have been reported so far for the removal of methyl orange, including biochar,
Anchote peel, magnetic clay biochar, activated carbon, nanocomposites, polymers, and
many more [5–10]. In recent years, a potential class of useful compounds generated from
biomass has surfaced: biochar (BC). Because of its high activity, porosity, adaptability, and
affordability, biochar shows great promise as a catalyst substitute. BC, however, has limited
application in wastewater treatment due to poor separation and regeneration [6,11,12]. An-
other worry is that BC discharged into natural waterways may increase the movement and
resuspension of contaminants in sediments, which might lead to secondary contamination.
Consequently, the development of magnetic biochar that addresses these drawbacks is
essential to their continued industrial use. The use of magnetic biochar can greatly enhance
performance [13].

Prior research has demonstrated that adding magnetic nanoparticles to the adsorbent
would be a practical way to separate powdered small particles in solutions with external
magnetic fields. This approach is more effective than standard centrifugation or filtration,
especially when dealing with high-suspended solids or oil-contaminated water. Numerous
magnetic adsorbents have been employed to eliminate diverse contaminants from water,
such as heavy metals using magnetite zeolites, Pb2+ and tetrabromobisphenol from the
aqueous phase by magnetite activated carbon, arsenic using magnetic graphene oxide,
and lead, cadmium, and arsenic using magnetic biochar [14,15]. Furthermore, magnetic
adsorbents can be simply separated by using the magnetic method from contaminated
water [15].

There are now four ways to create magnetic biochar (MBC): solvothermal, chemical
co-precipitation, reductive co-precipitation, and impregnation-pyrolysis [13]. Impregnation
pyrolysis is now the most popular technique. Generally, impregnation-pyrolysis refers to
the process of impregnating biomass in a magnetic precursor solution, followed by heat
treatment in an anoxic environment. The magnetic precursor can become magnetic particles
through the reduction of the gases generated during pyrolysis, while the biomass can be
activated [13]. There will also be the production of aromatic hydrocarbons (PAHs), CO, H2,
CO2, and CH4. CO and H2 are typical reducing gases [16]. The MBC reaction produced by
impregnation-pyrolysis may be summed up as follows, based on earlier research that used
ferric iron salt as a magnetic precursor [13,16]:

Fe3+ + BC → Fe(III)− BC (1)

BC
∆, O2−limited−−−−−−−−→ CO2 + CO + H2 + CH4 + other products (2)

Fe(III)− BC + CO + H2 → Fe3O4/(γ − Fe2O3)/Fe0 − BC + CO2+ H2O (3)

The preparation of MBC is influenced by the pyrolysis temperature, the duration of
pyrolysis, and the biomass-to-impregnated magnetic precursor ratio. However, the perfor-
mance of MBC is mostly determined by the pyrolysis temperature. Certain research claims
that temperature can influence the kind of magnetic material during pyrolysis. α-Fe2O3
will convert to Fe3O4 as the pyrolysis temperature rises from 300 ◦C to 450 ◦C, significantly
increasing the magnetism of MBC [13]. In general, when the pyrolysis temperature goes
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over 600 ◦C, iron oxides will progressively transform into zero-valent iron [13]. However,
Chen et al. [17] noted that at 600 ◦C, Fe3O4 is the primary magnetic material of sludge
MBC and that, at 1000 ◦C, it progressively transforms into FeO, losing its magnetism.
Accordingly, the temperature at which the pyrolysis should take place should depend on
the target magnetic species [13].

In Al Ahsa, Saudi Arabia, Hasawi lemons are farmed in large quantities. Lemon
peel, one of the significant by-products of lemon processing, makes up around 20% of the
entire fruit and can be utilized to create magnetic biochar materials, preventing resource
waste and environmental contamination [18]. The usage of Hasawi lemons, particularly
the peels, to create magnetic biochar is what makes this work novel. There are economic
and environmental advantages to using Hasawi lemon peels as a precursor for magnetic
biochar. This technique lowers waste disposal expenses and methane emissions by keep-
ing agricultural waste out of landfills. It encourages a circular economy by substituting
commercial activated carbon with renewable resources. By eliminating contaminants from
water, magnetic biochar provides an economical and environmentally friendly substitute.
Its magnetic characteristics make the process of separation and recovery easier. The pro-
cedure lowers the cost of garbage disposal, transportation, and collection. Feasibility is
contingent upon several conditions, including local availability, energy prices, and effective
production techniques. Thus, this study will be among the first to examine the effectiveness
of magnetic biochar produced from Hasawi lemon peel using the impregnation-pyrolysis
method at 600 ◦C pyrolysis temperature for 1 h and was successfully applied to eliminate
MO from aqueous solutions. Methyl orange dye (MO) adsorption was investigated using
batch and continuous studies. The intra-particle diffusion model, pseudo-first-order, and
pseudo-second-order models were used to investigate the adsorption kinetics of MO. Using
the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm models, the ad-
sorption isotherms were predicted. Furthermore, the regeneration and reuse of adsorbent
was studied.

2. Methodology
2.1. Chemical

Methyl orange (98% MO), iron(III) chloride (FeCl3), nitric acid (HNO3), Potassium
hydroxide (KOH), and sodium hydroxide (NaOH) were supplied from Merck (Darmstadt,
Germany).

2.2. Synthesis of Magnetic Biochar

Magnetic biochar was synthesized using the impregnation-pyrolysis method. Firstly,
lemon peels (LP) were obtained from a nearby marketplace. Lemon peels were completely
rinsed with distilled water, dried, and then ground into small particles. A particle size
range of 125–250 µm was chosen. Secondly, the LP samples were treated with 1 M FeCl3
at room temperature for 1 h using a magnetic stirrer. Subsequently, hydrolysis and Fe3+

precipitation will be accelerated at 100 ◦C for 1 h. A certain quantity of LP (about 10 g)
was then put in a ceramic crucible and pyrolyzed in a tube furnace at a heating rate of
10 ◦C/min to produce the magnetic biochar. During the pyrolysis and cooling process,
nitrogen (N2) gas was used as the purging gas in an oxygen-free atmosphere at a flow rate
of 150 mL/min. The pyrolysis holding time was 1 h, and the temperature was set at 600 ◦C.
According to the literature, the chosen temperature was one of several input series used to
determine the ideal conditions for producing biochar from biomass [19,20]. By doing this,
ferric iron that was previously absorbed in the feedstock can be transformed into magnetic
material during pyrolysis (Equations (1)–(3)), as hydrogen is released during the pyrolysis
process, which produces syngas from the breakdown of hemicellulose and cellulose. The
pyrolysis yield of magnetic biochar was 34.4%. The magnetic biochar obtained was referred
to as MLPB. Next, the sample was calcined for 4 h at 200 ◦C.
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2.3. Instrument Analysis

At a wavelength of 4000–400 cm−1, Fourier transform infrared spectroscopy (Cary 630
FT-IR Spectrophotometer model) was utilized to determine the surface functional groups
of the samples. To examine the samples’ morphology, scanning electron microscopy (SEM
model FEI, QUANTA FEG, 250, Hillsboro, OR, USA) was employed. An analyzer model for
surface area and pore size Utilizing nitrogen sorption at −196 ◦C, Micromeritics ASAP 2020
was utilized to evaluate the MLPB’s surface area and pore size distribution. Using X-ray
diffraction (model D8 Advance), the samples’ chemical and crystalline constituents were
determined. For one hour, diffraction was carried out across a range of 2θ at 40 kV and
40 mA. Using a TG-DTG (Perkin Elmer, Shelton, CT, USA) with a heating rate of 10 ◦C/min
from 30 to 800 ◦C in a nitrogen (N2) environment, thermal gravimetric analyses (TGA) of
samples were carried out.

2.4. Experimental Procedures

Numerous parameters’ impacts on dye removal were examined in a batch mode. The
concentration (20–80 mg/L), pH (2–10), and MLPB dose (0.025–0.15 g) were among these
parameters. Either 0.1 M NaOH or 0.1 M HNO3 was added to the solution to change its
pH. The flasks were shaken for the required time period using a thermostatic shaker. The
kinetic studies were performed at 120 rpm and 25 ◦C in flasks with MLPB and a fixed
concentration of MO dye (20 mg/L) for varying periods (0–60 min). After taking the flask
out of the mixer at a specific time, the suspension was filtered using a Whatman syringe
filter. In the filtered sample, MO concentrations were determined at 464 nm using a UV-Vis
spectrophotometer (Shimadzu, Tokyo, Japan). A 24 h equilibrium study of 0.1 g MLPB with
various MO solutions was conducted under 25 ◦C shaking with initial MO concentrations
(20–80 mg/L).

The dye-laden MLPB was initially desorbed with 0.1 M KOH in order to assess its
reusability. After that, distilled water and 0.1 M HNO3 were added to the adsorbent until a
pH of about 7.0 was reached. Regeneration and reuse of fourth-cycle adsorption-desorption
adsorbents were investigated. Every experiment was carried out in duplicate. MO’s
adsorption capacity and dye removal efficiency were calculated using Equations (4) and (5).

Removal efficiency of MO =
(Ci − Ct)

Co
× 100 (4)

Amount adsorbed (qt) =
(Ci − Ct)V

W
,
(

mg of adsorbate
g of adsorbent

)
(5)

where V is the volume (L), W is the mass of the MLPB (g), and Ci and Ct (mg/L) are the
influent and effluent concentrations (mg/L).

To assess MLPB’s efficacy in a real setting and minimize sorbent loss and clogging
during operation, the material was layered between glass wool as a support layer. The
column was 11 cm in length and 1.4 cm in diameter. With an initial pH of 3.0 and 0.6 g
(bed height 1 cm) of MLPB, MO starting concentrations of 20, 50, and 80 mg/L were
utilized at a flow rate of 0.65 mL/min. Samples were extracted and examined from the
packed bed’s bottom. The maximum absorption capacity (qtotal, mg) for a particular intake
concentration and flow rate may be found using the area under the plot of the adsorbed
MO concentration [21]:

qtotal =
FAr

1000
=

F
1000

∫ t=ttotal

t=0
(Ci − Ct)dt (6)

where F, Ar, and ttotal stand for flow rate (mL/min), the area under the curve (area), and
total flow time (min), respectively.

The following equation can be used to calculate the equilibrium uptake (qe,exp, mg/g):

qe, exp =
qtotal

x
(7)
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where x is the adsorbent’s mass (in grams) in the bed.
By calculating the volume occupied by the adsorbent (MLPB) and its overall volume,

the porosity of a packed bed column may be computed. Here’s how to go about it [22]:

VColumn = πr2L (8)

VMLPB =
mMLPB

ρMLPB
(9)

Total Porosity (εtotal) =
Vvoid

Vcolumn
(10)

where the total volume of the column (cm3), the total volume of the MLPB (cm3), the void
volume of the column (cm3), which is equal to (VColumn − VBPBC), the total mass of the
MLPB (g), the bulk density of the MLPB (g/cm3), the radius of the column (cm), and the
height of the column (cm), are VColumn, VMLPB, Vvoid, mMLPB, ρMLPB, r, and L, respectively.

3. Results and Discussions
3.1. Characterizations
3.1.1. FTIR Analysis

FTIR spectra of PL and MPLB are shown in Table 1 and Figure 1. Many functional
groups are observed in the spectrum of the PL sample. These spectra revealed either a
decrease, disappearance, or widening of the peaks following the impregnation-pyrolysis
process. According to the long bandwidth around 3292 cm−1 on PL, O–H stretching vi-
brations of hydroxyl functional groups, including hydrogen bonds, were the predominant
functional group [23]. Other significant peaks were found at bandwidths of 2090, 2088,
1710, 1597, and 1010 cm−1, which were attributed to the stretching vibrations of hemicel-
luloses [24], alkyne groups [23], lactones, ketones, and carboxylic anhydrides [23], C=C
aromatic ring vibrations from lignin [24], and C–O stretching [25]. The FTIR spectra of
MLPB (Figure 1) showed a decrease in relative intensity, which was mostly caused by the
disintegration of carboxyl groups at ranges between 4000 and 2000 cm−1. At 1547 cm−1,
there could be some somewhat stable aromatic molecules and/or graphitic structures, indi-
cating some relatively stable aromatic compounds [24]. The strong volatile release during
pyrolysis and the loss of functional groups were linked to the disappearance or shifting
of observable structural characteristics [26]. The peak at 1010 and 1710 cm−1, which are
associated with the stretching of C–O and C=O, decreased or disappeared when comparing
MLPB and LP, proving that the pyrolysis process caused the hemicellulose, lignin, and
cellulose that were present in the lemon peels to be depolymerized and destroyed [26].
In agreement with previous studies, metal–oxygen stretching frequencies usually occur
between 500 and 600 cm−1 [27,28]; the characteristic Fe–O bond appeared at 642 cm−1

was observed.

Table 1. FTIR spectrum band assignment for PL and MPLB.

Assignment
Band Position (cm−1)

LP MLPB

O–H stretching of hydroxyl group 3292 -
C–H stretching vibration from hemicelluloses 2920 -

C≡C stretching of alkyne group 2088 -
C=O stretching of lactones, ketones, and carboxylic anhydrides 1710 -

C=C aromatic ring vibrations from lignin 1597 1547
C–O stretching 1010 1105

Fe–O - 642
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Figure 1. MLPB and LP’s FT-IR spectrum.

3.1.2. SEM Analysis

Table 2 contains the element composition analysis of the LP and MLPB samples,
comparing their surface morphology and surface element content. Figure 2 displays
the SEM images of the samples. The LP’s surface is rough and uneven, as seen by the
SEM scan (Figure 2a). MLPB, however, is characterized by its porous texture, and the
surface is covered with iron oxide particles (Figure 2b). In pyrolysis, char surfaces act as
nucleating and precipitating surfaces for iron oxide particles. As a result, both α-Fe2O3 and
Fe3O4 particles are partially embedded in the biochar matrix, indicating good mechanical
bonding that prevents their separation from the biochar matrix [29,30]. MLPB’s rugged
morphological structure was maintained by iron oxide particles dispersed on its surface
(Figure 2b). The elements distributions on MLPB surface regions were mapped by SEM-
EDS, as shown in Figure 2c–e. The presence of the intensely colored areas proves that the
MLPB surface area is mostly composed of C, O, and Fe. It was evident that Fe has been
efficiently loaded onto the MLPB by 24% (Table 2). The changes in the surface structure of
the MLPB can increase its specific surface area, thereby providing more potential sites for
MO adsorption.

Table 2. Element composition of LP and MLPB.

Adsorbents
Element Composition (%)

C O Fe

LP 57.0 41.9 -
MLPB 37.1 28.8 24.0
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3.1.3. XRD Analysis

Iron oxides offer a variety of magnetic properties, which significantly depend on
the shape and size of particles. These parameters, to a great extent, are governed by
synthetic methods. Different methods have been reported for the preparation of magnetite
nanoparticles. Here, magnetite nanoparticles were prepared and synthesized using the
impregnation-pyrolysis method by pyrolyzing ground lemon peels in an oxygen-free
furnace at a pyrolysis temperature of 600 ◦C. As a result of high temperature, particles heat
up, undergo phase transformations, and some rhombohedral elementary cells of α-Fe2O3
hematite transform into Fe3O4, which were confirmed by XRD analysis [31]. The crystal
phases of iron oxide nanoparticles were determined using the X-ray diffraction (XRD)
technique. Figure 3 shows the appearance of numerous phase peaks for iron oxide in the
2θ range (0–80). The results verified the presence of characteristic peaks of both α-Fe2O3
and Fe3O4 nanoparticles on the LPB surface [32]. The main peaks at 24.0, 27.0, 33.40, 35.60,
40.10, 49.60, 54.02, 62.60, and 64.01 are assigned to the index at (012), (205), (104), (110),
(113), (024), (116), (214), and (300), respectively. The peaks at 24.0, 33.07, 35.44, 40.78, 49.38,
54.03, 62.48, and 64.01 agreed with (JCPDS file No. 330-0664), confirming the crystallinity
of (α-Fe2O3) on LPB [33]. The figure also shows the presence of other peaks with their
indexed plane on LPB at 30.04 (220), 35.60 (311), 43.02 (400), 54.20 (422), 56.10 (511), and
62.40 (440). These peaks are also in agreement with the crystalline diffraction pattern of
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Fe3O4 (JCPDS file No. 75-0033) matched magnetite [33]. Dewage et al. [32] obtained the
same result by impregnating FeCl3 on pyrolyzed Douglas fir biochar.
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3.1.4. TGA Analysis

The thermogravimetry diagram (TGA) of lemon peel (LP) and magnetite lemon
peel is shown in Figure 4. The TGA thermogram of LP shows three stages of thermal
decomposition. Firstly, there is a minor weight loss of 4% up to 200 ◦C, which is attributed
to the loss of moisture and light volatile content. A second stage, in LP, showed a 34.3%
mass loss occurring at the range of 300–400 ◦C, which was associated with the pyrolysis
of lignin and cellulose. This stage was absent for MLPB due to the pyrolysis process in
which the hemicellulose had been broken down [32]. The third stage shows weight loss
for both samples up to 500 ◦C, which could be related to the decomposition of the lattice
structure. From the thermogram of MLPB, two stages of thermal decomposition were
observed. The first stage, with a loss of mass loss of about 10%, can be explained mainly by
the release of water molecules and light volatile content of the MLPB. Further, the LMPB
was almost stable up to 400 ◦C. Compared to the LP sample, this could be due to the
thermal decomposition resistance capacity for iron oxides [34]. The second decomposition
stage was observed at 428 ◦C. This could be due to the carbonization of biochar. Thus,
it is obvious that the total weight loss of MLPB was lower compared to the LP, which
could be explained by the presence of iron oxide nanoparticles’ capacity to resist thermal
decomposition. The obtained result is in agreement with Hosny et al. [34].
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3.1.5. BET Analysis

Figure 1 illustrates the MLPB hysteresis loop. The MLPB displayed type IV isotherms
with an H3 hysteresis loop, which is common to mesoporous and microporous materials.
(Figure 5a), according to the IUPAC classification [35]. It is actually true that when the
temperature of pyrolysis rises over 550 ◦C, the size of the mesopores increases, and new
micropores develop [36]. With a total pore volume of 0.091 cm3/g and an average pore
diameter of 4.65 nm, MLPB has a surface area of 111.45 m2/g. A plot of the BJH pore size
distribution is also shown in Figure 5b. The MLPB surface was found to have a mesoporous
structure centered around 4 and 2.2 nm according to the BJH method (Figure 5b). The
treatment process is ideal for adsorption since it has a lot of mesoporous sites [36].
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3.2. Adsorption Studies

Different factors can affect the adsorption performance of MLPB, such as pH, hardness,
and the presence of other ions. MO is a model of anionic dyes in which they are adsorbed
more over the materials with more positive charges on their surfaces; they are also adsorbed
more at a low pH when the surface is positively charged. It also can affect the adsorption
mechanism and the dissociation of dye molecules. In this paper, we focus on studying the
influence of pH, initial concentration, adsorbent dose, and contact time.

3.2.1. Effect of Adsorbent Type on MO Uptake

For 24 h, at pH 3.0 and 25 ◦C, the adsorption capabilities of MO at a concentration
of 20 mg/L were assessed for MLPB and lemon peels. The adsorbents were each used
at a dosage of 0.1 g. Compared with lemon peels (qe = 0.54 mg/g), MLPB displayed
an approximately sevenfold higher adsorption capacity (qe = 3.51 mg/g). Consequently,
MLPB’s performance was considered better, and it was chosen for further study.

3.2.2. Influence of pH

Since pH affects both the MPLB adsorbent’s surface characteristics and the MO
molecules’ dissociation process in aqueous environments, adsorption processes are highly
sensitive to pH levels. A pH range of 2.5 to 10.0 and an initial MO concentration of 20 mg/L
were used to investigate the impact of pH on MPLB adsorption capability. The effect of pH
on MPLB adsorption capacity is seen in Figure 6. The adsorption capacity of MPLB for dye
adsorption slightly improves from 3.5 to 3.6 mg/g, and its removal efficiency also improves
from 87.8 to 90% when the pH value is raised from 2.5 to 4.0. As the pH increases from 4 to
10, the dye adsorption and removal efficiency gradually decrease from 3.60 to 2.76 mg/g
and 90 to 69%, respectively. With higher pH values, MPLB’s negatively charged surface
and anionic MO’s repulsion suppress adsorption due to ionic repulsion [37,38]. As the
MPLB adsorbent surfaces become positively charged at low pH values, more electrostatic
attraction occurs between its surface and the negatively charged MO anions, increasing
the capacity for adsorption. However, when the pH is very acidic, electrostatic repulsion
happens between the positively charged active surface of MPLB and the protonated MO. As
a result, it can be demonstrated that pH 4 is ideal for MO adsorption. The MO adsorption
on magnetic AC produced similar outcomes [38].
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3.2.3. Effect of Dosage of Adsorbent

An essential parameter in adsorption studies is the amount of adsorbent used, as it
determines how much dye solution will be absorbed by a given quantity of adsorbent.
Figure 7 demonstrates the effect of the MLPB dose on MO adsorption, ranging from 0.025
to 1.5 g. Initially, 15 mg/g of MO adsorption capacity was observed, but it decreased
to 1.9 mg/g as the initial MLPB was increased. Increased MLPB doses lead to more
entanglement of the MLPB in the solution, which results in adsorption in the interlayer
space and a decrease in dye aggregation at the external surface. As a result, the adsorption
capacity decreased with increasing MLPB dosage. Further, high MLPB dosages can alter the
physical properties of solid–liquid suspensions, such as increasing viscosity and inhibiting
dye molecules’ diffusion across the surface. Because the concentration of MO was fixed, as
the MLPB dosage increased, the adsorption capacity decreased [39,40].
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3.2.4. Influence of Initial Concentration

Figure 8 illustrates the effect of different MO concentrations, varying from 10 to
80 mg/L at pH 3, 0.1 g of adsorbent, and 25 ◦C. This figure makes it clear that the initial
concentration significantly affects the MO molecules’ ability to adsorb. The qe increased
by almost 6 (from 1.82 mg/g to 12.17 mg/g) with an increase in dye concentration from
10 mg/L to 100 mg/L, suggesting a linear connection between q (mg/g) and C(mg/L).
Increasing the starting concentrations (Co) might explain the higher absorption capacity
by amplifying the concentration gradient and facilitating the transport of MO molecules
from the bulk solution to the MLPB surface. Consequently, quicker kinetics and a larger
adsorption capacity are obtained by lowering the mass transfer resistance at high starting
concentrations [41]. On the other hand, elimination efficiency decreased from 91% to 76%
when the starting concentration increased from 10 mg/L to 80 mg/L. At larger starting
concentrations, the adsorption sites on the surface of MLPB become saturated, which
results in this behavior. Adsorption sites, therefore, become the limiting factor, while MO
becomes the surplus component. Remediation efficiency is decreased with larger Co values
because the MLPB surface’s ability to receive dye molecules diminishes while the number
of active sites stays constant [41]. In order to be successful in commercial applications,
initial dye concentrations should be optimized to guarantee realistic removal rates and
maximize adsorption efficiency. Increasing the quantity of adsorbent to increase the number
of accessible adsorption sites is one potential way to get around this restriction, as seen in
Figure 8. Similar findings were documented by Kubendiran et al. [42] and Han et al. [43].
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3.2.5. Evaluation of Adsorption Kinetics

Figure 9 shows the batch adsorption of MO at different initial MO concentrations
(20, 40, and 60 mg/L) in response to contact time. Results showed that all concentrations
showed a significant increase in adsorbate uptake in the initial stage of contact time. With
an initial MO concentration of 20, 40, and 60 mg/L, more than 94, 66, and 52% of MO was
adsorbed in the first 35 min, respectively. Adsorption is fast at first (contact time), but it
slows down later. This could be because there were many empty surface sites available
during the first stage of adsorption, and it was difficult to fill the remaining empty surface
sites due to the repelling forces that exist between the bulk phase and the dye molecules on
the MLPB [23,39,44]. Additionally, the creation of a monolayer coating of dye molecules on
the MLPB surface is confirmed by a continuous, smooth pattern toward saturation [23,39].
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In an adsorption process, solutes are transported from liquid to the adsorbent surface
by means of mass transfer. MO adsorption on MLPB was investigated using three of the
most used kinetic models: pseudo-first-order, pseudo-second-order, and intra-particle
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diffusion kinetics. By utilizing the correlation coefficient values (R2) of linear regression,
the best-fit model was selected. Here is an expression for a pseudo-first-order equation [38]:

ln(qe − qt) = ln qe − k1t (11)

The variables qt, qe, and k1 indicate the amount of MO adsorbed (mg/g) at time t (min),
the amount adsorbed (mg/g) at equilibrium, and the adsorption constant (min−1).

Equation (12) illustrates how to represent the pseudo-second-order model [38]:

t
qt

=
1

k2q2
e
+

1
qe

t (12)

here, the adsorption constant is denoted as k2 (g/mg min).
Weber and Morris suggest the following intra-particle mass transfer diffusion model

in light of the fact that neither the pseudo-first-order nor the second-order models are able
to pinpoint the diffusion mechanism:

qt = kit1/2 + C (13)

where ki is the intra-particle diffusion rate constant (g/mg min), and C is the intercept.
The varying kinetic parameters for MO adsorption onto MLPB for a range of MO initial

concentrations are displayed in Table 2. The linear plots of the first- and second-order kinetic
models are displayed in Figure 10a,b. Higher correlation coefficient values (R2 > 0.9977)
demonstrated greater agreement between all experimental data and the pseudo-second-
order kinetic model, suggesting that the latter is a more suitable fit for explaining the
adsorption kinetics of MO. According to this hypothesis, chemical adsorption might be the
rate-controlling step [38]. Furthermore, Table 3 shows that theoretical qe values calculated
by pseudo-second-order models are close to experimental values, while those calculated by
pseudo-first-order models differ from experimental values. Many earlier studies support
the findings of this study concerning second-order kinetics [38,39,45–47]. When MLPB was
adsorbing MO, MO removal was rapid at first but became slower and stagnant as contact
time increased. MO was removed by adsorption on the surface of MLPB due to its MO−

anionic form. Adsorption kinetics are often governed by a number of processes, the most
important of which are those that involve diffusion, including intra-particle, boundary
layer, and external diffusion [39]. Thus, the rate-limiting stage in the adsorption process
was identified using the intra-particle diffusion model. Figure 10c illustrates that across
a broad range of contact periods between MO and MLPB, the linear section of the curve
does not pass through the origin. This departure from the origin might be brought about
by the variation in mass transfer rates between the first and last phases of adsorption.
It suggests a certain amount of boundary layer control, indicating that the adsorption
rate-controlling step (or all of them may be working simultaneously) is present in addition
to intraparticle diffusion (or internal diffusion). The intraparticle diffusion plot’s first
linear section shows how a boundary layer influences adsorption, while the second linear
segment shows intraparticle diffusion. As a result of C values, boundary thickness could
be determined; a larger C value was associated with a greater boundary layer diffusion
effect [39]. There was an increase in C values (5.10–8.12 mg/g) with increasing initial
concentrations (20–60 mg/L) (Table 3), demonstrating that surface adsorption or boundary
diffusion increased with concentration, implying that surface adsorption became more
noticeable as concentration increased.
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Table 3. Rate constants for the kinetic models for various initial MO concentrations.

Initial
MOCon.
(mg/L)

Pseudo-First-Order Model Pseudo-Second-Order Model
qe,exp

(mg/g)

Intraparticle Diffusion Model

k1
(min−1)

qe,cal
(mg/g) R2 k2 (g/mg

min)
qcal

(mg/g) R2 ki (g/mg
min0.5) C R2

20 0.0623 1.08 0.8115 0.303 5.69 0.9998 5.70 0.079 5.097 0.9443
40 0.0502 3.38 0.8757 0.064 8.65 0.9975 8.59 0.2754 6.378 0.9728
60 0.0413 2.64 0.7578 0.101 9.78 0.9995 9.89 0.2121 8.123 0.9779

3.2.6. Adsorption Isotherms

In this study, three isothermal equations were used to analyze the adsorption data, namely
the Langmuir, Dubinin–Radushkevich (D–R), and Freundlich isothermal equations [48].
Equations (14)–(16) give the respective linear equations of the Langmuir, D–R, and Freundlich
adsorption isotherms. Langmuir’s linear expression can be written as follows:

Ce

qe
=

1
Qmax·b

+
Ce

Qmax
(14)

where Ce is the equilibrium concentration (mg/L), qe is the quantity adsorbed at equilibrium
(mg/g), and Qmax and b are the Langmuir constants associated with the adsorption energy
and capacity, respectively.

A linear expression of Freundlich’s expression gives the following constants: KF (mg/g
(L/mg)1/n) and 1/n:

log (qe) = log (KF) +

(
1
n

)
log (Ce) (15)
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Using the Dubinin–Radushkevich isotherm in Equation (16), the typical porosity
and apparent free energy of adsorption were estimated. It is frequently employed to
differentiate between the adsorbate ions’ chemical and physical adsorption [48]:

ln(qe) = ln(qm)− β2 (16)

The variables in this equation are the Dubinin–Radushkevich monolayer capacity
qm (mg/g), the gas constant R (8.314 kJ/mol K), the Polanyi potential (ε), which is equal
to RT ln(1 + (1 + Ce)), the mean free energy of adsorption per mole of the adsorbate β
(mol2/kJ2), and the absolute temperature T (K). The following Equation (17) can also be
used to calculate the sorption energy.

E = 1/
√

2β (17)

where adsorption energy mean (kJ/mol) is represented by E.
Figure 11a–c and Table 4 show the adsorption isotherm study plots of Langmuir,

Freundlich, and D–R models, as well as their adsorption isotherm constant values, respec-
tively. Table 4 shows that the Freundlich and D–R models are less effective at describing
the data than the Langmuir model. The Langmuir model states that adsorption takes
place in a monolayer, meaning that the adsorbent surface is homogenous, that only one
layer of molecules is absorbed there, that the adsorption energy is constant at every site,
and that the adsorbate does not move along the surface’s plane [48]. Furthermore, the
Langmuir model yielded maximum monolayer coverage (Qmax) of 17.21 mg/g. The values
of 1/n = 0.637 and n = 1.57 in Table 4 also indicate favorable sorption of MO on MLPB.
Additionally, Table 4 shows that the obtained mean adsorption energy (E = 0.997 kJ/mol)
indicates that physical adsorption is dominant since it is less than 8 kJ/mol. Bond energy
values for monolayer, hydration water, and multilayer adsorption typically range from 4 to
21, 8 to 42, and 290 to 420 kJ/mol, respectively [48,49]. Monolayer adsorption was shown to
be the predominant adsorption mode for MO adsorption on MLPB using the experiment’s
E value as a measure. Langmuir’s linear fit, which describes the adsorption process, was
consistent with this result.

Table 4. Isotherm model parameters.

T (oC) Langmuir Isotherm Freundlich Isotherm Radushkevich (D–R) Isotherm

25
b (L/mg) Qmax

(mg/g) R2 1/n KF (mg/g
(L/mg)1/n) R2 qm (mg/g) β (mol2/kJ2) E (kJ/mol) R2

0.157 17.21 0.9986 0.637 2.13 0.9774 8.88 5 × 10−7 0.997 0.8531

In Table 5, the maximum adsorption ability of MO is compared to that of other
adsorption studies. According to this study, MLPB shows satisfactory adsorption capacity
to MO dye in water solutions.

Table 5. Comparison of maximum adsorption capacity values for MO dye sorbed by different
adsorbents.

Adsorbent Qmax (mg/g) Reference

Biofunctional BiOCl3I solid 5.00 [50]
Modified ultrafine coal powder 18.52 [51]

Cellulose from Stipa tenacissina L 16.94 [52]
Magnetic Clay-Biochar 18.80 [8]

Carbon nanotubes 35.40 [39]
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Table 5. Cont.

Adsorbent Qmax (mg/g) Reference

Fe2O3/polypeptidylated hemoglobin 15.20 [53]
Surfactant-added ZIF-8 10.10 [54]

AgGaO2 nanocomposites 11.39 [55]
Fe2O3/biochar 16.05 [56]

MLBP 17.21 This study
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3.2.7. Recycling Test

For magnetic biochar to remain viable and cost-effective over the long term, regenera-
tion and efficiency following several adsorptions–desorption cycles are essential. The type
of adsorbate and the required degree of regeneration efficiency determine the procedure
to be used. The regeneration efficiency of MLPB for MO is shown in Figure 12 under four
cycles. After the first adsorption–desorption cycle, 91.6% of the MO was removed by MLPB;
this rate gradually declined to 87.8% after four cycles (Figure 12), which is considered
an insignificant decrease. Both the breakdown of the biochar’s surface structure and the
disappearance of its active mineral content may contribute to a reduction in regeneration
efficacy [8]. Following regeneration, changes in pore size distribution, surface chemistry,
and contaminant residue cause a reduction in the removal effectiveness of magnetic biochar.
In order to determine the causes of this efficiency decline, characterization of the MLPB
before and after regeneration using methods including BET surface area analysis, SEM,
FTIR, and chemical analysis can be conducted in the future. This aids in determining the
main causes of deterioration and creating plans to enhance magnetic biochar’s long-term
functionality [8]. Accordingly, the MLPB used in the study has noticeable stability and can
be reused for MO dye adsorption.
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3.2.8. Column Study

In this work, three concentrations of inlet MO (20, 50, and 80 mg/L), a bed height
of 1 cm, and a flow rate of 0.65 mL/min were used to investigate the impact of this dye’s
adsorption on MLPB. Figure 13 shows the breakthrough curves at different concentrations
of influent MO. A rapid saturation of the adsorption process has been observed, and the
breakthrough time has declined as the concentration of influent MO increases. Increasing
MO concentration resulted in a shorter breakthrough and a higher adsorption capacity.
With an increase in inlet MO concentration, the breakthrough time decreased from 270 min
to 85 min, while the equilibrium uptake (qeq) increased from 4.34 mg/g to 18.20 mg/g.
Due to the scattering of curves of breakthrough at lesser inlet MO concentrations, a slower
breakthrough occurred. As the inlet concentration increased, breakthrough curves became
sharper [57]. Additionally, a smaller concentration gradient resulted in a more gentle
conveyance because mass transfer or diffusion coefficients were lower. By increasing
the inlet concentration, breakthrough curve slopes and shorter times are obtained [57,58].
For the removal of MO from water systems, our results demonstrate that MLPB, with a
maximum equilibrium capacity of 18.20 mg/g at 0.965 column porosity, is a promising and
effective adsorbent. The adsorption performance of MLPB can be considerably impacted
by prolonged usage. Potential saturation changes the surface chemistry as a result of MO
adsorption, and decreased surface area can all arise from this. These modifications may
lessen the adsorbent’s efficacy by altering its affinity for MO. For optimal operation to be
maintained, regular evaluation, regeneration, and replacement are required [59].
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3.2.9. Post-Adsorption Characterization

Figure 14 displays the FTIR spectra of MLPB both before and after MO adsorption.
The main differences occurred between 1000 and 1600 cm−1, where the functional groups
were shifted or reduced. The absorption of C=N (1550 cm−1) after adsorption was shifted to
1558, while the absorption of C–O (1047 cm−1) was reduced, which suggests nitrogen and
oxygen groups contributed to the adsorption process. It is evident that the amino groups
in MLPB undergo a structural change when MLPB is loaded with methyl orange. As a
result, the amino groups bind with the sulphonate groups of MO dye [60,61]. Additionally,
the additional alkyne group peak (C=C) at 2087 cm−1 in the fingerprint region of MLPB
was assigned to MO, supporting its attachment to the adsorbent [62]. Other changes
are obviously observed at 500–1000 cm−1, which are all placed in the fingerprint region.
After adsorption shifting was observed in the peaks of M–O–M and O–M–O stretching,
signifying the complexation between the metal ion (Fe) and SO3

− groups of MO on the
MLPB surface [63].
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3.2.10. Suggested Mechanism of the Adsorption of MO onto MLPB

The suggested adsorption mechanism of MO by MLPB is illustrated in Figure 15.
MO existed in an aqueous solution in the form of an anion (SO3

−). The adsorption of
MO was attained by electrostatic attraction or complexation, which mainly through the
attraction between SO3

− and metal ions (Fe) positively charged on the MLPB surface.
This was confirmed by FTIR characterization for MLPB after adsorption of MO. Obvious
changes were observed at 500–1000 cm−1, the peaks of M–O–M and O–M–O stretching,
signifying the complexation between the metal ions (Fe) and SO3

− groups of MO on the
MLPB surface [64].
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4. Conclusions

The current investigation found that MLPB performed well as an adsorbent to remove
MO from aqueous solutions. The FTIR spectrum of MLPB was found to differ from the spec-
trum of lemon peels, confirming the modification caused by the impregnation-pyrolysis.
Further confirmation of this modification was provided by SEM analysis. When compared
to the LP picture, a SEM image of the MLPB showed a porous surface. This demonstrates
that the MLPB’s surface shape is superior for MO ion adsorption. During batch adsorption
studies, MO ion adsorption capacity has increased proportional to concentration increases,
but it decreased with increasing doses and pH. The highest adsorption occurred at pH 4.0,
and the optimal amount of MLPB was found to be 0.025 g within 60 min of contact time.
Maximum MO removal was noted. As compared with lemon peels (qe = 0.54 mg/g), MLPB
displayed approximately sevenfold higher adsorption capacity (qe = 3.51 mg/g). The
findings indicate that, under ideal experimental circumstances, the pseudo-second-order
kinetic model is the most appropriate for simulating the adsorption of MO onto the MLPB.
An intra-particle diffusion model revealed that there were other rate-controlling steps
besides intra-particle diffusion. The border layer influences adsorption in its early phases,
whereas intra-particle diffusion is impacted in its latter stages. The Langmuir isotherm
model best explained the equilibrium results. In column studies, MO adsorption on MLPB
was affected by the inlet feed’s MO concentration, with a maximum obtained column
capacity value of 18.20 mg/g. An excellent recovery of MO was achieved through the
regeneration of the synthesized adsorbent. It achieved 96% recovery in the first cycle and
sustained 88% recovery after the fourth cycle. These results demonstrate the efficiency of
MLPB in recovering MO from aqueous solutions and provide valuable insights into optimal
adsorption conditions. MO adsorption with MLPB is a promising wastewater treatment
method with several advantages over conventional methods. It provides cost-effectiveness,
regenerative and reusable qualities, easy separation and recovery, and effective contamina-
tion removal. Its magnetic qualities make it easy to separate from treated wastewater, which
lowers operating costs and streamlines the treatment procedure. When injected directly
into polluted water bodies, MLPB may be magnetically recovered, making it appropriate
for in situ applications. Additionally, it lessens the formation of sludge, which makes
disposal easier and lowers related expenses and environmental issues.
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