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Abstract: Integrating magnetic materials into dentistry has emerged as a promising advance for
addressing diverse dental conditions. Magnetic particles comprising a magnetic core encapsulated
within a biocompatible coating offer precise manipulation through external magnetic fields, rendering
them invaluable in targeted drug delivery, magnetic resonance imaging, hyperthermia therapy, and
diagnostic assays. Their tunable properties allow optimization for specific applications, enhancing
therapeutic efficacy while minimizing off-target effects. Additionally, pre-adjust magnets showcase
exceptional magnetic field strength and energy density. Their utilization in dental implants and
orthodontic treatments facilitates tissue engineering and tooth movement, augmenting clinical
outcomes and patient comfort. This review synthesizes current research directions and clinical
applications of magnetic materials in dentistry, offering insights into their potential to transform
dental healthcare and enhance patient well-being.

Keywords: magnetic materials; magnet; magnetic field; dentistry; oral disease; nanoparticles; nano-
materials

1. Introduction:

In recent years, the application of magnetic materials in dentistry has emerged as
a promising avenue for addressing various dental conditions [1–3]. Magnetic materials,
characterized by their magnetic responsiveness, biocompatibility, and ability to interact
with magnetic fields, offer a versatile platform for diagnostic [4,5] and therapeutic [6,7]
interventions in the dentistry field.

Among most magnetic materials, magnetic particles are widely studied in biomedical
applications [8–10]. These particles typically consist of a magnetic core, often composed
of iron oxide or other magnetic materials, encapsulated within a biocompatible shell.
Their magnetic responsiveness enables precise manipulation and control through external
magnetic fields, rendering them invaluable tools in targeted drug delivery [11–13], magnetic
resonance imaging (MRI) [8,13–15], hyperthermia therapy [10,16], and probing [17,18]. The
size, shape, and surface chemistry of magnetic particles can be finely tuned to optimize
their performance for specific applications [19–21]. In drug delivery [9,13], for instance,
magnetic particles offer the advantage of targeted delivery to desired sites within the body,
minimizing off-target effects and enhancing therapeutic efficacy.

In addition to magnetic particles, pre-adjust magnets, especially NdFeB magnets [22],
represent today’s most powerful permanent magnets. Comprised primarily of neodymium,
iron, and boron, these magnets possess exceptionally high magnetic strength and energy
density, making them essential components in numerous modern technological applica-
tions. NdFeB magnets have two poles, commonly called north and south poles, which
exert magnetic field and forces on other magnets or magnetic materials. NdFeB magnets
owe their superior magnetic properties to the alignment of their crystal structure during
manufacturing, which results in a highly organized arrangement of magnetic domains.
Magnetic forces are utilized in dental implants [23–25] and orthodontic treatments [26,27]
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to facilitate tissue engineering and tooth movement, offering patients a more efficient and
comfortable clinical experience.

In light of these advancements, this review paper aims to provide a comprehensive
overview of the current applications (Figure 1) of magnetic materials in the dental field
from the research direction (magnetic particles) and clinical direction (magnet/magnetic
field). By synthesizing the latest research and reviews in this field, we aim to shed light
on the potential of magnetic materials to revolutionize dental healthcare and improve
patient outcomes.
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2. Forms of Magnetic Particles in Dental Research
2.1. Magnetite Iron Oxide

Magnetite is the most famous mineral ore used in dental research and belongs to the
iron oxide family (Figure 2A), which has the chemical formula Fe3O4 [28,29]. Magnetite
contains Fe2+ and Fe3+ ions. With a typical color of black or brownish black, it is the
most common magnetic mineral found in metamorphic, sedimentary, and igneous rocks.
The strong magnetism of Fe3O4 is made possible by magnetite’s unique ferromagnetic
characteristics, which set it apart from other iron oxides [28]. Magnetite’s crystal structure is
a polyhedral representation of the inverse spinel. At room temperature, it has four different
crystalline polymorphs and a face-centered cubic arrangement in a regular pattern [29].
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maghemite crystal form of magnetic particles. (C) The hematite crystal form of magnetic particles.
Reprinted (adapted) with permission from [30]. Copyright 2015 American Chemical Society.
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2.2. Maghemite Iron Oxide

Maghemite (γ-Fe2O3 nanoparticle, Figure 2B) is comparable to magnetite in that it
has a similar crystal structure and electron diffraction patterns [31]. The iron atoms in
maghemite are in an Fe3+ oxidation state, which are nonetheless ferromagnetic minerals
with a similar lattice structure to magnetite. When subjected to an external magnetic
field, they exhibit a strong magnetic response and magnetize readily. Maghemite can
change into hematite at higher temperatures [32]. Compared to other Fe3+ oxides, like
hematite, maghemite exhibits a more tremendous magnetism due to its lattice structure [33].
Moreover, its remarkable magnetic characteristics and low health risks have attracted much
interest in biomedical uses. Maghemite is becoming an excellent option for creating
magnetic nanoparticles for use in biomedicine [34].

2.3. Hematite Iron Oxide

Hematite (α-Fe2O3, Figure 2C) is a naturally occurring oxide mineral found in large
quantities of rocks and soils [35]. Hematite is weakly ferromagnetic at room tempera-
ture [36]. Compared to other oxides, hematite is more accessible to synthesize and notably
stable in environmental circumstances. Its crystal structure includes both corundum and
rhombohedral forms. Hematite’s biodegradability, non-toxicity, low corrosion, and ease
of processing have made it a popular choice for various applications, such as gas sensors,
environmental treatments, and magnetic storage media [37].

3. Applications of Magnetic Particles
3.1. Drug Delivery

Magnetic particle drug delivery is a technique that uses magnetic particles to transport
medications to precise locations within the body [38,39]. Magnetic particles have the
potential to enhance medication accumulation in targeted tissues, destroy sick tissues, and
initiate drug release, making them valuable in nanotherapy [40]. These particles can be
customized to achieve biocompatibility by attaching a variety of bioactive compounds
to their magnetic cores, encased in organic polymers or inorganic metals [41]. Utilizing
magnetic particles can mitigate the likelihood of specific adverse reactions and decrease
the required medication dosage during therapy [42]. In addition, they have the ability to
offer image and controlled release functionalities to drug delivery materials [43].

The medication delivery agent is often injected into the bloodstream via a catheter,
which places the injection site near the intended target. This method lowers medication
dosages, lessens side effects, and improves drug delivery precision [44,45]. Other methods
exist as well, such as oral administration. Magnetic particles can be directed to the targeted
tissues with the help of an external magnetic field [43]. Furthermore, by functionalizing
these magnetic particles with therapeutic chemicals, they can be directed onto particular
dental tissues by applying external magnetic fields. With potential uses in root canal
therapy and periodontal therapy, this targeted medication delivery system provides a
precise and least intrusive way to treat dental illnesses [39].

When paired with chemotherapy medications and an external magnet, superpara-
magnetic nano-carriers have shown promise in treating superficial oral malignancies by
enhancing the anti-tumor effect. Such biocompatible, superparamagnetic, hollow meso-
porous nanoparticles with magnetic targeting properties were created by Lin [46] and
colleagues. They loaded bleomycin (BLM) into the mesoporous structure of the super-
paramagnetic nanoparticles by polyacrylic acid (PAA) surface engineering (Figure 3A–C).
This drug delivery system allowed the BLM to be substantially released in the focal area
while being affected by a magnetic field. Furthermore, the BLM-loaded PAA-functionalized
magnetite nanoparticles caused localized apoptosis in tumor cells, exhibiting the ability
to target targets in vitro and inhibit tumor growth in vivo. Crucially, this tailored drug
delivery method is simple and does not require sophisticated chemistry or materials engi-
neering. It can potentially advance nanotherapeutics for effective treatment of head and
neck cancer. Similarly, magnetic Fe3O4 nanoparticles modified with polyethyleneimine
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(PEI) can also act as delivery vehicles for therapeutic siRNA that targets B-cell lymphoma-2
and Baculoviral IAP repeat-containing 5 to Ca9-22 oral cancer cells. Fe3O4 nanoparticles
were confirmed to be more effective in delivering siRNAs to Ca9-22 cells than to CAL27
oral cancer cells, suggesting they have a bright future for siRNA delivery applications [47].
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In addition to anti-oral cancer medications, amino silane was used to modify the gen-
eral antiseptic and disinfectant reagent chlorhexidine (CHX) on magnetic nanoparticles [49].
CHX can result in strong antibacterial and antifungal effects against microbial biofilms,
potentially making them a good choice for treating oral microflora-related local infections.
Moreover, CHX showed limited toxicity towards human osteoblasts and enhanced antibac-
terial action when salivary proteins are present, reinforcing their prospective use in these
applications. By functionalizing CHX particles with iron oxide (Fe3O4) nanoparticles, Luo
et al. [48] created a unique method to improve medication release within dental resin, which
was made possible by an external magnetic field (Figure 3D,E). These hybrid particles were
then exposed to different lengths of magnetic field exposure on resin discs, which caused
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the particles to aggregate close to the surface and substantially increased the CHX release
from the resin discs with magnetic stimulation. This study highlights the possibility of
tailored medication delivery to infection sites in therapeutic settings. Thus, the magnetic
field responsiveness of Fe3O4-functionalized CHX particles offers a promising prospect for
targeted medication delivery.

Magnetic particles loaded in biological osteogenic components can further promote
osteoblast proliferation, differentiation, and angiogenesis. Patricio [50] prepared hybrid
superparamagnetic microspheres explicitly designed for delivering recombinant human
bone morphogenetic protein-2 (rhBMP-2) in levels that are useful for therapy (Figure 4A–D).
These microspheres have extended-release characteristics. When evaluated using human
mesenchymal stem cells, these microspheres showed an exceptional ability to promote
bone formation. In addition, the release of rhBMP-2 from the microspheres could be con-
trolled by applying a pulsed electromagnetic field. This unique characteristic highlights the
possibility of controlling the biological activity of these small devices from a distance, pro-
viding significant opportunities for future use in carefully designed bone regeneration and
individualized treatments. Xue et al. [51] developed an innovative magnetic drug-loaded
osteoinductive Fe3O4/CaCO3 hybrid microspheres (MDHMs), demonstrating exceptional
drug delivery capabilities. The MDHMs have a consistent magnetic characteristic, with
a saturation magnetization of around 4.41 emu/g and an impressive responsiveness to
magnetism. MDHMs are vaterite microsphere structures with a consistent size and shape
and possess distinct nanostructures with pores of a specific size, showing potential in
bone tissue engineering. The in vitro results indicate that MDHMs possess excellent drug
transport capabilities, osteoinductive potential, and magnetic properties, making them
highly promising for treating peri-implantitis.
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Figure 4. Bright-field images (A) and live (B), dead (C), and merged (D) monolayer human mes-
enchymal stromal cells (hMSCs) in the presence of iron-doped hydroxyapatite microspheres (orange
arrows). Image reproduced with permission from [50]. (E) A TREK1 ion channel activated by mag-
netic ion channels. Antibodies that target the TREK1 ion channel’s mechanosensitive intracellular
loop region were used to functionalize magnetic nanoparticles. An external magnetic field can be used
to activate the ion channel because of the nanoparticle’s attachment to it. Magnets may be controlled
remotely by tagging TREK1 in hMSCs. (i) MICA bioreactor moving magnetic array used in this
investigation, and (ii) remote control of injected hMSCs. Image reproduced with permission from [52].
(F) The generation of magnetic hydrogels by the co-assembly of cells, magnetic nanoparticles, and
polyethylene glycol (PEG) gels and their stimulation by the application of an external magnetic field.
Image reproduced with permission from [53].

Henstock et al. [52] observed that functionalized magnetic nanoparticles were linked
to either the mechanically regulated TREK1 K+ channel or RGD-binding domains of hu-
man mesenchymal stem cells (Figure 4E). The combination of mechanical stimulus and
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sustained release of BMP-2 proteins from polymer microspheres had a significant additive
effect on mineralization. This increased the efficiency of BMP-2 delivery and showed that
nanoparticle-mediated mechano-transduction can be used in synergy with pharmacological
approaches for orthopedic tissue engineering to optimize bone formation. Thus, those
functionalized magnetic nanoparticles can enhance the intracellular cascade impact of
exogenous growth factors by providing mechanical stimulation, thereby optimizing their
therapeutic potential.

Additionally, live cells and MNPs may be used to intelligently transport and guide
cells to specified locations when an external magnetic field is present [53]. A unique three-
dimensional magnetic nano-hydrogel was created by mixing stromal vascular fraction cells
generated from human adipose tissue with a hydrogel based on polyethylene glycol (PEG)
and combined magnetic nanoparticles (Figure 4F). This hydrogel possesses both osteogenic
and blood vessel-forming capabilities. The CD31+ endothelial cells in the magnetically
actuated gels exhibited a greater concentration, forming elongated capillary-like structures.

3.2. Hyperthermia

Inducing localized hyperthermia is a promising minimally invasive tumor-fighting
tactic [54]. Iron oxide nanoparticles are well known for their potential to induce hyperther-
mia by either Brownian relaxation or Néel relaxation processes. Various parameters can
be used to assess their eligibility for cancer treatment [55], including the ability to enter
tumor cells efficiently, targeting, and internalizing [56]. Iron oxide nanoparticles are also
easy to administer in clinical settings, have little toxicity and biocompatibility over a broad
dosage range, and are flexible enough to target particular tumor types or organs that have
metastasized [57]. Especially, superparamagnetic iron oxide nanoparticles (SPIONs) are
currently being investigated widely in clinical settings as agents for magnetic hyperthermia
because of their strong surface reactivity, which enables a broad spectrum of biofunctional-
ization, and their capacity to create stable suspensions [58]. The nanoparticles’ size and the
alternating magnetic field frequency affect how much heat can be produced in magnetic
hyperthermia with SPIONs [59]. This technique involves applying an alternating magnetic
field to tumors to cause cytotoxic hyperthermia using magnetic nanoparticles [60,61].

Altanerova [55] reported the potential of using magnetic nanoparticles enclosed
within human mesenchymal stem cell (MSC) exosomes to specifically eliminate tumor
cells by inducing hyperthermia through magnetism. They labeled MSCs, modified to
express the yeast cytosine deaminase/uracil phosphoribosyl transferase suicide fusion
gene (yCD/UPRT), with Venofer, a nanoparticle composed of iron oxide and carbohydrates.
Their labeling strategies did not have a detrimental effect on cell proliferation or the ability
of MSCs to migrate toward tumors. The MSCs labeled with Venofer generated exosomes
containing iron oxide, which were effectively taken up by tumor cells. Combining exosomes
derived from Venofer-labeled MSCs that express the yCD/UPRT gene with the prodrug
5-fluorocytosine resulted in a significant and dose-dependent tumor growth inhibition.
Furthermore, tumor cells subjected to this approach were effectively eradicated by applying
hyperthermia induction employing an external alternating magnetic field.

Kazeli and colleagues [62] created three-dimensional magnetic nanocomposite (Mg2SiO4-
CoFe2O4) scaffolds (MS) utilizing the polymer foam replica process. The scaffolds exhibited
remarkable hyperthermia capabilities (Figure 5A,B). The nanocomposite (NP) shows a
significant increase in temperature, going from 19 ◦C to 43 ◦C in under 100 s, with a specific
loss of power (SLP) at 450 W/g. Their findings indicate that MS holds excellent potential
for bone tissue regeneration and cancer treatment, primarily when used in conjunction with
the targeted administration of active medicinal compounds and magnetic hyperthermia.
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Figure 5. The hyperthermia application of magnetic particles. Hyperthermia curves of NPs (CoFe2O4

nanoparticles), NCs (Mg2SiO4–CoFe2O4 nanocomposites), and MSs (magnetic scaffolds) at (A) 30 mT
and (B) 60 mT. Image reproduced with permission from [62]. Injectable magnetic bones cement
in vivo magnetothermal effects, and osteogenesis is examined in the following ways: thermal images
and magnetothermal curves of SD rats’ cranial defects at different times under 250 Gs intensities of
an alternating magnetic field (C,D) and micro-CT analysis of the defected area in the cranial bones of
SD rats in various groups eight weeks after surgery (*** p < 0.001) (E,F). Reprinted (adapted) with
permission from [63]. Copyright 2019 American Chemical Society.

Kawashita [64] has successfully synthesized SiO2-cored Fe3O4 microspheres with
dimensions within 20–30 nm. These microspheres are made up of tiny crystals of Fe3O4
or γ-Fe2O3, which were formed through precipitation from an aqueous solution and then
subjected to heat treatment, exhibiting ferrimagnetism, with a saturation magnetization of
53 or 68 emu/g. When disseminated in an agar phantom and exposed to an alternating
magnetic field, they exhibited heat generation in vitro.

Magnetic hyperthermia can also enhance the process of osteogenic differentiation.
Nevertheless, the specific mechanisms responsible for the osteogenic effects of magnetic
hyperthermia are not yet fully understood [65]. According to some studies, hyperthermia
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may affect bone metabolism by boosting blood circulation. Others indicate that it promotes
the expression of genes associated with bone formation by increasing mitochondrial activity
and accelerating the production of bone-related genes [66]. The processes responsible for
osteogenic stimulation from magnetic hyperthermia are still being researched. Compared to
the photo-responsive technique, magnetothermal therapy utilizing an external alternating
magnetic field provides the benefit of enhanced tissue penetration at greater depths. This
feature renders it a promising choice for treating profound tissue lesions, such as bone
cancers. In addition, magnetic field-responsive therapy provides a non-invasive and
highly controllable approach, simultaneously meeting the requirements for procedures
such as bone tumor ablation and localized bone regeneration. When magnetic Fe3O4
nanoparticles are exposed to an external magnetic field, they can increase temperatures
within the range of 42 ◦C to 45 ◦C (Figure 5C–F) [63]. The temperature rise can potentially
damage or eradicate cancer cells by causing bleeding or blocking blood vessels while
minimizing harm to nearby healthy tissues [67,68]. Nevertheless, there is a notable obstacle
to augmenting the heating rates of nanostructures composed of iron oxide. This obstacle
pertains to attaining therapeutic temperatures for the intended purpose. Employing higher
heating rates can serve as an alternative method for enhancing the uniformity of iron
oxide-based nanostructures. According to Kumar’s study [69], the hyperthermia impact
of nanostructures based on SIONPs can be significantly improved by applying a layer
of gold. The application of highly low-frequency oscillating magnetic fields is feasible.
Although research on magnetic field-induced bone therapy and regeneration is still in its
initial phases, the positive results have attracted increasing attention. Future research could
concentrate on attaining consistent and uniform magnetic heating and devising techniques
to reduce the potential risk of thermal harm to adjacent healthy tissues. These factors may
contribute to developing more efficient and secure uses of magnetic treatments for bone
repair and regeneration.

3.3. Bone Regeneration

The static magnetic field produced by permanent magnets offers various therapeutic
benefits, including not needing a power device and being able to create the magnetic field
in the desired direction [70]. As a result, magnetic field stimulation is more appropriate
for long-term localized healing [71]. Utilizing magnetic fields in bone regeneration shows
excellent potential for improving dental implantology. Researchers plan to enhance bone
formation and promote the integration of dental components with surrounding tissues by
utilizing magnetic fields on bone grafts or implants. This method has considerable potential
to increase the success rates of dental implants and enhance patient outcomes [72].

Previous studies have shown that magnetic fields with a strength of 1 T have the
ability to speed up the process of bone fusion and enhance the development of bone-
forming cells at a cellular level [73]. It has been shown that the high magnetic fields
influence the alignment of cells and bone matrix protein [74]. The performance of moderate
magnetic fields generated by permanent magnets in wound healing and osteoconduction
has garnered significant attention. The magnetic field of 100 mT was observed to be in
advance of the magnetic fields of 200–400 mT and 600 mT. This suggests that researchers
have the ability to study magnetic fields with lower levels of strength [70].

De Abreu [75] studied the impact of buried magnetic field stimulation on bone healing
in rat calvaria following reconstruction using autogenous bone grafts, synthetic powdered
hydroxyapatite, or allogeneic cartilage grafts. Additionally, magnetic implants were in-
serted into half of the animals. Quantitative histomorphometry assessments of bone healing
were conducted at all time points. The analyses revealed statistically significant interac-
tions between the groups and postoperative time. The rats that underwent autogenous
bone repair and were exposed to magnetic stimulation exhibited more significant bone
fill percentages compared to those without magnetic implants. Furthermore, the results
indicated that the former group had superior bone repair quality compared to the latter
group after 60 days post-surgery. After a period of 60 days following surgery, the group of
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animals treated with autogenous bone grafts and exposed to a magnetic field showed a
higher level of bone repair. The animals treated with autogenous bone grafts had the most
significant bone repair, followed by those treated with powdered synthetic hydroxyapatite
and allogeneic cartilage grafts.

Zhao et al. [76] effectively integrated nano-hydroxyapatite (nHAP) and Fe3O4 nanopar-
ticles into the chitosan/collagen (CS/Col) organic matrix (Figure 6A–D). They found a
remarkable improvement in cell adhesion, proliferation, and osteogenic differentiation. Un-
like electrical materials, the effectiveness of magnetic materials mainly relies on magnetic
fields. This combination exhibited higher values in trabecular bones compared to electrical
materials. Nevertheless, the absence of a cohesive benchmark for evaluating magnetic
materials has hindered the ability to establish a direct relationship between their attributes
and performance.
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Figure 6. The biomineralization evaluation of chitosan/collagen/nHAP (A,B) and chitosan/collagen/
Fe3O4/nHAP (C,D) scaffolds in simulated body fluid. Image reproduced with permission from [76].
(E) Diagram illustrating the magnetoactive hydrogel system created by adding carbonyl iron. Image
reproduced with permission from [77]. (F) TEM images of MNPs at low and high magnification.
(G) SEM images of the scaffolds with different MNP contents at low and high magnification. (H) Dia-
gram illustrating how the external magnetic field and inside magnetic nanoparticles work together
to provide magnetic signals that can affect how cells respond. Image reproduced with permission
from [78].

The work of Yang et al. [79] utilized γ-Fe2O3 nanoparticles (γ-IONPs) and α-Fe2O3
nanoparticles (α-IONPs) to create innovative IONP–calcium phosphate cement (CPC) scaf-
folds. The addition of IONP into CPC significantly improved the osteogenic development
of human dental pulp stem cells (hDPSCs), which have excellent potential for substantially
enhancing bone regeneration in dental, craniofacial, and orthopedic applications. A sig-
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nificant increase in ALP activity, osteogenic gene expressions, and cells’ synthesis of bone
matrix minerals was observed compared to control groups. The improved formation of
new bone cells was due to the specific surface structure of the IONP-CPC scaffold and the
uptake of IONPs released from the scaffold by the cells.

Due to the distinctive 3D network structure, which contains a significant amount of
water and possesses functional qualities, hydrogel scaffolds are considered highly promis-
ing for bone tissue engineering applications [80], including repairing cartilage injuries, skull
defects, and arthritis. These scaffolds have adjustable mechanical strength, good biocompat-
ibility, and impressive bioactivity, making them suitable for use in bone regeneration [81].
Yun [78] and colleagues prepared the combination of an external static magnetic field (SMF)
and a magnetic nanocomposite scaffold consisting of polycaprolactone/magnetic nanoparti-
cles that affect osteoblastic functions and bone formation (Figure 6F–H). The SMF enhanced
the osteoblastic development of primary mouse calvarium osteoblasts by working with
magnetic scaffolds. This magnetic nanocomposite scaffold increased the expression of
bone-associated genes and alkaline phosphatase activity, showing in the stimulation of
integrin signaling pathways (mitogen-activated protein kinase and nuclear factor-kappa
B). In addition, the SMF/magnetic scaffold stimulated the growth of osteoblasts, which in
turn enhanced the construction of blood vessels by endothelial cells. When the magnetic
scaffolds were inserted into defects in the skulls of mice, the use of an SMF significantly
increased the formation of new bone after 6 weeks. Combining an external SMF and
magnetism scaffold could be a valuable approach for regenerative bone engineering.

Significant bone defects resulting from aging, trauma, or illness provide a crucial
therapeutic issue as they cannot be fully mended. Magnetic materials utilized to stimulate
bone regeneration physically have garnered attention due to their promising potential
and easy implementation in clinical settings. Hou et al. [82] discovered that osteoblasts’
adhesion and proliferation rate significantly enhanced with increasing concentrations of m-
nHA (Fe2O3 coated with nano-hydroxyapatite). The osteoblasts preferred adhering to and
multiplying on the m-nHA/PVA hydrogels compared to the PVA and nHA/PVA hydrogels.
However, the γ-Fe2O3/PVA hydrogels were shown to be the most suitable for osteoblasts.
In addition, when the m-nHA content in the composite hydrogels increased, there was a
notable enhancement in the adhesion density and proliferation of the osteoblasts, notably
when the level reached approximately 50 wt%.

Fan et al. [83] developed composite nanogels made of chitosan and heparin to encapsu-
late Fe3O4 nanoparticles, achieved by utilizing Watson–Crick base pairing between thymine
and adenine to form nucleobase pairs. The magnetic biopolymer nanogels demonstrate
rapid magnetic responsiveness, achieved through the encapsulation of superparamagnetic
iron oxide nanoparticles. Under the influence of an external magnetic field, the release of
BMP2 was carefully regulated.

Abdeen et al. [77] introduced a modifiable magnetic hydrogel structure by incorpo-
rating functional carbonyl iron (CI) particles into a polyacrylamide hydrogel (Figure 6E).
CI particles can increase the flexibility of a gel when exposed to a strong magnetic field
while not impacting the proliferation of cells. Upon the implantation of MSCs into the
magnetic hydrogel matrix, their ability to promote angiogenesis and undergo osteogenic
differentiation was enhanced. The scientists concluded that magnetic stimuli were crucial
in beginning signals for osteogenesis. The performance of hydrogels can be influenced
by various characteristics of magnetic particles, including their composition, dimensions,
morphology, and crystal structure.

3.4. Skin Regeneration

Drobota and colleagues [84] investigated a simple technique for producing gelatin-
based materials containing iron oxide nanoparticles for future skin wound recovery. This
magnetic gel is meticulously calibrated to align with the specifications perfectly and with
the intended application in direct contact with human or animal skin. The in vitro assay
established the absence of toxicity in the samples and antibacterial properties.
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Fallahiarezoudar [85] reported a novel blend, including three distinct biocompatible
and biodegradable substances for soft tissue applications. Five different ratios of a mixture
consisting of poly-l-lactic acid (PLLA) and thermoplastic polyurethane (TPU), with a 1%
(w/v) inclusion of maghemite (γ-Fe2O3) nanoparticles, were subjected to electrospinning.
The resulting materials were then analyzed in terms of their morphology, degradation
rate, biological compatibility, and mechanical properties to achieve adjustable properties.
PLLA exhibited a mass change of 47.15%, while TPU had a mass change of 6.7%. PLLA
was found to have a high tensile strength and a very low elongation at break based on the
stress–strain curve, whereas TPU demonstrated considerable elasticity.

3.5. Tooth Structure Regeneration

Farag et al. [86] revealed novel magnetic nanoparticles composed of iron oxide and Mg–
phosphate ceramic (nMgP-Fe) for treating bone and pulp–dentin illnesses (Figure 7A–D).
The crystal phases that resulted from the nMgP-Fe material’s nanoscale size range of
10–40 nm were recognized as farringonite and magnetite. It was shown that nMgP-Fe
exhibited superparamagnetic properties, with coercivity and residual magnetization values
of 20 Oe and 0.06 emu/g, respectively. Iron ions were released less often in the dissolving
test than magnesium and phosphate ions. After cultured with nMgP-Fe particles, DPSCs
exhibited a greater rate of cell differentiation into osteoblasts, possessing superparamag-
netic characteristics and biocompatibility, rendering them an auspicious material for the
regeneration of bone and pulp–dentin.
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Figure 7. SEM images of DPSCs/nMgP-Fe at 24 h reveal (A,B) the formation of a collagenous
extracellular membrane (cm) on the scaffold (sc), as well as (C,D) DPSCs with a rounded cell body
(cb) devoid of cell processes after 48 h. The morphology of the cell is stellate (yellow asterisk), the
substance is matrix-like (red asterisks), the mineral deposits (red arrows), and the cell body has
exocytotic outgrowths, collagen fibers (cl), opened and closed pores (op and cp), and a nodular
vesicular structure (yellow arrow). Image reproduced with permission from [86]. (E) TEM image of
odontogenic cells treated with 100 pg magnetite/cell of MNPs (white arrows). Image reproduced
with permission from [87].

Koto [87] utilized a magnetic force-based tissue engineering technique to build a
composite cell sheet comprising dental epithelial cells (DECs) and dental mesenchymal
cells (DMCs). The magnetic nanoparticles (MNPs) were evenly distributed throughout
the carbon composite (CC) sheet. The microenvironment in the CC sheet may resemble
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that observed during the developmental phase of a tooth bud (Figure 7E). The use of
MNPs in the CC sheet has the potential to become a novel and unique technique for the
artificial reconstruction of tooth enamel. In the CC sheet, the mRNA expression of markers
linked to the basement membrane and enamel differentiation was examined. Collagen IV
expression was detected by immunostaining in the region of the CC sheet that separates
the DMC and DEC layers. The findings indicated that the connection between epithelial
and mesenchymal layers resulted from physically putting the DEC in close proximity to
the DMC using magnetic force.

3.6. Magnetic Resonance Imaging (MRI)

The utilization of MRI in powerful magnetic fields has dramatically improved di-
agnostic imaging, which is a fundamental aspect of general healthcare [88]. This tech-
nology can provide high-resolution imaging of dental structures, identifying and assess-
ing problems such as root canal infections, temporomandibular joint abnormalities, and
malignancies [88–91].

Mastrogiacomo et al. [92] prepared calcium phosphate-based composites (CPCs) by
incorporating a core–shell structured dual contrast agent (csDCA) made of colloidal gold
and superparamagnetic iron oxide, fulfilling the imaging and regeneration criteria necessary
for pulp capping applications (Figure 8). This csDCA is an MRI contrast agent and a CT
contrast agent, providing improved biological performance, excellent handling properties,
and good imaging contrast for pulp capping agents. Additionally, a dentinogenic factor,
specifically BMP-2, was included. Incisors treated with BMP-2 exhibited enhanced the
formation of tertiary dentin and accelerated the breakdown of cement, as evaluated using
micro-CT analysis.

For patients who are not ideal candidates for surgery, such as those with advanced
head and neck cancer, the image-guided thermal ablation of tumors is becoming a more
frequently recognized minimally invasive option for surgery. Superparamagnetic iron
oxide with special surface modifications has been utilized to guide the laser ablation of
maxillofacial cancer [93] due to the fact that these artificial NPs may be heated selectively
for simultaneous imaging and are magnetic resonance-active.

Marites et al. [94] developed a multifunctional material consisting of superparam-
agnetic iron oxide coated with a gold nanoshell (SPIO@Au NS), which exhibits super-
paramagnetics. This material possesses both optical and magnetic capabilities. It was
then combined with a targeting agent, the C225 monoclonal antibody, which specifically
binds to the epidermal growth factor receptor. The in vivo biodistribution study tumors
demonstrated the specific targeting of C225-SPIO@Au NS instead of the non-targeting and
blocking groups. The targeted destruction of cells using nanoshells through photothermal
ablation was observed. In the absence of laser therapy, no cell death occurred. However,
among the groups subjected to laser treatment, only the cells treated with C225-SPIO@Au
NS showed significant cell killing and optical capabilities. Both in vitro and in vivo stud-
ies demonstrated that these nanoshells exhibit magnetic resonance activity and may be
selectively heated to enable simultaneous imaging and photothermal ablation therapy.

Magnetic nanoparticles can attach to the stem cell surface, labeling mesenchymal stem
cells without a transfection agent [95,96] and influencing the behavior of cells and the single-
cell clinical 5 T magnetic resonance detection capacity. Magnetic nanoparticle endocytosis
has no effect on the survival, proliferation, destiny, or differentiation of stem cells.
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Figure 8. (A) SEM and TEM (B) images of csDCA particles. (C) SEM picture and EDS spatial
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by yellow arrows. Top: MRI acquisitions. Bottom: mCT reconstructions. Image reproduced with
permission from [92].

3.7. Bioseparation

Bioseparation plays a crucial role in applying magnetic nanoparticles [97]. Super-
paramagnetic magnetic nanoparticles are ideal for this approach because of their inherent
magnetism, which facilitates the movement of biomaterials using a magnetic field. Essen-
tially, isolating distinct biological entities is frequently utilized in this application within
the field of biomedical research [98–100]. This application typically involves separating
cells, bacteria, viruses, enzymes, proteins, genes, and in vitro DNA [101]. Compared to
traditional separation techniques, magnetic bioseparation has a number of advantages,
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including faster localization or retrieval times. The many advantages of magnetic iron oxide-
based nanostructures, such as their small size and high surface area, are advantageous to
their application. They are also quicker and less expensive than traditional column affinity
chromatography. Magnetic nanoparticle-based surface-functionalized nanostructures are
commonly employed to enhance bioseparation. These nanostructures may be altered to
add functional end groups by adding polymers and surfactants. They have an intermediate
efficiency. Li et al. [102] examined the synthesis of carboxymethylated dextran-coated mag-
netic iron oxide-based nanostructures utilizing the coprecipitation method for the purpose
of bioseparation application. The antibodiy-coated particles possess superparamagnetic
characteristics, enabling the separation of the antigen from the sample solution.

Adams [103] and colleagues published a study on the use of Fe3O4@SiO2 nanoparti-
cles, modified with gold and poly(vinylpyrrolidone), for bioseparation and sensing. The
particles possess a distinct surface morphology consisting of roughened gold nodules. Ap-
plying surface coatings inhibits oxidation and facilitates the functionalization of particles,
allowing them to target a diverse variety of moieties effectively. The gold layer on the
particle surface is both uniform and ultrathin, allowing for a high magnetic saturation
comparable to bare magnetite. The presence of gold nodules promotes the formation of
localized areas of high intensity that amplify the electromagnetic field surrounding the
surface of the particles. This property makes them valuable for sensing applications, such
as surface-enhanced Raman spectroscopy. Additionally, the strong magnetic core enables
the rapid separation (within approximately 30 s) of target molecules from a solution once
they have attached to the particles.

Oral keratinocyte stem cells are essential in tissue homeostasis, wound healing, and
neoplasia. However, it is still challenging to identify and characterize them. Notably,
fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) have
been used to obtain homogenous populations of oral keratinocyte stem cells [104]. The
experimental conditions were often established using a mixture of media supplements
containing beta-glycerophosphate, ascorbic acid, and dexamethasone in varying doses.
Calenic et al. also connected proliferation-related markers, CD71 and Integrin α6β4, onto
magnetic beads and separated three different oral keratinocyte stem cell subpopulations,
suggesting that a magnetic system may be an essential tool in acquiring oral keratinocyte
stem cells for research [105,106].

Yang et al. [107] created a cluster of superparamagnetic nanoparticles that are sensitive
to variations in pH. This cluster separates blood extracellular vehicles (EVs) by specifically
recognizing transferrin and transferrin receptors.

3.8. Biosensors and Bioprobes

The application of magnetic materials in the development of bioprobes and biosensors
offers novel prospects for diagnostic and monitoring applications in dentistry [108]. These
state-of-the-art devices have the potential to identify oral problems in their early stages and
monitor patients’ response to treatment, enabling personalized dental care strategies [109].

Li et al. [110] initially developed composite nanoparticles consisting of carbon dots im-
mobilized on silica (Fe3O4@SiO2@mSiO2-SiCDs) with dual emission properties (Figure 9A).
As the concentration of the nanoparticle solution increases, the distance between the
nanoparticles reduces. This leads to a phenomenon called concentration-mediated scat-
tering, which causes a shift towards longer wavelengths in the fluorescence peaks. The
precise arrangement of the Fe3O4@SiO2@mSiO2-SiCDs nanoparticles and the scattering
phenomena influenced by concentration are crucial factors in the redshift. Li et al. [111]
also developed a fluorescent probe (Figure 9B) that can detect and remove F− ions from the
platform based on the core–shell structure. The minimal detection limit has been reduced
to 65 nM while maintaining a wide linear response range of 1 to 25 µM. The ion adsorption
capacity can reach a maximum of 21.4 mg/g, significantly reducing the concentration of
F− ions in tap water and effectively preventing dental fluorosis.
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Figure 9. (A) Magnetic nanoparticle solution exhibits blue emission at lower concentrations and
yellow-green emission at higher concentrations, which would be a kind of probe design strategy.
Image reproduced with permission from [110]. (B) Fe3O4@mSiO2-SiCDs@DTPA-Ni2+/NCD fluores-
cent probe for fluoride ion detection and removal. Reprinted (adapted) with permission from [111].
Copyright 2021 American Chemical Society.

3.9. Biofilm

Oral biofilms, composed of microbial communities embedded in a matrix of extra-
cellular polymeric substances, play a pivotal role in developing dental caries, periodontal
disease, and other oral infections [1]. These biofilms provide a protective environment for
pathogenic bacteria, facilitating their colonization and persistence in the oral cavity.

Both IONPs and free iron ions possess antibacterial capabilities [1]. The unbound
Fe2+ ion can undergo a reaction with hydrogen peroxide, leading to the formation of
a hydroxyl radical and Fe3+ ion. The reaction between Fe3+ and the superoxide anion
radical (O2

−) further results in the production of molecular oxygen and the restoration
of Fe2+ as the original catalyst [112,113]. In contrast to free ions, IONPs do not have
a substantial detrimental impact on mammalian cells [114]. The antibacterial activities
of IONPs are believed to be linked not only to their oxide form but also to their size,
shape, and other physicochemical characteristics [115]. This approach presents a novel
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strategy for combating oral infections and maintaining oral health. Multiple varieties of
iron oxides have been identified. The two most commonly seen minerals are hematite and
magnetite [1].

The utilization of IONPs offered a novel strategy for treating drug-resistant illnesses
due to their distinct characteristics, such as size, magnetic moment, and surface features
(Figure 10A–E). These nanoparticles engaged with free-floating bacteria and bacteria en-
trenched in a biofilm structure [116,117]. The primary method that nanoparticles use to
exert toxicity against pathogens is by their ability to bind to the cell wall and then rupture
the membrane. This disruption can occur through direct engagement with the membrane
or through the oxidation of macromolecules [118]. Recent results suggest that IONPs are
not harmful to mammalian cells since they may engulf and break down nanoparticles by
lysosomal fusion [118]. These features enable nanoparticles to preserve normal cell function
while simultaneously inhibiting the mechanisms that facilitate pathogen growth and the
development of infections. The features of IONPs control their selectivity in enhancing the
function of tissue-forming cells while simultaneously limiting the growth and viability of
pathogens that cause infections.
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Figure 10. TEM images of C. albicans after 3 h of incubation in the presence of magnetic nanoparticles.
Control (A) and MNPs (B). (C) The illustration of the pathogen separation process by magnetic
nanoparticles. Image reproduced with permission from [116]. The pathogen separation process by
magnetic nanoparticles. Membrane integrity of the PA01 biofilm after hyperthermia using SPIONs.
The biofilm was treated with 20 mg/mL (D) and 60 mg/mL (E) of the SPIOS solution. Image
reproduced with permission from [117]. (F) Chemical interactions and therapeutic activity of the
combined treatment of Fer and SnF2. The black arrow means the binding of exopolysaccharides or
Fer in the oral cavity. Image reproduced with permission from [119].

In preventing and treating oral infections, mainly biofilm-related disorders, magnetic
nanoparticle-based dental materials show effective results in bacteria inhibition. Huang
et al. [119] found that ferumoxytol (Fer) has demonstrated enhanced efficacy in killing and
breaking down caries-causing biofilms, which is achieved through the catalytic activation
of hydrogen peroxide after combining it with stannous fluoride (SnF2) (Figure 10F). The
combination of Fer and SnF2 significantly inhibits the accumulation of biofilms and re-
duces enamel damage more effectively than using either substance alone. Additionally,
it was found that the stability of SnF2 is augmented when combined with Fer in aqueous
solutions, simultaneously boosting the catalytic activity of Fer without the need for any
other substances. Significantly, the combination of Fer and SnF2 demonstrates outstanding
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efficacy in managing dental caries in living organisms, even at concentrations four times
lower than usual, without causing any adverse effects on the host’s tissues or the oral
flora. Their findings demonstrate a robust therapeutic synergy by combining approved
medicines and utilizing easy SnF2 stabilization to prevent a widespread oral illness with
reduced fluoride exposure.

Baskaran et al. [120] used Fe3O4 nanoparticles in the hyperthermia method. By ball
milling, they synthesized nanocomposites consisting of Ce-doped hydroxyapatite (HAP)
with Fe3O4 NPs. The obtained Ce@HAP-Fe3O4 nanocomposites exhibit excellent pathogen
inhibition towards E. coli.

3.10. Robotic Research

Because of their distinctive superstructure assembly and superparamagnetic char-
acteristics, nanoscale iron oxide-based nanostructures are among the most visible metal-
lic nanostructures. They have a lot of promise and are generating a lot of attention in
robotics [121,122].

Oh et al. demonstrated that magnetically guided assemblies of IONPs could rearrange
and adjust themselves to intricate and restricted surfaces using contactless, adjustable
magnetic fields. This technology shows promise in treating biofilms on teeth, the root
canal, and oral mucosal surfaces. IONPs can form a structure resembling a bristle [123].
These bristles can change their length and shape at various scales to interact with different
surfaces. They can quickly vary their shape, length, and stiffness to withstand and apply
strong shear stress. Using automated motion pattern control, these bristles can precisely
target complex three-dimensional shapes of human teeth removed from the body to col-
lect biofilm samples with microscale accuracy. At the same time, they mimic the actions
of toothbrushing and flossing, providing real-time antibacterial activity to achieve both
mechanical and chemical removal of contaminants, as well as the detection of pathogens
from multiple kingdoms. Furthermore, by utilizing programmable algorithms, assemblies
built from nanozyme-based IONPs achieved accurate spatial targeting of mucosal fun-
gal [124] biofilms (Figure 11A) while minimizing harm to the surrounding host tissue, thus
preventing any unintended impacts on non-target areas.

Mayorga-Martinez et al. [125] created magnetic microrobots using halloysite nan-
otubes as a structural framework and Fe3O4 nanoparticles as the magnetic component,
enabling magnetic propulsion (Figure 11B). These microrobots were then coated with
polyethyleneimine to encapsulate ampicillin and inhibit their disassembly. These micro-
robots demonstrate the ability to move in multiple ways, individually and in groups.
Furthermore, they can transition between tumbling and spinning movements, as well as
switch between vortex and ribbon motions while in swarm mode. The vortex motion mode
is employed to infiltrate and disturb the extracellular matrix of S. aureus biofilm that has
colonized on titanium mesh, which enhances the efficacy of antibiotics and decreases the
likelihood of implant rejection during bone regeneration.

Meanwhile, swarming magnetic microrobots made of Fe3O4 and photoactive materi-
als (BiVO4) enclosed in polyethyleneimine micelles demonstrated the successful removal
of dental biofilm on titanium dental implants (Figure 11C). Using a transversal rotating
magnetic field, the Fe3O4 component propels the solution forward, while the photoactive
production of reactive oxygen species in BiVO4 destroys the biofilm colonies. These micro-
robots, which are both photoactive and magnetically propelled, can effectively eliminate
biofilm colonies on titanium implants, showing their potential in the field of precision
medicine [126].
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Figure 11. (A) Individual nanozymes assembled on-site to form catalytically active superstruc-
tures. By manipulating the motion dynamics, shape, and catalytic site of the structured assemblies,
nanozyme microrobots specifically designed to target fungal infection may be produced. Image re-
produced with permission from [124]. (B) Single-phase magnetic Fe3O4-HNT/PEI@Amp microrobot
moving in three different modes: tumbling, spinning, and tumbling again at 1 Hz. It also exhibits
obstacle avoidance. Image reproduced with permission from [125]. (C) Time-lapse microscopy
pictures showing the lines that trace the Fe3O4@PEI/BiVO4 magnetic microrobots swimming in the
steering propulsion mode under a transversal rotating magnetic field. Reprinted (adapted) with
permission from [126]. Copyright 2022 American Chemical Society.

3.11. Dental Filling

Craciunescu et al. [127] created new magnetic dental composite materials using mag-
netic nanoparticles. The composites were synthesized utilizing a preparation procedure
involving a series of integrated reaction steps performed sequentially, as previously estab-
lished. It has been demonstrated that each component of dental procedures provides certain
advantages. Fe3O4 nanoparticles possess biocompatible and non-toxic characteristics, as
well as antibacterial capabilities. The inclusion of a SiO2 layer dramatically enhances the
material’s mechanical strength. Furthermore, a Ca(OH)2 layer significantly enhances the
color of the dental composite material and encourages local calcification. Through the use
of magnetic properties, a new technique for treating the tooth surface while exposed to an
external magnetic field may be established. Compared to standard methods, this method
significantly reduces microfractures and prevents dental cavities beneath filling materials.
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4. Potential Toxicity of Magnetic Particles

Ongoing studies and concerns revolve around the possible toxicity of magnetic parti-
cles, especially those employed in biomedical applications [128,129]. It is crucial to assess
their biocompatibility and safety thoroughly.

One primary aspect of magnetic particle toxicity is its ability to break down in the
body, releasing potentially harmful degradation products. Certain nanoparticles can induce
adverse effects in plants, cell lines, and animal models [129]. These effects include ulcera-
tion, inflammation, reduced growth rate and viability, and neurobehavioral changes [129].
Research has demonstrated that specific categories of magnetic particles, especially those
with responsive surfaces or coatings, can produce reactive oxygen species (ROS) when they
come into contact with biological surroundings. ROS can induce cellular damage and elicit
inflammatory reactions, presenting potential hazards to overall health [130].

The toxicity profile of nanoparticles can be influenced by various physical parameters,
including particle size and the surface-to-volume ratio. Smaller particles can cause toxicity
issues more quickly because of increased cellular absorption and negative effects [93]. The
high surface-to-volume ratio of nanoparticles, which is central to their functionality, also
contributes to their reactivity and potential toxicity [131,132].

The chemical composition, coating, and dosage of magnetic particles are also the key
factors influencing their biocompatibility and toxicity. Hydrophobic-modified particles, for
example, may penetrate cells more easily, potentially causing more significant biological
disruption [133]. Recent studies highlight the importance of surface coatings in mitigating
toxicity. For example, coating magnetic nanoparticles with biocompatible materials, like
polyethylene glycol (PEG) or dextran, can reduce their immunogenicity and enhance
their biocompatibility [134,135]. Moreover, functionalizing magnetic nanoparticles with
targeting ligands can improve their specificity for certain tissues or cells [136,137] and
might have off-target effects.

Organ-specific toxicity is another critical problem, as different tissues and organs may
react differently to the presence of magnetic particles [138]. The liver and spleen, which are
primary sites for nanoparticle accumulation, are particularly susceptible to potential toxic
effects. Ensuring that magnetic particles can be safely disintegrated and excreted from the
body is vital to minimizing long-term toxicity risks.

In summary, while magnetic particles offer exciting possibilities for medical applica-
tions, their potential toxicity must be carefully evaluated. Comprehensive studies on their
interaction with biological systems and degradation behavior, and long-term effects are
essential for advancing the safe and effective use of magnetic particles in healthcare. Future
research should focus on optimizing particle design, including surface modifications and
functionalization strategies, to minimize adverse effects while maximizing therapeutic
benefits. Moreover, conducting thorough research on the future implications and possible
buildup of magnetic particles within the human body is crucial. Although the body’s
natural clearance processes may remove magnetic particles employed for short-term appli-
cations, there are worries about their long-term persistence and potential accumulation in
tissues. This buildup could result in undesirable effects or unforeseen consequences.

5. Magnets in Dental Clinical Practice
5.1. Magnetic Orthodontic Devices

Magnetic orthodontic devices represent a revolutionary approach in orthodontics,
offering alternatives to traditional braces and aligners. These innovative devices harness
the power of magnets to facilitate tooth movement, providing patients with a more efficient,
comfortable, and aesthetically pleasing orthodontic experience. With a growing demand
for orthodontic treatments that are less invasive and more patient friendly, magnetic
orthodontic devices have emerged as a compelling solution, garnering increasing attention
from both practitioners and patients alike [26] (Figure 12A–C).
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Figure 12. (A) Canines can be moved distally by magnetic force. Image reproduced with permission
from [139]. Application of attraction (blue arrows) and repulsion force to the moderate crowding case
in ex vivo. (B) Typodont model of a moderate crowding case, including teeth #6–11. (C) Magnets
setting for attraction and repulsion force. Image reproduced with permission from [26]. (D,E) Fifteen
days after implant, the cortical compartment in magnetic field implants. Nearly the whole thickness
of the cortical bone is covered by new bone that originates in the medullary region, and it continues
to grow into the cortical peri-implant bone area. Image reproduced with permission from [24].
(F) Twelve months after starting magnetic abutment loading, the postoperative follow-up radiograph
shows no pathologic symptoms and no peri-implant bone loss. Image reproduced with permission
from [140].

Unlike conventional braces that rely on wires and brackets to apply force to teeth, mag-
netic orthodontic brackets utilize untouchable magnetism to guide tooth alignment. These
fixed magnetic brackets reduced operation times, minimized discomfort, and improved
oral hygiene maintenance [139]. In the typodont model, the magnet’s placement played a
crucial role in generating tipping or physical motion. While tipping forces are produced
with lever force with a fulcrum—the level of the paraffin wax in our ex vivo investigation
or the level of the alveolar bone in orthodontics—body movement is produced with linear
force. When the magnetic force is applied more incisively, the lever force’s distance from
the fulcrum increases with a larger torque/rotation force ratio for the same power applied.
The converse happens when the magnetic force is moved more apically with a decrease in
tipping force and an increase in linear force for body movement. Additionally, magnetic
orthodontic devices present a discreet option for patients seeking orthodontic correction
without the conspicuous appearance of traditional braces [141,142].

Advancements in materials science, engineering, and orthodontic technology have
fueled the development of magnetic orthodontic devices [139]. Innovations in magnet
design also come to the functional appliance. Han et al. [143] designed a Class III functional
appliance to evaluate and compare the cellular morphologic changes and proliferating cell
nuclear antigen (PCNA) expression within craniofacial sutures in growing Rhesus monkeys.
During Class III treatment, pterygopalatine and zygomaticomaxillary sutures are more
active than other craniofacial sutures in craniofacial complex remodeling. The magnetic
twin-block appliance effectively promoted suture remodeling by enhancing the activity
and proliferation of osteoblasts, osteoclasts, and fibroblasts, especially in the early phase.
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Zhao et al. [144] prepared a novel effective magnetic orthopedic appliance (MOA-III) for
skeletal class III children. After treatment, the maxilla rotated downward and forward
simultaneously. The lingual compensation of the lower incisors was the most notable
alteration in the jaw. The jaw moved backward and downward at the same time, although
there were no appreciable alterations in the mandible’s overall length. The lower lip
returned backward, and the upper lip migrated forward for the soft tissue measurement.

Overall, magnetic orthodontic devices hold promise for addressing specific challenges
encountered in conventional orthodontic treatments, such as difficult-to-correct malocclu-
sions or relapse cases. Their ability to apply controlled magnetic forces to guide teeth into
desired positions offers orthodontists greater flexibility and precision in treatment planning
and execution.

5.2. Magnetic Implants and Prosthetics

Magnetic implants and prosthetics represent a groundbreaking advancement in den-
tistry, offering innovative solutions for patients requiring dental restoration or rehabilitation
due to their remarkable biocompatibility and integration capabilities with surrounding
tissues. These sophisticated devices also harness the power of magnetic materials to en-
hance stability, functionality, and patient comfort, revolutionizing the landscape of dental
implants and prosthetic treatments.

Neodymium–iron–boron (Nd-Fe-B) and samarium–cobalt (Sm-Co) are the commonly
employed magnetic materials that serve as the cornerstone or attachment for these pros-
thetic devices, providing unparalleled strength, durability, and resistance to corrosion.
This enables the creation of dental implants that seamlessly fuse with the jawbone, offer-
ing patients a stable and long-lasting foundation for prosthetic restorations [23–25]. In
magnetic dental abutments [140] (Figure 12D–F) and magnetically implantable prosthetic
devices [145], where magnetic composites are used to generate an adequate magnetic field
to promote effect bone healing. Magnetic mucoperiosteal distraction devices [146] have
been used in newborns with complete unilateral and bilateral orofacial clefts.

Akin, H., et al. [147] also studied the effectiveness and the corrosion tendency of differ-
ent magnetic attachment systems in the oral cavity. Compared to the open-field systems, the
closed-field systems showed a stronger attractive force. A statistically significant difference
in the attractive force was observed between the Nd-Fe-B and Sm-Co magnets. The Hilop
system produced the most attractive force, whereas the Steco system produced the lowest
force. Together with enhanced technology, the latest generation of Nd-Fe-B closed-field
magnets offers adequate denture retention for clinical use.

One of the critical advantages of magnetic implants and prosthetics lies in their
ability to facilitate osseointegration, the process by which the implant integrates with
the surrounding bone tissue. By promoting osseointegration, magnetic implants ensure
optimal stability and functionality, minimizing the risk of implant failure and enhancing
patient satisfaction. Siadat et al. [25] evaluate the effects of static magnetic fields (SMFs) on
the implants immediately placed in fresh extraction sockets. Radiofrequency analysis (RFA)
measurements showed significantly higher stability for implants in the test group than that
of the control group after 1 month. In month 2, less crystal bone loss was observed in the
test group.

Moreover, magnetic implants and prosthetics offer versatility in addressing diverse
clinical scenarios, ranging from single-tooth replacements to full-arch restorations. Their
customizable design allows for precise tailoring to each patient’s unique anatomical and
functional requirements, ensuring optimal aesthetics and functionality.

6. Future Prospects

The application of magnetic materials in dentistry is an evolving field that promises
significant advancements in both diagnostic and therapeutic techniques. As the under-
standing of magnetic materials and their interactions with biological tissues deepens, new
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avenues for enhancing dental care are emerging. Here, we explore the potential future
directions for the research and application of magnetic materials in dentistry.

6.1. Dental Research Aspects

Future diagnostic research could focus on refining MRI techniques to achieve higher-
resolution images of dental structures, aiding in the early detection of dental patholo-
gies such as temporomandibular joint disorders, periodontal diseases, and dental caries.
Enhanced MRI protocols specifically tailored for dental applications could provide non-
invasive, precise diagnostic capabilities, improving patient outcomes.

Magnetic particles also offer a promising therapeutic platform for targeted drug
delivery. Future studies could explore the functionalization of magnetic particles with
various therapeutic agents, including antibiotics, anti-inflammatory drugs, and growth
factors, to target specific dental tissues. The use of external magnetic fields to direct these
nanoparticles precisely to the site of infection or injury could minimize side effects and
enhance therapeutic efficacy. Research could also investigate the development of smart
drug delivery systems that respond to specific stimuli, such as pH changes or the presence
of certain enzymes, to release drugs in a controlled manner.

The field of regenerative dentistry could greatly benefit from the integration of mag-
netic materials. Magnetic scaffolds, for example, can be engineered to support the growth
and differentiation of stem cells into dental tissues. Future research might focus on optimiz-
ing these scaffolds for better integration with natural dental structures and enhancing their
mechanical properties. Additionally, the use of magnetic fields to stimulate cellular activi-
ties and tissue regeneration presents an exciting area for further exploration, potentially
leading to breakthroughs in repairing and regenerating damaged dental tissues.

However, the research on magnetic particles in the diagnosis and treatment of oral
diseases is still in its early stages, and there is some controversy about their effect and
toxicity on cells. Lots of scholars have shown that magnetic particles themselves can
promote cell differentiation. For example, FERAHEME® (Ferumoxytol) has received a
significant amount of attention due to its FDA-cleared status for use in humans. Some
scholars believe that magnetic nanomaterials may cause damage to cells and may stimulate
cells to produce reactive oxygen free radicals that damage cell membranes, DNA, and
proteins by activating cysteine proteases, causing cell apoptosis. Therefore, further basic
research on the mechanism and application of magnetic particles is needed. Strict biosafety
assessment is one of the keys to the application of magnetic particles in the treatment of
oral diseases.

6.2. Dental Clinical Aspects

In orthodontics, magnetic forces are already used to facilitate tooth movement. Future
advancements could lead to the development of more sophisticated magnetic devices that
offer greater control and efficiency in orthodontic treatments. Similarly, in prosthodontics
and implants, the use of magnetic attachments for dentures and implants could be refined
to provide better stability and comfort for patients. Continued interdisciplinary innova-
tion will be key to realizing these advancements and integrating magnetic materials into
everyday dental practice.

7. Conclusions

Integrating magnetic materials into dentistry represents a significant advancement
with far-reaching implications for diagnosis, treatment, and patient care. By exploring
magnetic particles and magnets, this review has underscored the diverse applications and
potential benefits of magnetic materials in dental healthcare. Magnetic particles offer precise
targeting and delivery of therapeutic agents, facilitating improved treatment outcomes
while minimizing adverse effects. Their versatility in drug delivery, imaging, and diagnostic
assays holds promise for revolutionizing dental therapeutics and diagnostics. Similarly,
magnets’ remarkable strength and field density make them invaluable components in
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various dental applications, including implants and orthodontic treatments. Their ability
to facilitate tissue engineering and tooth movement enhances clinical outcomes and patient
experiences. By synthesizing the latest research and clinical insights, this review highlights
the transformative potential of magnetic materials in dentistry. Continuing research and
innovation in this field will be instrumental in advancing dental healthcare and improving
patient outcomes. Embracing the opportunities afforded by magnetic materials promises to
usher in a new era of precision dentistry characterized by enhanced efficacy, safety, and
patient satisfaction.
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