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Abstract: A theoretical study, based on ab initio electronic structure calculation, is per-
formed in a group of 16 pentacoordinate Dy-SIMs. Theoretical results provide a reasonable
explanation of the observed SMM performance based on a concise criterion, i.e., the co-
existence of long τQTM and high Ueff. To have the desired electronic structure favoring good
SMM performance, the contribution from the equatorial coordinating atoms might be even
more important than that from the axial coordinating atoms. Widening the axial ∠O–Dy–O
might be a probable way to improve the SMM performance of pentacoordinated Dy-SIMs.
Starting from existing systems, a rigid-scan type exploration indicates the possibility of
Ueff higher than 1600 K.

Keywords: single-molecule magnets; ab initio calculation; crystal field analysis; axial
bond angle

1. Introduction
Single-molecule magnets (SMMs) refer to a type of molecular systems displaying

magnet behavior at the unimolecular level [1–11]. Because of their potential to retain
magnetic information in one single molecule, SMMs have gained widespread attention from
researchers, especially in the field of ultra-high-density storage of data [4–9]. Compared to
hard-disk drives, the information storage density using SMMs can reach to 300 Tbit in−2,
which is up to 100 times higher [4,7]. Thus SMM could be the components in future
revolutionary micro-electronic devices.

As research progresses, people have discovered the importance of lanthanide single-
molecule magnets (Ln-SMMs) especially the mononuclear structures which are also called
as lanthanide single-ion magnets (Ln-SIMs). Actually, many recent breakthroughs in the
field of SMM are provided by Ln-SIMs [12–24]. However, a practical application of SMMs
is still out of reach. As one important figure of merit of SMM, the blocking temperature
(TB) means the highest temperature to observe blocked magnetization of a sample. Until
now, the record TB values of SMMs have been within 60–80 K [10,18–21]. Although they
exceed the boiling point of liquid nitrogen, these records still remain far below room
temperature. Thus, enhancing the performance, e.g., increasing TB, is one central task in
the current stage of SMM.

It is well known that the coordination environment dictates the performance of SMMs,
especially in the case of Ln-SIMs. Recently reducing the coordination number (CN) has
been suggested to be an effective strategy for enhancing the performance of Ln-SIMs [25].
This is because a low coordination environment can lead to high magnetic axiality, which
is crucial for maintaining a preferred orientation of magnetic moment to achieve a long
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relaxation time. Actually, the record-holding dysprosocenium SIMs just adopt sandwiched
structures presenting effective/pseudo two coordination of the central ion.

However, the SMM performances of most synthesized low CN Ln-SIMs are apparently
inferior to those of dysprosocenium systems. Thus, the potential of low CN structures as
high-performance SMMs has not been amply realized. The search for low CN Ln-SIMs
with good SMM performance needs rational guidance, especially from theoretical studies.

Recently, the SMM performance of a group of typical low CN Ln-SIMs, i.e., tetra-
coordinated structures, has been well interpreted via the ab initio electronic structure
calculation [26–44]. A theoretical study also indicated possible routes to improve the SMM
performance and then pointed out the structures holding the possibility of TB higher than
50 K for tetracoordinated Ln-SIMs [39].

Encouraged by its capability, ab initio electronic structure calculation is carried out
here in another typical type of low CN Ln-SIMs, i.e., the pentacoordinate complexes
synthesized in recent years [45–49]. Here, we selected 16 structures as the objects of this
study. For the symmetry of these 16 structures, 1Dy to 12Dy are close to D4d, and 13Dy
to 16Dy are close to D3d. In addition to interpreting the reported systems, this work also
tries to give suggestions for improving the SMM performance and to predict possible
improvements (Figure 1).
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Figure 1. The structures of all SMMs involved in the study.
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2. Theoretical Background and Computational Details
The microscopic mechanism underlying the SMM behavior is the magnetic relaxation

at the molecular level. Due to the co-existence of several relaxation pathways, a compre-
hensive magnetic relaxation treatment needs to include the characteristics of the electronic
and vibrational states, the coupling between them and the interaction between the system
and the environment. Sophisticated methods to accomplish this task have been proposed
by several groups [50–52]. However, for this type of method, huge computational cost is
hardly avoidable.

Recently, a concise criterion for good SMM has been proposed to be the co-existence of
long quantum tunneling of magnetization (QTM) time τQTM and a high effective barrier of
magnetic reversal Ueff [39–43]. For Ln-SIMs, both τQTM and Ueff can be obtained from one
single ab initio calculation for a given system. Thus, the application of this criterion is easy
for a large number of Ln-SIMs due to its low computational cost [53–55]. The reliability
of this criterion has been verified in structurally similar systems, e.g., tetracoordinated
Ln-SIMs and square antiprism ones [39,40].
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The systems studied here are all Kramers SIMs of which the zero-field QTM rate τ−1
QTM,

i.e., the reciprocal of τQTM, is calculated by Equation (1). β and h in Equation (1) are the
Bohr magneton and Planck constant, respectively. The principal g-factors, i.e., gX-Z, of the
ground Kramers doublet (KD) in Equation (1) are obtained from ab initio calculation. Bave

in Equation (1) is the averaged strength of the internal magnetic field which is empirically
estimated as 20 milli Tesla (mT) here. The reliability of this selection has been proved in our
previous works [39,41,42]. For field-induced systems, another parameter xaniso, describing
the anisotropy of the magnetic field, is needed as shown in Equations (2) and (3). Here, the
applied direct current (DC) field is assumed to be added in the Z principal direction. In this
case, BX = BY = 20 mT and BZ is the sum of 20 mT and the applied DC field in experiment.

Ueff(T) = ∑
i

τ−1,eff
QTM,i(T)

N
Ei (4)

N = ∑
i

τ−1,eff
QTM,i(T) (5)

Ueff could be calculated as a weighted sum of energies of both ground and excited KDs
(Equation (4)) [41,42]. The normalization factor N is the sum of the effective QTM rates of all
the involved KDs (Equation (5)). The effective rate of the ith KD (Equation (6)) depends on its
principal g-factors (Equation (7)) and the Boltzmann population (Equation (8)).

In this work, theoretical predictions of QTM time via Equations (1)–(3) and effective
barrier via Equations (4)–(5) are labeled as τZee

QTM and UZee
eff respectively. The corresponding

experimental results are labeled as τ
exp
QTM and Uexp

eff respectively.

τQTM,i
−1(T) ∝

exp(−Ei/kBT)
Z

τ−1,eff
QTM,i (6)
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i

exp(−Ei/kBT) (8)

The ab initio calculations in this work consist of two steps: first, a set of spin eigenstates
are obtained via the state-averaged complete active space self-consistent field method
(SA-CASSCF) [56]; then, the final states, i.e., KDs here, are obtained via state interaction
which diagonalizes the spin-orbit-coupling (SOC) matrix under the basis of spin eigenstates
from the first step.

A free academic version of MOLCAS 8.0 was used to perform ab initio calculation [57].
The active space consisted of 9 electrons in 7 orbitals and 21 spin sextets were included
in the SA-CASSCF step [39–43]. The scalar relativistic effect was accounted via DKH2
transformation. Then, state interaction was performed via the RASSI-SO module [58],
with the SOC integrals from the AMFI method [59]. We choose the ANO-RCC relativistic
basis set [60,61], including VQZP for Dy, VDZP for C, VDZ for H and VTZP for the others.
The SINGLE_ANISO module was used to gain the g-factors and other magnetic parame-
ters [62,63]. The numerical results of the ab initio calculation are included in Tables S1~S16.

3. Results and Discussion
3.1. The Comparison Between Theoretical Predictions and Experimental Results

The most quoted evidence for SMM characteristics is the temperature- or frequency-
dependence of the imaginary part of the alternating-current (AC) magnetic susceptibility,
especially a peak. The highest temperature to observe such a peak is labeled as TAC here.
TAC only represents the short-term magnetic memory effect and thus is less conceptually
sound than a magnetic hysteresis loop or zero-field cooled susceptibility. However, TAC is
available for most SMMs, including all the Dy-SIMs studied here. In comparison, neither
magnetic hysteresis nor zero-field cooled susceptibility holds such an availability. TAC has
been used to quantify TB for a lot of SMMs [9]. Our recent works have also verified the
capability of TAC as a common measurement of SMM performance [42,64]. Thus, TAC at
1000 Hz is utilized here.

As shown in Figure 2, higher TAC is generally located at a position closer to the lower
right corner of the plane defined by τQTM and Ueff. This corner just corresponds to both
the longest τQTM and the highest Ueff. 1Dy, which holds the highest TAC here, has both the
longest τQTM and the highest Ueff according to either theoretical prediction or experimental
results (Table 1). Thus, the co-existence of longer τQTM and higher Ueff does correspond
to better SMM performance in the pentacoordinated Ln-SIMs. The proposed criterion
also works here.

Formally, this criterion only includes the QTM and thermally-activated (TA) pathways,
i.e., Orbach and TA-QTM, but neglects Raman pathway. Thus, in principle, it is only
necessary rather than sufficient. However, one recent in-depth statistical analysis has
indicated the existence of a correlation between Ueff and Raman parameters, especially in
high Ueff cases [9]. Thus, when applying the criterion, the effect of the Raman pathway
might be accounted implicitly. Also, in structurally similar systems, the effect of the Raman
pathway might not vary sharply [39,40].
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Table 1. The experiment values and theoretical predictions of τQTM (s) and Ueff (K).

Refcode τ
exp
QTM τZee

QTM Uexp
eff UZee

eff /UKD
eff TAC

a

1Dy LEVLEH 1.43 2.49 1780 1776/1856 95
2Dy XUWDAX 1.26 × 10−1 2.62 × 10−1 1201 1350/1282 64
3Dy XUWCUQ 3.98 × 10−2 1.35 × 10−1 1210 1315/1239 64
4Dy XUWCOK 1.00 × 10−1 5.42 × 10−2 1262 1249/1173 64
5Dy ENACOO N/A b 7.41 × 10−1 1176 1236/999 60
6Dy ENACII N/A 1.51 905 1035/964 49
7Dy ENACUU 2.02 × 10−2 8.77 × 10−1 872 1014/951 41
8Dy ENABON 3.02 × 10−2 2.77 773 981/801 50
9Dy ZESGAJ 3.68 × 10−1 2.56 × 10−1 622 859/731 45

10Dy E.NACAA 7.45 × 10−3 2.51 × 10−1 601 745/684 40
11Dy ENACEE 3.35 × 10−3 5.75 × 10−3 378 633/374 33
12Dy ENABIH 6.11 × 10−4 1.25 × 10−3 160 738/422 22
13Dy DEYRIO N/A 2.12 × 10−6 36 328/230 6
14Dy FEYREK N/A 1.53 × 10−6 19 250/124 5
15Dy DEYRIO N/A 8.00 × 10−7 N/A 245/0 6
16Dy FEYRAG 4.03 × 10−4 1.19 × 10−8 N/A 160/0 6

a The highest AC frequency is usually 1000 Hz, the exception is 9Dy (1488 Hz). b Data were not provided
by experiments.

As shown in Figure 3, the order of either τZee
QTM or UZee

eff is generally consistent to that
of the corresponding experimental τ

exp
QTM and Uexp

eff respectively. With only one exception
of 16Dy, the deviations in τZee

QTM are all less than two orders of magnitude (Figure 3a). For
the SIMs holding the first four longest τ

exp
QTM here, i.e., 1Dy–4Dy, the deviations in τZee

QTM
are all less than one order of magnitude. It needs to indicate that even the theoretical
results from those sophisticated methods may still bear deviations of one or two orders
of magnitude [53]. The large deviation in τZee

QTM of field-induced 16Dy might be attributed
to the difficulty of obtaining accurate xaniso [43]. As a vector field, magnetic fields have
different sources, e.g., dipolar interaction with other electronic magnetic moment in the
sample and hyperfine interaction due to nuclear spin [43]. Thus, the anisotropy of a
magnetic field depends on both the electronic and nuclear contributions.
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(b) UZee
eff vs. Uexp

eff .

In the aspect of effective barrier, we do find some large discrepancies between theo-
retical UZee

eff and experimental Uexp
eff , i.e., 11Dy–16Dy. Their TAC values are around 20 K or

apparently lower (5~6 K) while other Ln-SIMs have TAC values lying within the range of
40~95 K. Therefore, those large discrepancies mainly occur in systems holding inferior SMM
performance as represented by low TAC. In these inferior systems, pure dominance of the
Orbach pathway is hardly possible and other pathways strongly drive the fitted Uexp

eff away
from having a solid physical meaning [40]. Thus, in these systems, Uexp

eff becomes closer to
a purely phenomenological parameter and UZee

eff is not obligated to be close to it [40].
Besides UZee

eff , we can also calculate Ueff as the energy of a given excited KD, identified
as the most probable one wherein magnetic reversal takes place. This theoretical Ueff is
labeled as UKD

eff here after (Table S17 and Figure S1). As shown in Figure 4b, these two types
of theoretical barrier are generally consistent with each other. They both identify that the
barrier of 1Dy is clearly higher than those of all the others.
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3.2. Mechanisms of Magnetic Relaxation

According to Equation (4), UZee
eff can be decomposed into contributions from various

KDs(Figure 5). This decomposition is capable of providing some mechanistic information
about the magnetic relaxation. Since UZee

eff varies with the temperature value used in the
calculation, two cases are analyzed for one Ln-SIM: the saturated case and the reproducing
case [64]. The saturated case refers to the result when UZee

eff becomes a saturated value which
is obtained by using 300 K in Equation (4). The reproducing case refers to the result when
UZee

eff exactly reproduces Uexp
eff with a special temperature value Trep used in Equation (4). It

needs to be clarified that there is no direct relationship between Trep and TB in principle.
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As shown in Table 2, the most important KDs of the saturated UZee
eff of 1Dy are KD5

and KD6, of which the sum contribution is 91%. These two KDs remain to be the most
important ones (68%) in the reproducing case while KD4 (16%) also plays a role. Thus,
the most important KDs of Ueff of 1Dy are some highly excited ones which do not change
heavily between the saturated case and the reproducing case. The contributions from the
ground and other lower excited KDs are negligible. These results suggest that, in 1Dy, the
slow thermally-activated relaxation, proceeding mainly via KD5 and KD6, is important
while the ground KD QTM is not efficient. This is consistent to the long τQTM and high
Ueff and TAC of 1Dy. Similar results occur in 2Dy–5Dy.

Table 2. The contributions of various KDs to Ueff in the saturated and reproducing cases.

Saturated Case Reproducing Case Trep

1Dy KD5 + KD6 (91%) KD5 + KD6 (68%), KD4 (16%) 100 a

2Dy KD3 + KD4 (97%) KD4 + KD3 (82%) 79

3Dy KD3 + KD4 (95%) KD3 + KD4 (77%), KD2 (21%) 86

4Dy KD3 + KD4 (96%) KD3 + KD4 (86%) 90 a

5Dy KD4 + KD5 + KD6 (79%) KD4 + KD5 + KD6 (75%), KD3 (15%) 160

6Dy KD3 (38%) + KD5 (36%) + KD4 (18%) KD3 (47%) + KD0 (28%) + KD2 (11%) 49

7Dy KD4 (53%) + KD5 (28%) + KD6 (16%) KD4 (62%) + KD1 (9%) + KD5 (8%) 56

8Dy KD3 (42%) + KD5 (38%) + KD4 (12%) KD3 (52%) + KD2 (19%) + KD0 (13%) 48

9Dy KD5 (40%) + KD3 (38%) + KD2 (15%) KD2 (48%) + KD3 (25%) + KD0 (18%) 44

10Dy KD2 (46%) + KD3 (35%) + KD4 (18%) KD2 (71%) + KD0 (15%) + KD3 (12%) 38

11Dy KD3 (53%) + KD2 (43%) KD2 (54%) + KD0 (25%) + KD3 (12%) 40

12Dy KD3 (52%) + KD2 (16%) + KD7 (12%) KD0 (74%) + KD3 (13%) 42

13Dy KD2 (48%) + KD1 (39%) + KD3 (10%) KD0 (83%) + KD1 (16%) 31

14Dy KD3 (66%) + KD4 (14%) KD0 (86%) + KD1 (13%) 23

15Dy KD1 (70%) + KD2 (21%) N/A b N/A

16Dy KD1 (44%) + KD2 (30%) + KD0 (16%) N/A N/A
a In these cases, the saturated theoretical barrier is still a little bit lower than the experimentally fitted
one. Thus, Trep in these cases is taken as the temperature at 2/3 position of region II. b Uexp

eff were not
provided by experiments.
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For other Ln-SIMs’ Ueff, the contributions from the lower excited KDs and even the
ground KD0 are more important. In some reproducing cases, i.e., 12Dy–14Dy, KD0 even
becomes the most important one. These results support a smaller contribution from slow
thermally activated relaxation and a larger contribution from fast ground KD QTM. This
is consistent with their inferior SMM performance as represented by lower TAC when
compared to 1Dy–5Dy.

3.3. Crystal-Field Analysis and Theoretical Magneto-Structural Correlation

Since 20 mT Bave is used for most Ln-SIMs here, their SMM performance ought to be
mainly dictated by the principal g-factors and energies of the KDs. These are all determined
by the electronic structure. The crystal field (CF) Hamiltonian (Equation (9)) is a suitable
theoretical tool for interpreting the electronic structure of Ln-SIMs. Since Oq

k are common
operators, the electronic structure characteristics arise solely from the CF parameter (CFP)
Bq

k [11,30,41,65].
Accurate CFPs could be extracted from ab initio results via irreducible tensor operator

(ITO). The point charge electrostatic model (PCEM) can also help to give a rough estimate
of CFPs as a sum of contributions from the coordinating atoms (Equation (10)) [65]. Zeff

and Rj in Equation (10) are the effective charge and distance to the central ion of a given
coordinating atom j respectively. Yq

k is the spherical harmonic function of which the
variables are azimuthal coordinates θj and ϕj of the coordinating atoms.

ĤCF = ∑
k=2,4,6

k

∑
q=−k

Bq
kÔq

k(
→̂
J ) (9)

∣∣∣Bq
k

∣∣∣ ∼ ligand

∑
j

 Zeff,j

Rk+1
j

Yq
k (θj, ϕj)

 (10)

It must be clarified that Equation (10) only provides a rough estimate of the relative
magnitude of CFPs rather than the actual value. The PCEM estimate does not even have
the unit of energy. It also neglects the covalent contribution which has been shown to be
capable of playing an important role recently [66,67]. However, there are some advantages
of the PCEM estimate. First, as it is related to the position and charge of the coordinating
atoms, it is chemically intuitive [39–41]. Second, it can help measuring the importance of
different coordinating atoms since it is a sum of atomic contributions.

In principle, CFPs up to at least k = 6 need to be included. However, recent works have
indicated that 2nd-rank CFPs, especially the diagonal term B0

2, can be the leading ones to
give a reasonable explanation by themselves [64]. All the ITO B0

2 are negative and hence
we only need to discuss their magnitude, as indicated by their absolute values |B0

2|.
As shown in Figure 6, a larger |B0

2| usually corresponds to higher TAC or Ueff. The
best SMM here, 1Dy (TAC = 95 K), holds the largest |B0

2| (Table S18). 2Dy–4Dy also
have a high TAC (86 K) and their |B0

2| values, are slightly smaller than that of 1Dy but
clearly larger than all the others. Although being less accurate, the PCEM estimate also
captures the general trend (Figure 6 and Table S18) and thus subsequent PCEM analysis
should be reliable.
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Based on their positions with respect to the magnetic easy axis, the coordinating atoms
could be divided into two types: the axial ones lying close to the easy axis and the equatorial
ones perpendicular to the easy axis (Table S20) [65]. PCEM suggests that the contribution
from axial atoms tends to increase |B0

2| while that from equatorial atoms is destructive.
1Dy holds the largest PCEM estimate of |B0

2| but its contribution from the two axial
atoms is even smaller than that of 2Dy (Table S20). Interestingly the amount of destructive
contribution from the equatorial atoms of 1Dy (−4.45 × 10−3) is clearly smaller than that
of 2Dy (−5.39 × 10−3). This smaller destructive contribution is one important reason for
the largest PCEM estimate of |B0

2| of 1Dy. Although 3Dy has the largest constructive con-
tribution to|B0

2| from the axial coordinating atoms (Table S20), its destructive contribution
from equatorial atoms is also larger than that of 1Dy. Thus, the eventual |B0

2| of 3Dy is
smaller than that of 1Dy.

For the Dy-SIMs studied here, the bond angle between the central Ln ion and two
axial atoms is around 150◦. A previous study of tetracoordinated Ln-SIMs has indicated
that widening this angle can improve the SMM performance significantly [39]. Linear
or quasi-linear O–Dy–O arrangement will facilitate the generation of high magnetic ax-
iality due to the oblate shape of the electron density of the ground state of the cen-
tral DyIII ion. This widening might be made possible by applying pressure [68]. The
two axial O atoms of 1Dy come from the same bidentate ligand HL (2-((2,6-dibenzhydryl-
4-isopropylphenylimino)methyl)-4,6-di-tret-butylphenol) and thus widening of the axial
bond angle is probably restricted there. Consequently, we chose to explore 2Dy and 5Dy
wherein only monodentate ligands were involved. This exploration was performed in a
rigid-scan way wherein only the axial bond angle is varied. Clearly this rigid-scan explo-
ration has limited precision, and the results only provide some possibility. However, the
capability of rigid-scan has already been verified in our recent work on Ln-SIMs [39].

As show in Figure 7, widening ∠O–Dy–O up to 180◦ can lead to an increase in τQTM

by one order of magnitude, i.e., from around 0.25 s to around 2.75 s. Meanwhile, Ueff also
experiences a sharp increase by about 600 K, from ~1300 K (150◦) to ~1900 K (180◦). For
5Dy, there is no significant change in τQTM with widening ∠O–Dy–O. Meanwhile, Ueff

increases by about 400 K from around 1200 K (150◦) to around 1600 K (180◦). Thus, starting
from the reported pentacoordiated Ln-SIMs, widening the axial bond angle might be a
probable way to improve the SMM performance.
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4. Conclusions
A theoretical study, based on ab initio electronic structure calculation, was carried out

in a group of 16 pentacoordinate Dy-SIMs. The experimentally observed SMM performance
is well explained by a concise criterion, i.e., the co-existence of τQTM and Ueff.

Crystal field analysis indicated that 2nd-rank CFPs, especially the diagonal term
B0

2, are the leading ones to generate the desired electronic structure favoring good SMM
performance. To have the needed CFPs, the contribution from the equatorial coordinating
atoms might be even more important than that from the axial coordinating atoms.

Widening the axial bond angle between the central Ln ion and two axial atoms might
be a probable way to improve the SMM performance of pentacoordinated Ln-SIMs. Starting
from existing systems, a rigid-scan type exploration indicates the possibility of Ueff higher
than 1600 K.
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