Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins
Abstract
:1. Introduction
2. Paramagnetic NMR
3. Iron–Sulfur Proteins: From Electron Transfer to Cluster Biogenesis
4. New Experiments in NMR of Paramagnetic Molecules and Their Applications to Iron–Sulfur Proteins
5. Paramagnetism-Based NMR Solution Structure: Are Solution Structure Boring?
6. Conclusions
Funding
Conflicts of Interest
References
- Banci, L.; Bertini, I.; Eltis, L.D.; Felli, I.C.; Kastrau, D.H.W.; Luchinat, C.; Piccioli, M.; Pierattelli, R.; Smith, M. The three dimensional structure in solution of the paramagnetic protein high-potential iron-sulfur protein I from Ectothiorhodospira halophila through nuclear magnetic resonance. Eur. J. Biochem. 1994, 225, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Piccioli, M.; Turano, P. Transient iron coordination sites in proteins: Exploiting the dual nature of paramagnetic NMR. Coord. Chem. Rev. 2015, 284, 313–328. [Google Scholar] [CrossRef]
- Louro, R.O.; Correia, I.J.; Brennan, L.; Coutinho, I.B.; Xavier, V.A.; Turner, L.D. Electronic structure of low-spin ferric porphyrins: 13C NMR studies of the influence of axial ligand orientation. J. Am. Chem. Soc. 1998, 120, 13240–13247. [Google Scholar] [CrossRef]
- Turner, D.L.; Brennan, L.; Chamberlin, S.G.; Louro, R.O.; Xavier, A.V. Determination of solution structures of paramagnetic proteins by NMR. Eur. Biophys. J. 1998, 27, 367–375. [Google Scholar] [CrossRef]
- Goodfellow, B.J.; Macedo, A.L.; Rodrigues, P.; Moura, I.; Wray, V.; Moura, J.J.G. The solution structure of a [3Fe-4S] ferredoxin: Oxidised ferredoxin II from Desulfovibrio gigas. J. Biol. Inorg. Chem. 1999, 4, 421–430. [Google Scholar] [CrossRef]
- Xia, B.; Volkman, B.F.; Markley, J.L. Evidence for oxidation-state-dependent conformational changes in human ferredoxin from multinuclear. multidimensional NMR spectroscopy. Biochemistry 1998, 37, 3965–3973. [Google Scholar] [CrossRef]
- Lehmann, T.E.; Luchinat, C.; Piccioli, M. Redox-related chemical shift perturbations on backbone nuclei of high-potential iron sulfur proteins. Inorg. Chem. 2002, 41, 1679–1683. [Google Scholar] [CrossRef]
- Arnesano, F.; Banci, L.; Piccioli, M. NMR structures of paramagnetic metalloproteins. Q. Rev. Biophys. 2005, 38, 167–219. [Google Scholar] [CrossRef]
- Banci, L.; Bertini, I.; Cremonini, M.A.; Gori Savellini, G.; Luchinat, C.; Wüthrich, K.; Güntert, P. PSEUDODYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics. J. Biomol. NMR 1998, 12, 553–557. [Google Scholar]
- Banci, L.; Bertini, I.; Cavallaro, G.; Giachetti, A.; Luchinat, C.; Parigi, G. Paramagnetism-based restraints for Xplor-NIH. J. Biomol. NMR 2004, 28, 249–261. [Google Scholar] [CrossRef]
- Gauto, D.F.; Estrozi, L.F.; Schwieters, C.D.; Effantin, G.; Macek, P.; Sounier, R.; Sivertsen, A.C.; Schmidt, E.; Kerfah, R.; Mas, G.; et al. Integrated NMR and cryo-EM atomic-resolution structure determination of a half-megadalton enzyme complex. Nat. Commun. 2019, 10, 2697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, I.; Ueda, T.; Kofuku, Y.; Eddy, M.T.; Wüthrich, K. GPCR drug discovery: Integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 2019, 18, 59–82. [Google Scholar] [CrossRef]
- Pastore, A.; Temussi, P.A. The Emperor‘s new clothes: Myths and truths of in-cell NMR. Arch. Biochem. Biophys. 2017, 628, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Horst, R.; Katritch, V.; Stevens, R.C.; Wüthrich, K. Biased Signaling Pathways in 2-Adrenergic Receptor Characterized by 19F-NMR. Science 2012, 335, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling. metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef]
- Eisenmesser, E.Z.; Millet, O.; Labeikovsky, W.; Korzhnev, D.M.; Wolf-Watz, M.; Bosco, D.A.; Skalicky, J.J.; Kay, L.E.; Kern, D. Intrinsic dynamics of an enzyme underlies catalysis. Nature 2005, 438, 117–121. [Google Scholar] [CrossRef]
- Shen, Y.; Lange, O.; Delaglio, F.; Rossi, P.; Aramini, J.M.; Liu, G.; Eletsky, A.; Wu, Y.; Singarapu, K.K.; Lemak, A.; et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 2008, 105, 4685–4690. [Google Scholar] [CrossRef] [Green Version]
- Frydman, L.; Blazina, D. Ultrafast two-dimensional nuclear magnetic resonance spectroscopy of hyperpolarized solutions. Nat. Phys. 2007, 3, 415–419. [Google Scholar] [CrossRef]
- Muntener, T.; Haussinger, D.; Selenko, P.; Theillet, F.X. In-Cell Protein Structures from 2D NMR Experiments. J. Phys. Chem. Lett. 2016, 7, 2821–2825. [Google Scholar] [CrossRef]
- Sengupta, I.; Nadaud, P.S.; Jaroniec, C.P. Protein Structure Determination with Paramagnetic Solid-State NMR Spectroscopy. Acc. Chem. Res. 2013, 46, 2117–2126. [Google Scholar] [CrossRef]
- Deshmukh, L.; Louis, J.M.; Ghirlando, R.; Clore, G.M. Transient HIV-1 Gag-protease interactions revealed by paramagnetic NMR suggest origins of compensatory drug resistance mutations. Proc. Natl. Acad. Sci. USA 2016, 113, 12456–12461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matei, E.; Gronenborn, A.M. (19)F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins. Angew. Chem. Int. Ed. Engl. 2016, 55, 150–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, J.-Y.; Keizers, P.H.; Liu, W.-M.; Löhr, F.; Skinner, S.P.; Heeneman, E.A.; Schwalbe, H.; Ubbink, M.; Siegal, G. Small-Molecule Binding Sites on Proteins Established by Paramagnetic NMR Spectroscopy. J. Am. Chem. Soc. 2013, 135, 5859–5868. [Google Scholar] [CrossRef] [PubMed]
- Softley, C.A.; Bostock, M.J.; Popowicz, G.M.; Sattler, M. Paramagnetic NMR in drug discovery. J. Biomol. NMR 2020, 74, 207–309. [Google Scholar] [CrossRef] [PubMed]
- Ravera, E.; Parigi, G.; Luchinat, C. What are the methodological and theoretical prospects for paramagnetic NMR in structural biology? A glimpse into the crystal ball. J. Magn. Reson. 2019, 306, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Luchinat, C.; Parigi, G.; Ravera, E. NMR of Paramagnetic Molecules; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Donaire, A.; Jiménez, B.; Fernandez, C.O.; Pierattelli, R.; Niizeki, T.; Moratal, J.M.; Hall, J.F.; Kohzuma, T.; Hasnain, S.S.; Vila, A.J. Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. J. Am. Chem. Soc. 2002, 124, 13698–13708. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Luchinat, C.; Parigi, G.; Walker, F.A. Heme methyl 1H chemical shifts as structural parameters in some low spin ferriheme proteins. J. Biol. Inorg. Chem. 1999, 4, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Allegrozzi, M.; Bertini, I.; Janik, M.B.L.; Lee, Y.-M.; Liu, G.; Luchinat, C. Lanthanide induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40 A from the metal ion. J. Am. Chem. Soc. 2000, 122, 4154–4161. [Google Scholar] [CrossRef]
- Tolman, J.R.; Flanagan, J.M.; Kennedy, M.A.; Prestegard, J.H. NMR evidence for slow collective motions in cyanometmyoglobin. Nat. Struct. Biol. 1997, 4, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Tjandra, N.; Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a diluite liquid crystalline medium. Science 1997, 278, 1111–1114. [Google Scholar] [CrossRef] [Green Version]
- Chiarparin, E.; Pelupessy, P.; Ghose, R.; Bodenhausen, G. Relaxation of Two-Spin Coherence Due to Cross-Correlated Fluctuations of Dipole-Dipole Couplings and Anisotropic Shifts in NMR of 15N,13C-Labeled Biomolecules. J. Am. Chem. Soc. 1999, 121, 6876–6883. [Google Scholar] [CrossRef]
- Pervushin, K.; Riek, R.; Wider, G.; Wüthrich, K. Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 1997, 94, 12366–12371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suturina, E.A.; Mason, K.; Geraldes, C.; Chilton, N.F.; Parker, D.; Kuprov, I. Lanthanide-induced relaxation anisotropy. Phys. Chem. Chem. Phys. 2018, 20, 17676–17686. [Google Scholar] [CrossRef] [Green Version]
- Parker, D.; Suturina, E.A.; Kuprov, I.; Chilton, N.F. How the Ligand Field in Lanthanide Coordination Complexes Determines Magnetic Susceptibility Anisotropy. Paramagnetic NMR Shift, and Relaxation Behavior. Acc. Chem. Res. 2020, 53, 1520–1534. [Google Scholar] [CrossRef] [PubMed]
- Pintacuda, G.; Kaikkonen, A.; Otting, G. Modulation of the distance dependence of paramagnetic relaxation enhancements by CSA x DSA cross-correlation. J. Magn. Reson. 2004, 171, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Orton, H.W.; Otting, G. Accurate Electron–Nucleus Distances from Paramagnetic Relaxation Enhancements. J. Am. Chem. Soc. 2018, 140, 7688–7697. [Google Scholar] [CrossRef] [Green Version]
- Blondin, G.; Girerd, J.-J. Interplay of electron exchange and electron transfer in metal polynuclear complexes in proteins or chemical models. Chem. Rev. 1990, 90, 1359–1376. [Google Scholar] [CrossRef]
- Banci, L.; Bertini, I.; Luchinat, C. The 1H NMR parameters of magnetically coupled dimers—The Fe2S2 proteins as an example. Struct. Bond. 1990, 72, 113–135. [Google Scholar]
- Mouesca, J.-M.; Chen, J.L.; Noodleman, L.; Bashford, D.; Case, D.A. Density Functional/Poisson-Boltzmann Calculations of Redox Potentials for Iron-Sulfur Clusters. J. Am. Chem. Soc. 1994, 116, 11898–11914. [Google Scholar] [CrossRef]
- Beinert, H. Iron-sulfur proteins: Ancient structures. still full of surprises. J. Biol. Inorg. Chem. 2000, 5, 2–15. [Google Scholar] [CrossRef]
- Bertini, I.; Eltis, L.D.; Felli, I.C.; Kastrau, D.H.W.; Luchinat, C.; Piccioli, M. The solution structure of oxidized HiPIP I from Ectothiorhodospira halophila. can NMR probe rearrangements associated to electron transfer processes? Chem. A Eur. J. 1995, 1, 598–607. [Google Scholar] [CrossRef]
- Camponeschi, F.; Muzzioli, R.; Ciofi-Baffoni, S.; Piccioli, M.; Banci, L. Paramagnetic (1)H NMR Spectroscopy to Investigate the Catalytic Mechanism of Radical S-Adenosylmethionine Enzymes. J. Mol. Biol. 2019, 431, 4514–4522. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Capozzi, F.; Luchinat, C.; Piccioli, M.; Vila, A.J. The Fe4S4 centers in ferredoxins studied through proton and carbon hyperfine coupling. Sequence specific assignments of cysteines in ferredoxins from Clostridium acidi urici and Clostridium pasteurianum. J. Am. Chem. Soc. 1994, 116, 651–660. [Google Scholar] [CrossRef]
- Bertini, I.; Capozzi, F.; Ciurli, S.; Luchinat, C.; Messori, L.; Piccioli, M. Identification of the iron ions of high potential iron protein from Chromatium vinosum within the protein frame through two-dimensional NMR experiments. J. Am. Chem. Soc. 1992, 114, 3332–3340. [Google Scholar] [CrossRef]
- Macedo, A.L.; Moura, I.; Moura, J.J.G.; LeGall, J.; Huynh, B.H. Temperature-dependent proton NMR investigation of the electronic structure of the trinuclear iron cluster of the oxidized Desulfovibrio gigas ferredoxin II. Inorg. Chem. 1993, 32, 1101–1105. [Google Scholar] [CrossRef]
- Werth, M.T.; Kurtz, D.M., Jr.; Moura, I.; LeGall, J. Proton NMR spectra of Rubredoxins: New Resonances Assignable to α-CH and β-CH2 hydrogens of cysteinate ligands to iron(II). J. Am. Chem. Soc. 1987, 109, 273–275. [Google Scholar] [CrossRef]
- Meyer, J.; Moulis, J.-M.; Gaillard, J.; Lutz, M. Replacement of sulfur by selenium in iron-sulfur proteins. Adv. Inorg. Chem. 1992, 38, 73–115. [Google Scholar]
- Meyer, J.; Gaillard, J.; Moulis, J.-M. H-1 Nuclear Magnetic Resonance of the Nitrogenase Iron Protein (Cp2) from Clostridium pasterianum. Biochemistry 1988, 27, 6150–6156. [Google Scholar] [CrossRef]
- Skjeldal, L.; Westler, W.M.; Oh, B.-H.; Krezel, A.M.; Holden, H.M.; Jacobson, B.L.; Rayment, I.; Markley, J.L. Two-Dimensional Magnetization Exchange Spectroscopy of Anabaena 7120 Ferredoxin. Nuclear Overhauser Effect and Electron Self-Exchange Cross Peaks from Amino Acid Residues Surrounding the 2Fe-2S Cluster. Biochemistry 1991, 30, 7363–7368. [Google Scholar] [CrossRef]
- Oh, B.-H.; Markley, J.L. Multinuclear magnetic resonance studies of the 2Fe-2S* ferredoxin from Anabaena species strain PCC 7120. 1. Sequence- specific hydrogen-1 resonance assignments and secondary structure in solution of the oxidized form. Biochemistry 1990, 29, 3993–4004. [Google Scholar] [CrossRef]
- Xia, B.; Wilkens, S.J.; Westler, W.M.; Markley, J.L. Amplification of One-Bond 1H/2H Isotope Effect on 15N Chemical Shift in Clostridium pasteurianum Rubredoxin by Fermi-Contact Effects through Hydrogen Bonds. J. Am. Chem. Soc. 1998, 120, 4893–4894. [Google Scholar] [CrossRef]
- Xia, B.; Pikus, J.D.; McClay, K.; Steffan, R.J.; Chae, Y.K.; Westler, W.M.; Markley, J.L.; Fox, D.J. Detection and Classification of Hyperfine-Shifted 1H 2H. and 15N Resonances of the Rieske Ferredoxin Component of Toluene 4-Monooxygenase. Biochemistry 1999, 38, 727–739. [Google Scholar] [PubMed]
- Macedo, A.L.; Moura, I.; Surerus, K.K.; Papaefthymiou, V.; Liu, M.-Y.; LeGall, J.; Munk, E.; Moura, J.J.G. Thiol/Disulfide Formation Associated with the Redox Activity of the [Fe3S4] Cluster of Desulfovibrio Gigas Ferredoxin II. 1H NMR and Mossbauer spectroscopy study. J. Biol. Chem. 1994, 369, 8052–8058. [Google Scholar]
- Bertini, I.; Capozzi, F.; Eltis, L.D.; Felli, I.C.; Luchinat, C.; Piccioli, M. Sequence Specific Assignment of Ligand Cysteine Protons of Oxidized, Rercombinant HiPIP-I from Ectothiorhodospira-Halophila. Inorg. Chem. 1995, 34, 2516–2523. [Google Scholar] [CrossRef]
- Huber, J.G.; Moulis, J.-M.; Gaillard, J. Use of 1H Longitudinal Relaxation Times in the Solution Structure of Paramagnetic Proteins. Application to [4Fe-4S] Proteins. Biochemistry 1996, 35, 12705–12711. [Google Scholar] [CrossRef] [PubMed]
- Nasta, V.; Suraci, D.; Gourdoupis, S.; Ciofi-Baffoni, S.; Banci, L. A pathway for assembling [4Fe-4S](2+) clusters in mitochondrial iron-sulfur protein biogenesis. FEBS J. 2020, 287, 2312–2327. [Google Scholar] [CrossRef]
- Larsen, E.K.; Olivieri, C.; Walker, C.; VS, M.; Gao, J.; Bernlohr, D.A.; Tonelli, M.; Markley, J.L.; Veglia, G. Probing Protein-Protein Interactions Using Asymmetric Labeling and Carbonyl-Carbon Selective Heteronuclear NMR Spectroscopy. Molecules 2018, 23, 1937. [Google Scholar] [CrossRef] [Green Version]
- Adinolfi, S.; Iannuzzi, C.; Prischi, F.; Pastore, C.; Iametti, S.; Martin, S.R.; Bonomi, F.; Pastore, A. Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS. Nat. Struct. Mol. Biol. 2009, 16, 390–396. [Google Scholar] [CrossRef]
- Spronk, C.; Zerko, S.; Gorka, M.; Kozminski, W.; Bardiaux, B.; Zambelli, B.; Musiani, F.; Piccioli, M.; Basak, P.; Blum, F.C.; et al. Structure and dynamics of Helicobacter pylori nickel-chaperone HypA: An integrated approach using NMR spectroscopy. functional assays and computational tools. J. Biol. Inorg. Chem. 2018, 23, 1309–1330. [Google Scholar] [CrossRef]
- Lill, R. Function and biogenesis of iron-sulphur proteins. Nature 2009, 460, 831–838. [Google Scholar] [CrossRef]
- Rouault, T.A. Mammalian iron-sulphur proteins: Novel insights into biogenesis and function. Nat. Rev. Mol. Cell Biol. 2015, 16, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Lill, R.; Freibert, S.A. Mechanisms of Mitochondrial Iron-Sulfur Protein Biogenesis. Annu. Rev. Biochem. 2020, 89, 471–499. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.; Cowan, J.A. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J. Am. Chem. Soc. 2003, 125, 6078–6084. [Google Scholar] [CrossRef] [PubMed]
- Prischi, F.; Konarev, P.V.; Iannuzzi, C.; Pastore, C.; Adinolfi, S.; Martin, S.R.; Svergun, D.I.; Pastore, A. Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Nat. Commun. 2010, 1, 95. [Google Scholar] [CrossRef] [Green Version]
- Schmucker, S.; Argentini, M.; Carelle-Calmels, N.; Martelli, A.; Puccio, H. The in vivo mitochondrial two-step maturation of human frataxin. Hum. Mol. Genet. 2008, 17, 3521–3531. [Google Scholar] [CrossRef] [Green Version]
- Castro, I.H.; Pignataro, M.F.; Sewell, K.E.; Espeche, L.D.; Herrera, M.G.; Noguera, M.E.; Dain, L.; Nadra, A.D.; Aran, M.; Smal, C.; et al. Frataxin Structure and Function. In Macromolecular Protein Complexes II: Structure and Function; Harris, J.R., Marles-Wright, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 393–438. [Google Scholar]
- Cai, K.; Frederick, R.O.; Dashti, H.; Markley, J.L. Architectural Features of Human Mitochondrial Cysteine Desulfurase Complexes from Crosslinking Mass Spectrometry and Small-Angle X-Ray Scattering. Structure 2018, 26, 1127–1136.e4. [Google Scholar] [CrossRef] [Green Version]
- Adamec, J.; Rusnak, F.; Owen, W.G.; Naylor, S.; Benson, L.M.; Gacy, A.M.; Isaya, G. Iron-dependent self-assembly of recombinant yeast frataxin: Implications for Friedreich ataxia. Am. J. Hum. Genet. 2000, 67, 549–562. [Google Scholar] [CrossRef] [Green Version]
- Pastore, A.; Puccio, H. Frataxin: A protein in search for a function. J. Neurochem. 2013, 126 (Suppl. 1), 43–52. [Google Scholar] [CrossRef]
- Boniecki, M.T.; Freibert, S.A.; Muhlenhoff, U.; Lill, R.; Cygler, M. Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nat. Commun. 2017, 8, 1287. [Google Scholar] [CrossRef] [Green Version]
- Fox, N.G.; Yu, X.; Feng, X.; Bailey, H.J.; Martelli, A.; Nabhan, J.F.; Strain-Damerell, C.; Bulawa, C.; Yue, W.W.; Han, S. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat. Commun. 2019, 10, 2210. [Google Scholar] [CrossRef] [Green Version]
- Uzarska, M.A.; Dutkiewicz, R.; Freibert, S.A.; Lill, R.; Muhlenhoff, U. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol. Biol. Cell 2013, 24, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Weiler, B.D.; Brück, M.C.; Kothe, I.; Bill, E.; Lill, R.; Mühlenhoff, U. Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2. Proc. Natl. Acad. Sci. USA 2020, 117, 20555–20565. [Google Scholar] [CrossRef] [PubMed]
- Banci, L.; Brancaccio, D.; Ciofi-Baffoni, S.; Del Conte, R.; Gadepalli, R.; Mikolajczyk, M.; Neri, S.; Piccioli, M.; Winkelmann, J. [2Fe-2S] cluster transfer in iron-sulfur protein biogenesis. Proc. Natl. Acad. Sci. USA 2014, 111, 6203–6208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, C.; Roos, A.K.; Montano, S.J.; Sengupta, R.; Filippakopoulos, P.; Guo, K.; von Delft, F.; Holmgren, A.; Oppermann, U.; Kavanagh, K.L. The crystal structure of human GLRX5: Iron-sulfur cluster co-ordination. tetrameric assembly and monomer activity. Biochem. J. 2011, 433, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brancaccio, D.; Gallo, A.; Mikolajczyk, M.; Zovo, K.; Palumaa, P.; Novellino, E.; Piccioli, M.; Ciofi-Baffoni, S.; Banci, L. Formation of [4Fe-4S] clusters in the mitochondrial iron-sulfur cluster assembly machinery. J. Am. Chem. Soc. 2014, 136, 16240–16250. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, D.; Gallo, A.; Piccioli, M.; Novellino, E.; Ciofi-Baffoni, S.; Banci, L. [4Fe-4S] Cluster Assembly in Mitochondria and Its Impairment by Copper. J. Am. Chem. Soc. 2017, 139, 719–730. [Google Scholar] [CrossRef] [Green Version]
- Agar, J.N.; Krebs, C.; Frazzon, J.; Huynh, B.H.; Dean, D.R.; Johnson, M.K. IscU as a scaffold for iron-sulfur cluster biosynthesis: Sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 2000, 39, 7856–7862. [Google Scholar] [CrossRef]
- Chandramouli, K.; Unciuleac, M.C.; Naik, S.; Dean, D.R.; Huynh, B.H.; Johnson, M.K. Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry 2007, 46, 6804–6811. [Google Scholar] [CrossRef]
- Cai, K.; Markley, J.L. NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Molecules 2018, 23, 2213. [Google Scholar] [CrossRef] [Green Version]
- Bertini, I.; Luchinat, C.; Piccioli, M. Paramagnetic Probes in Metalloproteins. Turning Limitations into Advantages. Methods Enzymol. 2001, 339, 314–340. [Google Scholar]
- Trindade, I.B.; Invernici, M.; Cantini, F.; Louro, R.O.; Piccioli, M. (1)H, (13)C and (15)N assignment of the paramagnetic high potential iron-sulfur protein (HiPIP) PioC from Rhodopseudomonas palustris TIE-1. Biomol. Nmr. Assign 2020, 14, 211–215. [Google Scholar] [CrossRef]
- Balayssac, S.; Jiménez, B.; Piccioli, M. Assignment Strategy for Fast Relaxing Signals: Complete Aminoacid Identification in Thulium Substituted Calbindin D9k. J. Biomol. NMR 2006, 34, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Gelis, I.; Katsaros, N.; Luchinat, C.; Piccioli, M.; Poggi, L. A Simple Protocol to Study Blue Copper Proteins by NMR. Eur. J. Biochem. 2003, 270, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Trindade, I.B.; Invernici, M.; Cantini, F.; Louro, R.O.; Piccioli, M. Sequence-specific Assignments in NMR Spectra of paramagnetic systems: A non-systematic approach. Inorg. Chim. Acta 2021, 514, 119984. [Google Scholar] [CrossRef]
- Muhandiram, D.R.; Kay, L.E. Gradient-enhanced triple resonance three-dimensional NMR experiments with improved sensitivity. J. Magn. Reson. Ser. B 1994, 103, 203–216. [Google Scholar] [CrossRef]
- Ciofi-Baffoni, S.; Gallo, A.; Muzzioli, R.; Piccioli, M. The IR-N-15-HSQC-AP experiment: A new tool for NMR spectroscopy of paramagnetic molecules. J. Biomol. Nmr. 2014, 58, 123–128. [Google Scholar] [CrossRef]
- Turner, D.L. Optimization of COSY and Related Methods. Applications to 1H NMR of Horse Ferricytochrome c. J. Magn. Reson. Ser. A 1993, 104, 197–202. [Google Scholar] [CrossRef]
- Li, H.; Mapolelo, D.T.; Randeniya, S.; Johnson, M.K.; Outten, C.E. Human glutaredoxin 3 forms [2Fe-2S]-bridged complexes with human BolA2. Biochemistry 2012, 51, 1687–1696. [Google Scholar] [CrossRef]
- Banci, L.; Ciofi-Baffoni, S.; Mikolajczyk, M.; Winkelmann, J.; Bill, E.; Pandelia, M.E. Human anamorsin binds [2Fe-2S] clusters with unique electronic properties. J. Biol. Inorg. Chem. 2013, 18, 883–893. [Google Scholar] [CrossRef]
- Vilella, F.; Alves, R.; Rodriguez-Manzaneque, M.T.; Belli, G.; Swaminathan, S.; Sunnerhagen, P.; Herrero, E. Evolution and cellular function of monothiol glutaredoxins: Involvement in iron-sulphur cluster assembly. Comp. Funct. Genom. 2004, 5, 328–341. [Google Scholar] [CrossRef] [Green Version]
- Banci, L.; Bertini, I.; Calderone, V.; Ciofi-Baffoni, S.; Giachetti, A.; Jaiswal, D.; Mikolajczyk, M.; Piccioli, M.; Winkelmann, J. Molecular view of an electron transfer process essential for iron-sulfur protein biogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, 7136–7141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwahara, J.; Tang, C.; Clore, G.M. Practical aspects of 1H transverse paramagnetic relaxation enhancement measurements on macromolecules. J. Magn. Reson. 2007, 184, 185–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, L.W.; Skrynnikov, N.R.; Choy, W.-Y.; Muhandiram, D.R.; Sarkar, B.; Forman-Kay, J.D.; Kay, L.E. Structural Characterization of Proteins with an Attached ATCUN Motif by Paramagnetic Relaxation Enhancement NMR Spectroscopy. J. Am. Chem. Soc. 2001, 123, 9843–9847. [Google Scholar] [CrossRef] [PubMed]
- Invernici, M.; Trindade, I.B.; Cantini, F.; Louro, R.O.; Piccioli, M. Measuring transverse relaxation in highly paramagnetic systems. J. Biomol. NMR 2020, 74, 431–442. [Google Scholar] [CrossRef]
- Bermel, W.; Bertini, I.; Felli, I.C.; Piccioli, M.; Pierattelli, R. 13C-detected protonless NMR spectroscopy of proteins in solution. Progr. NMR Spectrosc. 2006, 48, 25–45. [Google Scholar] [CrossRef]
- Chhabra, S.; Fischer, P.; Takeuchi, K.; Dubey, A.; Ziarek, J.J.; Boeszoermenyi, A.; Mathieu, D.; Bermel, W.; Davey, N.E.; Wagner, G.; et al. 15N detection harnesses the slow relaxation property of nitrogen: Delivering enhanced resolution for intrinsically disordered proteins. Proc. Natl. Acad. Sci. USA 2018, 115, E1710–E1719. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.C.; Usher, G.A.; Showalter, S.A. The Use of (13)C Direct-Detect NMR to Characterize Flexible and Disordered Proteins. Methods Enzymol. 2018, 611, 81–100. [Google Scholar]
- Lin, I.J.; Xia, B.; King, D.S.; Machonkin, T.E.; Westler, W.M.; Markley, J.L. Hyperfine-Shifted 13C and 15N NMR Signals from Clostridium pasteurianum Rubredoxin: Extensive Assignments and Quantum Chemical Verification. J. Am. Chem. Soc. 2009, 131, 15555–15563. [Google Scholar] [CrossRef] [Green Version]
- Kolczak, U.; Salgado, J.; Siegal, G.; Saraste, M.; Canters, G.W. Paramagnetic NMR studies of blue and purple copper proteins. Biospectroscopy 1999, 5, S19–S32. [Google Scholar] [CrossRef]
- Arnesano, F.; Banci, L.; Bertini, I.; Felli, I.C.; Luchinat, C.; Thompsett, A.R. A strategy for the NMR characterization of type II copper(II) proteins: The case of the copper trafficking protein CopC from Pseudomonas syringae. J. Am. Chem. Soc. 2003, 125, 7200–7208. [Google Scholar] [CrossRef]
- Bertini, I.; Lee, Y.-M.; Luchinat, C.; Piccioli, M.; Poggi, L. Locating the metal ion in calcium-binding proteins by using cerium(III) as a probe. ChemBioChem 2001, 2, 550–558. [Google Scholar] [CrossRef]
- Balayssac, S.; Bertini, I.; Luchinat, C.; Parigi, G.; Piccioli, M. 13C direct detected NMR increases the detectability of residual dipolar couplings. J. Am. Chem. Soc. 2006, 128, 15042–15043. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Kateb, F.; Bodenhausen, G.; Piccioli, M.; Abergel, D. Towards structural dynamics: Protein motions viewed by chemical shift modulations and direct detection of C’N multiple-quantum relaxation. J. Am. Chem. Soc. 2010, 132, 3594–3600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, I.J.; Gebel, E.B.; Machonkin, T.E.; Westler, W.M.; Markley, J.L. Changes in hydrogen-bond strenght explain reduction potentials in 10 ruvredoxin variants. Proc. Natl. Acad. Sci. USA 2005, 102, 14581–14586. [Google Scholar] [CrossRef] [Green Version]
- Kostic, M.; Pochapsky, S.S.; Pochapsky, T.C. Rapid recycle 13C. 15N and 13C,13C heteronuclear and homonuclear multiple quantum coherence detection for resonance assignments in paramagnetic proteins: Example of Ni2+-containing acireductone dioxygenase. J. Am. Chem. Soc. 2002, 124, 9054–9055. [Google Scholar] [CrossRef]
- Machonkin, T.E.; Westler, W.M.; Markley, J.L. 13C-13C 2D NMR: A novel strategy for the study of paramagnetic proteins with slow electronic relaxation times. J. Am. Chem. Soc. 2002, 124, 3204–3205. [Google Scholar] [CrossRef]
- Bertini, I.; Jiménez, B.; Piccioli, M. 13C direct detected experiments: Optimisation to paramagnetic signals. J. Magn. Reson. 2005, 174, 125–132. [Google Scholar] [CrossRef]
- Bertini, I.; Jiménez, B.; Piccioli, M.; Poggi, L. Asymmetry in 13C-13C COSY spectra identifies geometry in paramagnetic proteins. J. Am. Chem. Soc. 2005, 127, 12216–12217. [Google Scholar] [CrossRef]
- Barry, C.D.; North, A.C.T.; Glasel, J.A.; Williams, R.J.P.; Xavier, A.V. Quantitative Determination of Mononucleotide Conformations in Solution using Lanthanide Ion Shift and Broading NMR Probes. Nature 1971, 232, 236–245. [Google Scholar] [CrossRef]
- Xavier, A.V.; Czerwinski, E.W.; Bethge, P.H.; Mathews, F.S. Identification of the haem ligands of cytochrome b562 by X-ray and NMR methods. Nature 1978, 275, 245–247. [Google Scholar] [CrossRef]
- Lee, L.; Sykes, B.D. Nuclear Magnetic Resonance Determination of Metal-Proton Distances in the EF Site of Carp Parvalbumin Using the Susceptibility Contribution to the Line Broadening of Lanthanide-Shifted Resonances. Biochemistry 1980, 19, 3208–3214. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Sykes, B.D. Advances in Inorganic Biochemistry, Volume 2; Darnall, D.W., Wilkins, R.G., Eds.; Elsevier: New York, NY, USA, 1980. [Google Scholar]
- Wüthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Ab, E.; Atkinson, A.R.; Banci, L.; Bertini, I.; Ciofi-Baffoni, S.; Brunner, K.; Diercks, T.; Dötsch, V.; Engelke, F.; Folkers, G.; et al. NMR in structural proteomics. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billeter, M.; Wagner, G.; Wüthrich, K. Solution NMR structure determination of proteins revisited. J. Biomol. NMR 2008, 42, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Jiménez, B.; Piccioli, M.; Battistoni, A.; Sette, M. The solution Structure of the Monomeric Copper. Zinc Superoxide Dismutase from Salmonella enterica: Structural Insights to Understand the Evolution toward the Dimeric Structure. Biochemistry 2008, 47, 12954–12963. [Google Scholar] [CrossRef] [PubMed]
- Bax, A.; Clore, G.M. Protein NMR: Boundless opportunities. J. Magn. Reson. 2019, 306, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Ardenkjaer-Larsen, J.-H.; Boebinger, G.S.; Comment, A.; Duckett, S.B.; Edison, A.S.; Engelke, F.; Griesinger, C.; Griffin, R.G.; Hilty, C.; Maeda, H.; et al. Facing and overcoming biomolecular NMR’s sensitivity challanges. Angew. Chem. Int. Ed. 2015, 54, 9162–9185. [Google Scholar] [CrossRef]
- Bertini, I.; Couture, M.M.J.; Donaire, A.; Eltis, L.D.; Felli, I.C.; Luchinat, C.; Piccioli, M.; Rosato, A. The solution structure refinement of the paramagnetic reduced HiPIP I from Ectothiorhodospira halophila by using stable isotope labeling and nuclear relaxation. Eur. J. Biochem. 1996, 241, 440–452. [Google Scholar] [CrossRef]
- Beinert, H.; Holm, R.H.; Munck, E. Iron-sulfur clusters: Nature’s modular. multipurpose structures. Science 1997, 277, 653–659. [Google Scholar] [CrossRef]
- Tolman, J.R.; Flanagan, J.M.; Kennedy, M.A.; Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins: Information for structure determination in solution. Proc. Natl. Acad. Sci. USA 1995, 92, 9279–9283. [Google Scholar] [CrossRef] [Green Version]
- Bertini, I.; Cavallaro, G.; Cosenza, M.; Kümmerle, R.; Luchinat, C.; Piccioli, M.; Poggi, L. Cross Correlation Rates Between Curie Spin and Dipole-Dipole relaxation in Paramagnetic Proteins: The Case of Cerium Substituted Calbindin D9k. J. Biomol. NMR 2002, 23, 115–125. [Google Scholar] [CrossRef]
- Kateb, F.; Piccioli, M. New routes to the detection of relaxation allowed coherence transfer in paramagnetic molecules. J. Am. Chem. Soc. 2003, 125, 14978–14979. [Google Scholar] [CrossRef] [PubMed]
- Boisbouvier, J.; Gans, P.; Blackledge, M.; Brutscher, B.; Marion, D. Long-range structral information in NMR studies of paramagnetic molecules from electron spin-nuclear spin cross-correlated relaxation. J. Am. Chem. Soc. 1999, 121, 7700–7701. [Google Scholar] [CrossRef]
- Hus, J.C.; Marion, D.; Blackledge, M. De novo Determination of Protein Structure by NMR using Orientational and Long-range Order Restraints. J. Mol. Biol. 2000, 298, 927–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battiste, J.L.; Wagner, G. Utilization of site-directed spin labelling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited Nuclear Overhauser Effect data. Biochemistry 2000, 39, 5355–5365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clore, G.M.; Iwahara, J. Theory. Practice, and Applications of Paramagnetic Relaxation Enhancement for the Characterization of Transient Low-Population States of Biological Macromolecules and Their Complexes. Chem. Rev. 2009, 109, 4108–4139. [Google Scholar] [CrossRef] [Green Version]
- Otting, G. Protein NMR using paramagnetic ions. Annu. Rev. Biophys. 2010, 39, 387–405. [Google Scholar] [CrossRef]
- Kosen, P.A. Spin Labeling of Proteins. Methods Enzymol. 1989, 177, 86–121. [Google Scholar]
- Iwahara, J.; Anderson, D.E.; Murphy, E.C.; Clore, G.M. EDTA-derivatized deoxythymidine as a tool for rapid determination of protein binding polarity to DNA by intermolecular paramagnetic relaxation enhancement. J. Am. Chem. Soc. 2003, 125, 6634–6635. [Google Scholar] [CrossRef]
- Gaponenko, V.; Howarth, J.W.; Columbus, L.; Gasmi-Seabrook, G.; Yuan, J.; Hubbell, W.L.; Rosevear, P.R. Protein globl fold determination using site-directed spin and isotope labeling. Protein Sci. 2000, 9, 302–309. [Google Scholar] [CrossRef]
- Gross, J.D.; Moerke, N.J.; von der Haar, T.; Lugovskoy, A.A.; Sachs, A.B.; McCarthy, J.E.G.; Wagner, G. Ribosome Loading onto the mRNA Cap Is Driven by Conformational Coupling between eIF4G and eIF4E. Cell 2003, 115, 739–750. [Google Scholar] [CrossRef]
- Mal, T.K.; Skrynnikov, N.R.; Yap, K.L.; Kay, L.E.; Ikura, M. Detecting Protein Kinase Recognition Modes of Calmodulin by Residual Dipolar Couplings in Solution NMR. Biochemistry 2002, 41, 12899–12906. [Google Scholar] [CrossRef]
- Rumpel, S.; Becker, S.; Zweckstetter, M. High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment. J. Biomol. NMR 2008, 40, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Iwahara, J.; Clore, G.M. Visualization of transient encounter complexes in protein-protein association. Nature 2006, 444, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Varani, L.; Gunderson, S.I.; Mattaj, I.W.; Kay, L.E.; Neuhaus, D.; Varani, G. The NMR structure of the 38 kDa U1A protein – PIE RNA complex reveals the basis of cooperativity in regulation of polyadenylation by human U1A protein. Nat. Struct. Biol. 2000, 7, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Iwahara, J.; Schwieters, C.D.; Clore, G.M. Characterization of nonspecific protein-DNA interactions by H-1 paramagnetic relaxation enhancement. J. Am. Chem. Soc. 2004, 126, 12800–12808. [Google Scholar] [CrossRef]
- Roosild, T.P.; Greenwald, J.; Vega, M.; Castronovo, S.; Riek, R.; Choe, S. NMR Structure of Mistic. a Membrane-Integrating Protein for Membrane Protein Expression. Science 2005, 307, 1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felli, I.C.; Pierattelli, R.; Tompa, P. Intrinsically disordered proteins. In NMR of Biomolecules: Towards Mechanistic Systems Biology; Bertini, I., McGreevy, K.S., Parigi, G., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 137–152. [Google Scholar]
- Felitsky, D.J.; Lietzow, M.A.; Dyson, H.J.; Wright, P.E. Modeling transient collapsed states of an unfolded protein to provide insights into early folding events. Proc. Natl. Acad. Sci. USA 2008, 105, 6278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Guo, L.W.; Muradov, H.; Artemyev, N.O.; Ruoho, A.E.; Markley, J.L. Intrinsically disordered gamma-subunit of cGMP phosphodiesterase encodes functionally relevant transient secondary and tertiary structure. Proc. Natl. Acad. Sci. USA 2008, 105, 1505–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luchinat, C.; Parigi, G.; Ravera, E.; Rinaldelli, M. Solid state NMR crystallography through paramagnetic restraints. J. Am. Chem. Soc. 2012, 134, 5006–5009. [Google Scholar] [CrossRef]
- Nadaud, P.S.; Helmus, J.J.; Höfer, N.; Jaroniec, C.P. Long-Range Structural Restraints in Spin-Labeled Proteins Probed by Solid-State Nuclear Magnetic Resonance Spectroscopy. J. Am. Chem. Soc. 2007, 129, 7502–7503. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Munro, R.A.; Kim, S.Y.; Jung, K.-H.; Brown, L.S.; Ladizhansky, V. Paramagnetic Relaxation Enhancement Reveals Oligomerization Interface of a Membrane Protein. J. Am. Chem. Soc. 2012, 134, 16995–16998. [Google Scholar] [CrossRef] [PubMed]
- Iwahara, J.; Clore, G.M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 2006, 440, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Volkov, A.N.; Worrall, J.A.R.; Holtzmann, E.; Ubbink, M. Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc. Natl. Acad. Sci. USA 2006, 103, 18945–18950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Reinle, W.; Hannemann, F.; Konarev, P.V.; Svergun, D.I.; Bernhardt, R.; Ubbink, M. Dynamics in a Pure Encounter Complex of Two Proteins Studied by Solution Scattering and Paramagnetic NMR Spectroscopy. J. Am. Chem. Soc. 2008, 130, 6395–6403. [Google Scholar] [CrossRef] [PubMed]
- Andrałojć, W.; Hiruma, Y.; Liu, W.-M.; Ravera, E.; Nojiri, M.; Parigi, G.; Luchinat, C.; Ubbink, M. Identification of productive and futile encounters in an electron transfer protein complex. Proc. Natl. Acad. Sci. USA 2017, 114, E1840–E1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Schwieters, C.D.; Clore, G.M. Open-to-close transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 2007, 449, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.F.; Hass, M.A.S.; Christensen, H.M.; Ulstrup, J.; Led, J.J. Detection of Short-Lived Transient Protein−Protein Interactions by Intermolecular Nuclear Paramagnetic Relaxation: Plastocyanin from Anabaena variabilis. J. Am. Chem. Soc. 2003, 125, 6858–6859. [Google Scholar] [CrossRef]
- Tang, C.; Ghirlando, R.; Clore, G.M. Visualization of Transient Ultra-Weak Protein Self-Association in Solution Using Paramagnetic Relaxation Enhancement. J. Am. Chem. Soc. 2008, 130, 4048–4056. [Google Scholar] [CrossRef]
- Tang, C.; Louis, J.M.; Aniana, A.; Suh, J.Y.; Clore, G.M. Visualizing transient events in amino-terminal autoprocessing of HIV-1 protease. Nature 2008, 455, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Baker, K.A.; Hilty, C.; Peti, W.; Prince, A.; Pfaffinger, P.J.; Wider, G.; Wüthrich, K.; Choe, S. NMR-derived dynamic aspects of N-type inactivation of a Kv channel suggest a transient interaction with the T1 domain. Biochemistry 2006, 45, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Brutscher, B.; Felli, I.C.; Gil-Caballero, S.; Hošek, T.; Kümmerle, R.; Piai, A.; Pierattelli, R.; Sólyom, Z. NMR Methods for the study of instrinsically disordered proteins structure. dynamics, and interactions: General overview and practical guidelines. Adv. Exp. Med. Biol. 2015, 870, 122. [Google Scholar]
- John, M.; Pintacuda, G.; Park, A.Y.; Dixon, N.E.; Otting, G. Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts. J. Am. Chem. Soc. 2006, 128, 12910–12916. [Google Scholar] [CrossRef]
- Jahnke, W.; Perez, L.B.; Paris, C.G.; Strauss, A.; Fendrich, G.; Nalin, C.M. Second-site NMR screening with a spin-labeled first ligand. J. Am. Chem. Soc. 2000, 122, 7394–7395. [Google Scholar] [CrossRef]
- Bertini, I.; Fragai, M.; Lee, Y.-M.; Luchinat, C.; Terni, B. Paramagnetic metal ions in ligand screening: The CoII matrix metalloproteinase 12. Angew. Chem. Int. Ed. 2004, 43, 2254–2256. [Google Scholar] [CrossRef] [PubMed]
- Hus, J.C.; Marion, D.; Blackledge, M. Determination of Protein Backbone Structure Using Only Residual Dipolar Couplings. J. Am. Chem. Soc. 2001, 123, 1541–1542. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Donaire, A.; Jiménez, B.; Luchinat, C.; Parigi, G.; Piccioli, M.; Poggi, L. Paramagnetism-based Versus Classical Constraints: An Analysis of the Solution Structure of Ca Ln Calbindin D9k. J. Biomol. NMR 2001, 21, 85–98. [Google Scholar] [CrossRef]
- Barbieri, R.; Luchinat, C.; Parigi, G. Backbone-only protein solution structures with a combination of classical and paramagnetism-based constraints: A method that can be scaled to large molecules. ChemPhysChem 2004, 21, 797–806. [Google Scholar] [CrossRef]
- Parigi, G.; Ravera, E.; Luchinat, C. Magnetic susceptibility and paramagnetism-based NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 114–115, 211–236. [Google Scholar] [CrossRef]
- Ma, L.; Jørgensen, A.M.M.; Sorensen, G.O.; Ulstrup, J.; Led, J.J. Elucidation of the Paramagnetic R1 Relaxation of Heteronuclei and Protons in Cu(II) Plastocyanin from Anabaena variabilis. J. Am. Chem. Soc. 2000, 122, 9473–9485. [Google Scholar] [CrossRef]
- Trindade, I.; Invernici, M.; Cantini, F.; Louro, R.O.; Piccioli, M. PRE-driven protein NMR structures: An alternative approach in highly paramagnetic systems. FEBS J. 2020. [Google Scholar] [CrossRef]
- Rouault, T.A. The indispensable role of mammalian iron sulfur proteins in function and regulation of multiple diverse metabolic pathways. Biometals 2019, 32, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lill, R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol. Chem. 2020, 401, 855–876. [Google Scholar] [CrossRef] [PubMed]
- Ciofi-Baffoni, S.; Nasta, V.; Banci, L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2018, 10, 49–72. [Google Scholar] [CrossRef]
- Banci, L.; Camponeschi, F.; Ciofi-Baffoni, S.; Piccioli, M. The NMR contribution to protein-protein networking in Fe-S protein maturation. J. Biol. Inorg. Chem. 2018, 23, 665–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccioli, M. Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. Magnetochemistry 2020, 6, 46. https://doi.org/10.3390/magnetochemistry6040046
Piccioli M. Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. Magnetochemistry. 2020; 6(4):46. https://doi.org/10.3390/magnetochemistry6040046
Chicago/Turabian StylePiccioli, Mario. 2020. "Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins" Magnetochemistry 6, no. 4: 46. https://doi.org/10.3390/magnetochemistry6040046
APA StylePiccioli, M. (2020). Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. Magnetochemistry, 6(4), 46. https://doi.org/10.3390/magnetochemistry6040046