Role of Surface Effects in the Vibrational Density of States and the Vibrational Entropy in Spin Crossover Nanomaterials: A Molecular Dynamics Investigation
Abstract
:1. Introduction
2. Molecular Dynamics Simulations and Slab Method
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sauvage, J.-P. (Ed.) Molecular Machines and Motors (Structure and Bonding); Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Kahn, O. (Ed.) Molecular Magnetism; Wiley-VCH: Weinheim, Germany, 1993. [Google Scholar]
- Feringa, B.L.; Browne, W.R. (Eds.) Molecular Switches; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Gütlich, P.; Hauser, A.; Spiering, H. Thermal and optical switching of iron(II) complexes. Angew. Chem. Int. Ed. 1994, 33, 2024–2054. [Google Scholar] [CrossRef]
- Real, J.A.; Gaspar, A.B.; Niel, V.; Muñoz, M.C. Communication between iron(II) building blocks in cooperative spin transition phenomena. Coord. Chem. Rev. 2003, 236, 121–141. [Google Scholar] [CrossRef]
- Halcrow, M.A. (Ed.) Spin-Crossover Materials: Properties and Applications; John Wiley and Sons: Chichester, UK, 2013. [Google Scholar]
- Willenbacher, N.; Spiering, H. The elastic interaction of high-spin and low-spin complex molecules in spin-crossover compounds. J. Phys. C Solid State Phys. 1988, 21, 1423. [Google Scholar] [CrossRef]
- Spiering, H.; Willenbacher, N. Elastic interaction of high-spin and low-spin complex molecules in spin-crossover compounds II. J. Phys. Condens. Matter 1989, 1, 10089. [Google Scholar] [CrossRef] [Green Version]
- Molnár, G.; Rat, S.; Salmon, L.; Nicolazzi, W.; Bousseksou, A. Spin crossover nanomaterials: From fundamental concepts to devices. Adv. Mater. 2018, 30, 1703862. [Google Scholar] [CrossRef]
- Manrique-Juárez, M.D.; Rat, S.; Salmon, L.; Molnár, G.; Quintero, C.M.; Nicu, L.; Shepherd, H.J.; Bousseksou, A. Switchable molecule-based materials for micro- and nanoscale actuating applications: Achievements and prospects. Coord. Chem. Rev. 2016, 308, 395–408. [Google Scholar] [CrossRef]
- Bellec, A.; Lagoute, J.; Repain, V. Molecular electronics: Scanning tunneling microscopy and single-molecule devices. C. R. Chim. 2018, 21, 1287–1299. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef]
- Salmon, L.; Catala, L. Spin-crossover nanoparticles and nanocomposite materials. C. R. Chim. 2018, 21, 1230–1269. [Google Scholar] [CrossRef]
- Mallah, T.; Cavallini, M. Surfaces, thin films and patterning of spin crossover compounds. C. R. Chim. 2018, 21, 1270–1286. [Google Scholar] [CrossRef]
- Shalabaeva, V.; Mikolasek, M.; Manrique-Juárez, M.D.; Bas, A.-C.; Rat, S.; Salmon, L.; Nicolazzi, W.; Molnár, G.; Bousseksou, A. Unprecedented size effect on the phase stability of molecular thin films displaying a spin transition. J. Phys. Chem. C 2017, 121, 25617–25621. [Google Scholar] [CrossRef]
- Volatron, F.; Catala, L.; Rivière, E.; Gloter, A.; Stéphan, O.; Mallah, T. Spin-crossover coordination nanoparticles. Inorg. Chem. 2008, 47, 6584–6586. [Google Scholar] [CrossRef]
- Boldog, I.; Gaspar, A.B.; Martínez, V.; Pardo-Ibañez, P.; Ksenofontov, V.; Bhattacharjee, A.; Gütlich, P.; Real, J.A. Spin-crossover nanocrystals with magnetic, optical, and structural bistability near room temperature. Angew. Chem. Int. Ed. 2008, 47, 6433. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, A.; Boukheddaden, K.; Linarès, J.; Varret, F. Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study. Phys. Rev. B 2011, 84, 054119. [Google Scholar] [CrossRef]
- Tissot, A.; Enachescu, C.; Boillot, M.-L. Control of the thermal hysteresis of the prototypal spin-transition FeII(phen)2(NCS)2 compound via the microcrystallites environment: Experiments and mechanoelastic model. J. Mater. Chem. 2012, 22, 20451–20457. [Google Scholar] [CrossRef]
- Mikolasek, M.; Nicolazzi, W.; Terki, F.; Molnár, G.; Bousseksou, A. Surface transition in spin crossover nanoparticles. Chem. Phys. Lett. 2017, 678, 107–111. [Google Scholar] [CrossRef]
- Oubouchou, H.; Slimani, A.; Boukheddaden, K. Interplay between elastic interactions in a core-shell model for spin-crossover nanoparticles. Phys. Rev. B 2013, 87, 104104. [Google Scholar] [CrossRef]
- Slimani, A.; Boukheddaden, K.; Yamashita, K. Thermal spin transition of circularly shaped nanoparticles in a core-shell structure investigated with an electroelastic model. Phys. Rev. B 2014, 89, 214109. [Google Scholar] [CrossRef]
- Slimani, A.; Khemakhem, H.; Boukheddaden, K. Structural synergy in a core-shell spin crossover nanoparticle investigated by an electroelastic model. Phys. Rev. B 2017, 95, 174104. [Google Scholar] [CrossRef]
- Félix, G.; Mikolasek, M.; Molnár, G.; Nicolazzi, W.; Bousseksou, A. Control of the phase stability in spin-crossover core-shell nanoparticles through the elastic interface energy. Eur. J. Inorg. Chem. 2018, 2018, 435–442. [Google Scholar]
- Maurin-Pasturel, G.; Long, J.; Guari, Y.; Godiard, Y.; Willinger, M.-G.; Guerin, C.; Larionova, J. Nanosized heterostructures of Au@Prussian blue analogues: Towards multifunctionality at the nanoscale. Angew. Chem. Int. Ed. 2014, 53, 3872–3876. [Google Scholar] [CrossRef] [PubMed]
- Risset, O.N.; Quintero, P.A.; Brinzari, T.V.; Andrus, M.J.; Lufaso, M.W.; Meisel, M.W.; Talham, D.R. Light-induced changes in magnetism in a coordination polymer heterostructure, Rb0.24Co[Fe(CN)6]0.74@K0.1Co[Cr(CN)6]0.70.nH2O and the role of the shell thickness on the properties of both core and shell. J. Am. Chem. Soc. 2014, 136, 15660–15669. [Google Scholar] [CrossRef]
- Presle, M.; Maurin, I.; Maroun, F.; Cortès, R.; Lu, L.; Sayed Hassan, R.; Larquet, E.; Guigner, J.-M.; Rivière, E.; Wright, J.P.; et al. Photostrictive/Piezomagnetic core-shell particles based on Prussian blue analogues: Evidence for confinement effects? J. Phys. Chem. C 2014, 118, 13186–13195. [Google Scholar] [CrossRef]
- Gros, C.R.; Peprah, M.K.; Hosterman, B.D.; Brinzari, T.V.; Quintero, P.A.; Sendova, M.; Meisel, M.W.; Talham, D.R. Light-induced magnetization changes in a coordination polymer heterostructure of a Prussian blue analogues and a Hofmann-like Fe(II) spin crossover compound. J. Am. Chem. Soc. 2014, 136, 9846–9849. [Google Scholar] [CrossRef] [PubMed]
- Felts, A.C.; Andrus, M.J.; Knowles, E.S.; Quintero, P.A.; Ahir, A.R.; Risset, O.N.; Li, C.H.; Maurin, I.; Halder, G.J.; Abboud, K.A.; et al. Evidence for interface-induced strain and its influence on photomagnetism in Prussian blue analogue core-shell heterostructures, RbaCob[Fe(CN)6]c.mH2O@KjNik[Cr(CN)6]0.70·nH2O. J. Phys. Chem. C 2016, 120, 5420–5429. [Google Scholar] [CrossRef]
- Molnár, G.; Mikolasek, M.; Ridier, K.; Fahs, A.; Nicolazzi, W.; Bousseksou, A. Molecular spin crossover materials: Review of the lattice dynamical properties. Ann. der Phys. 2019, 531, 1900076. [Google Scholar] [CrossRef]
- Rüffer, R.; Chumakov, A.I. Nuclear resonance beamline at ESRF. Hyperfine Interact. 1996, 97, 589–604. [Google Scholar] [CrossRef]
- Chumakov, A.I.; Sturhahn, W. Experimental aspects of inelastic nuclear resonance scattering. Hyperfine Interact. 1999, 123, 781–808. [Google Scholar] [CrossRef]
- Félix, G.; Mikolasek, M.; Shepherd, H.J.; Long, J.; Larionova, J.; Guari, Y.; Itié, J.-P.; Chumakov, A.I.; Nicolazzi, W.; Molnár, G.; et al. Elasticity of Prussian-blue-analogue nanoparticles. Eur. J. Inorg. Chem. 2018, 3–4, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Félix, G.; Mikolasek, M.; Peng, H.; Nicolazzi, W.; Molnár, G.; Chumakov, A.I.; Salmon, L.; Bousseksou, A. Lattice dynamics in spin-crossover nanoparticles through nuclear inelastic scattering. Phys. Rev. B 2015, 91, 024422. [Google Scholar] [CrossRef]
- Mikolasek, M.; Félix, G.; Peng, H.; Rat, S.; Terki, F.; Chumakov, A.I.; Salmon, L.; Molnár, G.; Nicolazzi, W.; Bousseksou, A. Finite-size effects on the lattice dynamics in spin crossover nanomaterials. I. Nuclear inelastic scattering investigation. Phys. Rev. B 2017, 96, 035426. [Google Scholar] [CrossRef]
- Mikolasek, M.; Nicolazzi, W.; Terki, F.; Molnár, G.; Bousseksou, A. Finite-size effects on the lattice dynamics in spin crossover nanomaterials. II. Molecular dynamics simulations. Phys. Rev. B 2017, 96, 035427. [Google Scholar] [CrossRef]
- Allen, R.E.; Alldredge, G.P.; de Wette, F.W. Studies of vibrational surface modes. I. General formulation. Phys. Rev. B 1971, 4, 1648–1660. [Google Scholar] [CrossRef]
- Allen, R.E.; Alldredge, G.P.; de Wette, F.W. Studies of vibrational surface modes. II. Monatomic fcc crystals. Phys. Rev. B 1971, 4, 1661–1681. [Google Scholar] [CrossRef]
- Wolny, J.A.; Faus, I.; Marx, J.; Rüffer, R.; Chumakov, A.I.; Schlage, K.; Wille, H.-C.; Schünemann, V. Vibrational coupling of nearest neighbors in 1-D spin crossover polymers of rigid bridging ligands. A nuclear inelastic scattering and DFT study. Magnetochemistry 2016, 2, 19. [Google Scholar] [CrossRef] [Green Version]
- Jenni, K.; Scherthan, L.; Faus, I.; Marx, J.; Strohm, C.; Herlitschke, M.; Wille, H.-C.; Würtz, P.; Schünemann, V.; Wolny, J.A. Nuclear inelastic scattering and density functional theory studies of a one-dimensional spin crossover [Fe(1,2,4-triazole)2(1,2,4-triazolato)](BF4) molecular chain. Phys. Chem. Chem. Phys. 2017, 19, 18880–18889. [Google Scholar] [CrossRef]
- Meyer, R.; Mücksch, C.; Wolny, J.A.; Schünemann, V.; Urbassek, H.M. Atomistic simulation of spin-switch dynamics in multinuclear chain-like triazole spin-crossover molecules. Chem. Phys. Lett. 2019, 733, 136666. [Google Scholar] [CrossRef]
- Allen, R.E.; de Wette, F.W. Mean-square amplitudes of vibration at a surface. Phys Rev. 1969, 188, 1320–1323. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G. Canonical dynamics: Equiliruim phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Molnár, G.; Niel, V.; Gaspar, A.B.; Real, J.-A.; Zwick, A.; Bousseksou, A.; McGarvey, J.J. Vibrational spectroscopy of cyanide-bridged, Iron(II) spin-crossover coordination polymers: Estimation of vibrational contributions to the entropy change associated with the spin transition. J. Phys. Chem. B 2002, 106, 9701–9707. [Google Scholar] [CrossRef]
- Cheng, W.; Ren, S.-F. Calculations on the size effects of Raman intensities of silicon quantum dots. Phys. Rev. B 2002, 65, 205305. [Google Scholar] [CrossRef] [Green Version]
- Müller, P.; Saúl, A. Elastic effects on surface physics. Surf. Sci. Rep. 2004, 54, 157–258. [Google Scholar] [CrossRef]
- Diéguez, A.; Romano-Rodríguez, A.; Vilà, A.; Morante, J.R. The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 2001, 90, 1550–1557. [Google Scholar] [CrossRef] [Green Version]
- Halperin, W.P. Quantum size effects in metal particles. Rev. Mod. Phys. 1986, 58, 533–606. [Google Scholar] [CrossRef]
- Grygiel, C.; Simon, C.; Mercey, B.; Prellier, W.; Frésard, R. Thickness dependence of the electronic properties in V2O3 thin films. Appl. Phys. Lett. 2007, 91, 262103. [Google Scholar] [CrossRef] [Green Version]
- Félix, G.; Nicolazzi, W.; Mikolasek, M.; Molnár, G.; Bousseksou, A. Non-extensivity of thermodynamics at the nanoscale in molecular spin crossover materials: A balance between surface and volume. Phys. Chem. Chem. Phys. 2014, 16, 7358–7367. [Google Scholar] [CrossRef] [PubMed]
Lennard-Jones Potential | Cohesion Energy (kcal.mol) | Equilibrium Distance (Å) |
L-L (inter-octadra) (LS) | 5.73 | 1.0 |
L-L (inter-octadra) (HS) | 5.55 | 1.0 |
Harmonic Potential | Force Constant(kcal.molÅ) | Equilibrium Distance(Å) |
Me-L (LS) | 90 | 2.0 |
Me-L (HS) | 60 | 2.1 |
L-L (octahedron) (LS) | 60 | 2 |
L-L (octahedron) (HS) | 40 | 2.1 |
Angular Potential | Force Constant (kcal.molrad) | Equilibrium Angle(Rad) |
L-L-L | 2 |
LS | HS | |
---|---|---|
() | ||
(N/m) | ||
(kg/m) | ||
(m/s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahs, A.; Nicolazzi, W.; Molnár, G.; Bousseksou, A. Role of Surface Effects in the Vibrational Density of States and the Vibrational Entropy in Spin Crossover Nanomaterials: A Molecular Dynamics Investigation. Magnetochemistry 2021, 7, 27. https://doi.org/10.3390/magnetochemistry7020027
Fahs A, Nicolazzi W, Molnár G, Bousseksou A. Role of Surface Effects in the Vibrational Density of States and the Vibrational Entropy in Spin Crossover Nanomaterials: A Molecular Dynamics Investigation. Magnetochemistry. 2021; 7(2):27. https://doi.org/10.3390/magnetochemistry7020027
Chicago/Turabian StyleFahs, Alaa, William Nicolazzi, Gábor Molnár, and Azzedine Bousseksou. 2021. "Role of Surface Effects in the Vibrational Density of States and the Vibrational Entropy in Spin Crossover Nanomaterials: A Molecular Dynamics Investigation" Magnetochemistry 7, no. 2: 27. https://doi.org/10.3390/magnetochemistry7020027
APA StyleFahs, A., Nicolazzi, W., Molnár, G., & Bousseksou, A. (2021). Role of Surface Effects in the Vibrational Density of States and the Vibrational Entropy in Spin Crossover Nanomaterials: A Molecular Dynamics Investigation. Magnetochemistry, 7(2), 27. https://doi.org/10.3390/magnetochemistry7020027