Electric Field Control of Magnetic Properties by Means of Li+ Migration in FeRh Thin Film
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fallot, M.; Horcart, R. Sur l’apparition du ferromagnétisme par élévation de température dans des alliages de fer et de rhodium. Rev. Sci. 1939, 77, 498. [Google Scholar]
- Kouvel, J.S.; Hartelius, C.C. Anomalous Magnetic Moment and Transformations in the Ordered Alloy FeRh. J. Appl. Phys. 1962, 33, 1343. [Google Scholar] [CrossRef]
- Zakharov, A.I.; Kadomtseva, A.M.; Levitin, R.Z.; Ponyatovskii, E.G. Magnetic and magnetoelastic properties of a metamagnetic iron–rhodium alloy. Sov. Phys. JETP 1964, 19, 1348. [Google Scholar]
- Thiele, J.–U.; Maat, S.; Fullerton, E.E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl. Phys. Lett. 2003, 82, 2859. [Google Scholar] [CrossRef]
- Marti, X.; Fina, I.; Frontera, C.; Liu, J.; Wadley, P.; He, Q.; Paull, R.J.; Clarkson, J.D.; Kudrnovský, J.; Turek, I.; et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 2014, 13, 367. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Phillips, L.C.; Mattana, R.; Bibes, M.; Barthelemy, A.; Dkhil, B. Large reversible caloric effect in FeRh thin films via a dual-stimulus multicaloric cycle. Nat. Commun. 2016, 7, 11614. [Google Scholar] [CrossRef]
- Maat, S.; Thiele, J.-U.; Fullerton, E.E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B 2005, 72, 214432. [Google Scholar] [CrossRef]
- Song, C.; Cui, B.; Li, F.; Zhou, X.; Pan, F. Recent progress in voltage control of magnetism: Materials, mechanisms, and performance. Prog. Mater. Sci. 2017, 87, 33. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, I.; Itoh, M.; Taniyama, T. Elastically controlled magnetic phase transition in Ga-FeRh/BaTiO3(001) heterostructure. Appl. Phys. Lett. 2014, 104, 022401. [Google Scholar] [CrossRef]
- Barua, R.; Jimenez-Villacorta, F.; Lewis, L.H. Predicting magnetostructural trends in FeRh based ternary systems. Appl. Phys. Lett. 2013, 103, 102407. [Google Scholar] [CrossRef]
- Xuan, H.C.; Wang, L.Y.; Zheng, Y.X.; Li, Y.L.; Cao, Q.Q.; Chen, S.Y.; Wang, D.H.; Huang, Z.G.; Du, Y.W. Electric field control of magnetism without magnetic bias field in the Ni/ Pb(Mg1/3Nb2/3)O3 -PbTiO3 /Ni composite. Appl. Phys. Lett. 2011, 99, 032509. [Google Scholar] [CrossRef]
- Weiler, M.; Brandlmaier, A.; Geprags, S.; Althammer, M.; Opel, M.; Bihler, C.; Huebl, H.; Brandt, M.S.; Gross, R.; Goennenwein, S.T.B. Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature. New J. Phys. 2009, 11, 013021. [Google Scholar] [CrossRef]
- Skumryev, V.; Laukhin, V.; Fina, I.; Martí, X.; Sánchez, F.; Gospodinov, M.; Fontcuberta, J. Magnetization Reversal by Electric-Field Decoupling of Magnetic and Ferroelectric Domain Walls in Multiferroic-Based Heterostructures. Phys. Rev. Lett. 2011, 106, 057206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherifi, R.O.; Ivanovskaya, V.; Phillips, L.C.; Zobelli, A.; Infante, I.C.; Jacquet, E.; Garcia, V.; Fusil, S.; Briddon, P.R.; Guiblin, N.; et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 2014, 13, 345. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.L.; Zhan, Q.F.; Shang, T.; Yang, H.L.; Liu, Y.W.; Wang, B.M.; Li, R.W. Electric field control of magnetic properties in FeRh/PMN-PT heterostructures. AIP Adv. 2018, 8, 055816. [Google Scholar] [CrossRef]
- Lee, Y.; Liu, Z.Q.; Heron, J.T.; Clarkson, J.D.; Hong, J.; Ko, C.; Biegalski, M.D.; Aschauer, U.; Hsu, S.L.; Nowakowski, M.E.; et al. Large resistivity modulation in mixed-phase metallic systems. Nat. Commun. 2015, 6, 5959. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Chen, X.Z.; Zhou, X.J.; Cui, B.; Yan, Y.N.; Wu, H.Q.; Pan, F.; Song, C. Electrochemical control of the phase transition of ultrathin FeRh films. Appl. Phys. Lett. 2016, 108, 202404. [Google Scholar] [CrossRef]
- Pravarthana, D.; Zhang, T.; Wang, B.M.; Yang, H.L.; Xuan, H.C.; Bi, C.; Wang, W.G.; Li, R.W. Reversibly controlled magnetic domains of Co film via electric field driven oxygen migration at nanoscale. Appl. Phys. Lett. 2019, 114, 232401. [Google Scholar]
- Pravarthana, D.; Wang, B.M.; Mustafa, Z.; Agarwal, S.; Pei, K.; Yang, H.L.; Li, R.W. Reversible Control of Magnetic Anisotropy and Magnetization in Amorphous Co40Fe40B20 Thin Films via All-Solid-State Li-ion Redox Capacitor. Phys. Rev. Appl. 2019, 12, 054065. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, D.; Zhang, H.L.; Cao, H.T.; Wang, W.; Liu, Z.P.; Tian, T.; Liang, L.Y.; Gao, J.H.; Zhuge, F. Flexible Electrochromic V2O5 Thin Films with Ultrahigh Coloration Efficiency on Graphene Electrodes. J. Electrochem. Soc. 2018, 165, D183. [Google Scholar] [CrossRef]
- Mustafa, Z.; Pravarthana, D.; Wang, B.M.; Yang, H.L.; Li, R.W. Manipulation of Exchange Bias Effect via All-Solid-State Li-Ion Redox Capacitor with Antiferromagnetic Electrode. Phys. Rev. Appl. 2020, 14, 014062. [Google Scholar] [CrossRef]
- Han, G.C.; Qiu, J.J.; Yap, Q.J.; Luo, P.; Kanbe, T.; Shige, T.; Laughlin, D.E.; Zhu, J.G. Suppression of low-temperature ferromagnetic phase in ultrathin FeRh films. J. Appl. Phys. 2013, 113, 123909. [Google Scholar] [CrossRef]
- Xie, Y.L.; Zhan, Q.F.; Shang, T.; Yang, H.L.; Wang, B.M.; Tang, J.; Li, R.W. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films. AIP Adv. 2017, 7, 056314. [Google Scholar] [CrossRef] [Green Version]
- Phillips, L.C.; Cherifi, R.O.; Ivanovskaya, V.; Zobelli, A.; Infante, I.C.; Jacquet, E.; Guiblin, N.; Ünal, A.A.; Kronast, F.; Dkhil, B.; et al. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature. Sci. Rep. 2015, 5, 10026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Xie, Y.; Wang, B.; Yang, H.; Li, R.-W. Electric Field Control of Magnetic Properties by Means of Li+ Migration in FeRh Thin Film. Magnetochemistry 2021, 7, 45. https://doi.org/10.3390/magnetochemistry7040045
Li G, Xie Y, Wang B, Yang H, Li R-W. Electric Field Control of Magnetic Properties by Means of Li+ Migration in FeRh Thin Film. Magnetochemistry. 2021; 7(4):45. https://doi.org/10.3390/magnetochemistry7040045
Chicago/Turabian StyleLi, Gengfei, Yali Xie, Baomin Wang, Huali Yang, and Run-Wei Li. 2021. "Electric Field Control of Magnetic Properties by Means of Li+ Migration in FeRh Thin Film" Magnetochemistry 7, no. 4: 45. https://doi.org/10.3390/magnetochemistry7040045
APA StyleLi, G., Xie, Y., Wang, B., Yang, H., & Li, R. -W. (2021). Electric Field Control of Magnetic Properties by Means of Li+ Migration in FeRh Thin Film. Magnetochemistry, 7(4), 45. https://doi.org/10.3390/magnetochemistry7040045