The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies
Abstract
:1. Introduction
2. The Origins of Microfluidic Magnetophoresis
3. Advances in Magnetic Separation of Blood Cells by Cell Type
3.1. RBC and WBC Separation
3.2. Separation of Specific Hematological Cells
3.2.1. CD4+ T-Cell Enrichment
3.2.2. Depletion of CD19+ B-Cells in T-Cell Manufacturing
3.2.3. Hematopoietic Stem Cells
Authors | Purpose | Target Biomarker | Key Feature | Metrics | Throughput |
---|---|---|---|---|---|
Shiriny et al. (2020) [54] | WBC/RBC separation | Hemoglobin | Straightforward scaling, minimal external magnetic effects by Halbach array | 100% efficiency | 15 µL/h |
Descamps et al. (2021) [56] | WBC depletion | CD45, CD15 | Self-assembling magnets, fine control in localization | 85–100% efficiency | 0.5 mL/h |
Byeon et al. (2015) [59] | WBC depletion | CD45, CD66b | Magnetic amplification by ferromagnetic wire, allows non-invasive diagnostics, but the sample must be pre-concentrated | 93.98% efficiency | 0.5 mL/h |
Blue Martin et al. (2017) [62] | Depletion of malaria-infected cells | Hemozoin (catabolized hemoglobin) | Dialysis-like treatment for malaria, straightforward scaling | 27% efficiency | 77 µL/min |
Glynn et al. (2014) [63] | CD4+ cell enumeration | CD4 | Instrument-free operation, simple read-out | 93% efficiency | 4 µL in 45 s |
Q. Liu et al. (2015) [65] | CD4+ cell enumeration | CD14, CD4, DNA | Genetic material-based | 95% efficiency | 100 µL/min |
Wang et al. (2021) [67] | B-cell depletion in cell manufacturing | CD19 | Extreme sensitivity, great performance against commercial methods | 99.985% efficiency (90% T-cell recovery) | 4 mL/h |
Schneider et al. (2009) [68] | Fractionation of CD34+ cells | CD34 | Differentiation based on degree of magnetization | 47.6% efficiency | 3 mL/h |
Plouffe et al. (2012) [69] | Enrichment of hematopoietic and endothelial progenitor cells | CD133 | Processing directly whole blood, high efficiency for rare cell populations | 96% efficiency | 120 µL/min |
4. Advances in the Magnetic Separation of Cancer Cells
4.1. Positive Separation
4.2. Negative Separation
Authors | Purpose | Target Biomarker | Key Feature | Metrics | Throughput |
---|---|---|---|---|---|
Shi et al. (2017) [70] | Positive isolation of CTCs | EpCAM (CD326) | Herringbone structure to create capture pockets | 92% efficiency | 0.54 mL/h |
Huang et al. (2018) [71] | Positive isolation of leukemia cells | CD45 | Immune to cell and bead aggregation | 62% efficiency 99.6% purity | 70 µL/min |
Cho et al. (2017) [72] | Positive isolation of CTCs | EpCAM (CD326) | Reusable substrate with disposable fluidic layer | 90% 33.3% purity | 2 mL/h |
Earhart et al. (2013) [73] | Positive isolation of CTCs | EpCAM (CD326) | Perpendicular flow enables higher processing speeds | 95.7% 92.7% release efficiency | 10 mL/h |
Karabacak et al. (2014) [78] | WBC depletion for CTC enrichment | CD45, CD66b | Processing directly whole blood, integration with other microfluidic systems for clinical-grade use | 99.9% WBC depletion97% CTC recovery | 8 mL/h |
Sajay et al. (2014) [82] | WBC depletion for CTC enrichment | CD45 | Centrifugation-free, lysis-free approach | 99.98% WBC depletion 80% CTC recovery | 500 μL/min |
Hyun et al. (2015) [83] | WBC depletion for CTC enrichment | CD45, EpCAM, HER2 | Downstream positive enrichment of CTCs expressing a specific biomarker | 99.9% WBC depletion | 400 μL/min |
Lee et al. (2020) [84] | WBC depletion for CTC enrichment | CD45 | Integration with a slanted weir for physical filtration | 97.2% WBC depletion93.3% purity | 5 mL/h |
Kang et al. (2019) [86] | WBC depletion, CTC isolation | CD45, CD66b, EpCAM | Direct comparison of negative and positive enrichment metrics | 99.95% WBC depletion 83.1% CTC recovery 4-9% CTC purity | 2.8 mL/h |
5. Differential Sorting of Cells Using Magnetophoresis
5.1. Multiplexed Sorting
5.2. Population Level Measurements
6. Discussion
Authors | Purpose | Target Biomarker | Key Feature | Metrics | Throughput |
---|---|---|---|---|---|
Adams et al. (2008) [88] | Multitarget sorting of bacterial populations | T7 tag (4.5 µm bead), CPX-SA1 (2.8 µm bead) | Multiplexing magnetic sorting beyond binary separation | 90% | 109 cells/h |
Robert et al. (2011) [96] | Differentiation of monocytes and macrophages based on nanoparticle uptake | Endocytosis of 8.7 nm iron oxide nanoparticles | Differential sorting into distinct outlets | 88% purity 60% efficacy | 10–100 cells/s |
Civelekoglu et al. (2019) [103] | Profiling membrane expression in cell populations | EpCAM (CD326) | Differential sorting into distinct outlets, integrated electronic read-out | Used pre-purified suspension | 500 cells/min |
Civelekoglu et al. (2021) [104] | Profiling membrane expression directly from hematological samples | EpCAM (CD 326), CD45, CD34 | Processing directly whole blood, integrated electronic read-out | 85–96% | 1.5 mL/h up to 960 cells/s |
Jack et al. (2017) [105] | Non-binary sorting of cancer cells based on surface expression | EpCAM (CD326) | Fractionation can be controlled with the separation with of the magnets. Platform is limited to 3 levels of fractionation | Used pre-purified suspension | 50 µL/min |
Poudineh et al. (2016) [106] | Profiling membrane expression in cell populations | EpCAM, HER2, N-cadherin | Circular nickel micromagnets with increasing cross-section to differentially trap cells | 92% cell recovery 98% cell viability | 0.5 mL/h |
Labib et al. (2020) [107] | Profiling intercellular proteins in rare cells | c-Myc, EpCAM, vimentin, PARP1, Oct4, POLRMT | Nickel features with increasing thickness to differential capture | ~83% capture efficiency | 2 mL/h |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Takayasu, M.; Duske, N.; Ash, S.; Friedlaender, F. HGMS studies of blood cell behavior in plasma. IEEE Trans. Magn. 1982, 18, 1520–1522. [Google Scholar] [CrossRef]
- Kronick, P.; Gilpin, R.W. Use of superparamagnetic particles for isolation of cells. J. Biochem. Biophys. Methods 1986, 12, 73–80. [Google Scholar] [CrossRef]
- Kantor, A.B.; Gibbons, I.; Miltenyi, S.; Schmitz, J. Magnetic cell sorting with colloidal superparamagnetic particles. Cell Sep. Methods Appl. 1998, 1, 153–173. [Google Scholar]
- Grützkau, A.; Radbruch, A. Small but mighty: How the MACS®-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytom. Part A 2010, 77, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Plouffe, B.; Murthy, S.K.; Lewis, L.H. Fundamentals and application of magnetic particles in cell isolation and enrichment: A review. Rep. Prog. Phys. 2014, 78, 016601. [Google Scholar] [CrossRef] [PubMed]
- Olsvik, O.; Popovic, T.; Skjerve, E.; Cudjoe, K.S.; Hornes, E.; Ugelstad, J.; Uhlen, M. Magnetic separation techniques in diagnostic microbiology. Clin. Microbiol. Rev. 1994, 7, 43–54. [Google Scholar] [CrossRef]
- Jing, Y.; Moore, L.R.; Williams, P.S.; Chalmers, J.J.; Farag, S.S.; Bolwell, B.; Zborowski, M. Blood progenitor cell separation from clinical leukapheresis product by magnetic nanoparticle binding and magnetophoresis. Biotechnol. Bioeng. 2007, 96, 1139–1154. [Google Scholar] [CrossRef]
- Schumm, M.; Lang, P.; Taylor, G.; Kuci, S.; Klingebiel, T.; Buhring, H.J.; Handgretinger, R. Isolation of highly purified autologous and allogeneic peripheral CD34(+) cells using the CliniMACS device. J. Hematotherapy 1999, 8, 209–218. [Google Scholar] [CrossRef]
- Wang, X.; Rivière, I. Clinical manufacturing of CAR T cells: Foundation of a promising therapy. Mol. Ther. Oncolytics 2016, 3, 16015. [Google Scholar] [CrossRef] [Green Version]
- Lennartz, S.; Lock, D.; Kolbe, C.; Winkels, G.; Assenmacher, M.; Kaiser, A. StraightFrom®MicroBeads: Fast T cell isolation for CAR T cell manufacturing without density gradient centrifugation. J. Immunol. 2020, 204 (Suppl. S1), 86.28. [Google Scholar]
- Ziarati, N.; Tavalaee, M.; Bahadorani, M.; Esfahani, M.H.N. Clinical outcomes of magnetic activated sperm sorting in infertile men candidate for ICSI. Hum. Fertil. 2018, 22, 118–125. [Google Scholar] [CrossRef]
- Dirican, E.K.; Özgün, O.D.; Akarsu, S.; Akın, K.O.; Ercan, O.; Uğurlu, M.; Çamsarı, Ç.; Kanyılmaz, O.; Kaya, A.; Ünsal, A. Clinical outcome of magnetic activated cell sorting of non-apoptotic spermatozoa before density gradient centrifugation for assisted reproduction. J. Assist. Reprod. Genet. 2008, 25, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Bonner, W.A.; Hulett, H.R.; Sweet, R.G.; Herzenberg, L.A. Fluorescence Activated Cell Sorting. Rev. Sci. Instrum. 1972, 43, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Melville, D.; Paul, F.; Roath, S. Direct magnetic separation of red cells from whole blood. Nature 1975, 255, 706. [Google Scholar] [CrossRef]
- Haik, Y.; Pai, V.; Chen, C.-J. Development of magnetic device for cell separation. J. Magn. Magn. Mater. 1999, 194, 254–261. [Google Scholar] [CrossRef]
- Owen, C. High gradient magnetic separation of erythrocytes. Biophys. J. 1978, 22, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Takayasu, M.; Kelland, D.R.; Minervini, J. Continuous magnetic separation of blood components from whole blood. IEEE Trans. Appl. Supercond. 2000, 10, 927–930. [Google Scholar] [CrossRef]
- Melville, D.; Paul, F.; Roath, S. Fractionation of blood components using high gradient magnetic separation. IEEE Trans. Magn. 1982, 18, 1680–1685. [Google Scholar] [CrossRef]
- Owen, C.S. Magnetic sorting of leukocytes. Cell Biophys. 1986, 8, 287–296. [Google Scholar] [CrossRef]
- Owen, C.; Lindsay, J. Ferritin as a label for high-gradient magnetic separation. Biophys. J. 1983, 42, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Owen, C.S.; Moore, E. High gradient magnetic separation of rosette-forming cells. Cell Biophys. 1981, 3, 141–153. [Google Scholar] [CrossRef]
- Gerber, R. Magnetic filtration of ultra-fine particles. IEEE Trans. Magn. 1984, 20, 1159–1164. [Google Scholar] [CrossRef]
- Senftle, F.E.; Hambright, W.P. Magnetic Susceptibility of Biological Materials. In Biological Effects of Magnetic Fields; Barnothy, M.F., Ed.; Springer: Boston, MA, USA, 1995; Volume 2, pp. 261–306. [Google Scholar]
- Rios, A.; Escarpa, A.; Simonet, B. Miniaturization of Analytical Systems; John Wiley & Sons: Totowa, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Rios, A.; Escarpa, A.; Simonet, B. Tools for the Design of Miniaturized Analytical Systems; John Wiley & Sons: Totowa, NJ, USA, 2009; pp. 39–92. [Google Scholar] [CrossRef]
- Voldman, J.; Gray, M.L.; Schmidt, M.A. Microfabrication in Biology and Medicine. Annu. Rev. Biomed. Eng. 1999, 1, 401–425. [Google Scholar] [CrossRef] [Green Version]
- Tsao, C.-W. Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production. Micromachines 2016, 7, 225. [Google Scholar] [CrossRef] [Green Version]
- Rios, A.; Escarpa, A.; Simonet, B. Portability of Miniaturized Analytical Systems; John Wiley & Sons: Totowa, NJ, USA, 2009; pp. 345–355. [Google Scholar] [CrossRef]
- Adams, J.D.; Soh, H.T. Perspectives on Utilizing Unique Features of Microfluidics Technology for Particle and Cell Sorting. J. Lab. Autom. 2009, 14, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Kumar, S.; Ali, A.; Anand, P.; Agrawal, V.V.; John, R.; Maji, S.; Malhotra, B.D. Microfluidic-integrated biosensors: Prospects for point-of-care diagnostics. Biotechnol. J. 2013, 8, 1267–1279. [Google Scholar] [CrossRef]
- Du, G.; Fang, Q.; den Toonder, J.M.J. Microfluidics for cell-based high throughput screening platforms—A review. Anal. Chim. Acta 2016, 903, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; Li, G.; Zu, X.; Du, Z.; Liu, L.; Hu, Z. The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review. Micromachines 2020, 11, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kant, K.; Shahbazi, M.-A.; Dave, V.P.; Ngo, T.A.; Chidambara, V.A.; Than, L.Q.; Bang, D.D.; Wolff, A. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens. Biotechnol. Adv. 2018, 36, 1003–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, L.-Y.; Chang, J.-C.; Tsai, Y.-C.; Huang, C.-C.; Chang, C.-P.; Yeh, C.-S.; Lee, G.-B. Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system. Nanomed. Nanotechnol. Biol. Med. 2013, 10, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Lien, K.-Y.; Wu, J.-J.; Lee, G.-B. A magnetic bead-based assay for the rapid detection of methicillin-resistant Staphylococcus aureus by using a microfluidic system with integrated loop-mediated isothermal amplification. Lab Chip 2011, 11, 1521–1531. [Google Scholar] [CrossRef]
- Jung, W.; Han, J.; Choi, J.-W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Pandey, C.M.; Augustine, S.; Kumar, S.; Kumar, S.; Nara, S.; Srivastava, S.; Malhotra, B.D. Microfluidics Based Point-of-Care Diagnostics. Biotechnol. J. 2017, 13. [Google Scholar] [CrossRef]
- Farahinia, A.; Zhang, W.; Badea, I. Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: A review. J. Sci. Adv. Mater. Devices 2021, 6, 303–320. [Google Scholar] [CrossRef]
- Surendran, A.N.; Zhou, R.; Lin, Y. Microfluidic Devices for Magnetic Separation of Biological Particles: A Review. J. Med Devices 2020, 15. [Google Scholar] [CrossRef]
- Watarai, H.; Suwa, M.; Iiguni, Y. Magnetophoresis and electromagnetophoresis of microparticles in liquids. Anal. Bioanal. Chem. 2004, 378, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Pamme, N.; Manz, A. On-Chip Free-Flow Magnetophoresis: Continuous Flow Separation of Magnetic Particles and Agglomerates. Anal. Chem. 2004, 76, 7250–7256. [Google Scholar] [CrossRef]
- Gijs, M.A.M. Magnetic bead handling on-chip: New opportunities for analytical applications. Microfluid. Nanofluidics 2004, 1, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Castelino, J.; Huang, R.; Shah, M.; Austin, R.H. Design of a microfabricated magnetic cell separator. Electrophoresis 2001, 22, 3883–3892. [Google Scholar] [CrossRef]
- Han, K.-H.; Frazier, A.B. Continuous magnetophoretic separation of blood cells in microdevice format. J. Appl. Phys. 2004, 96, 5797–5802. [Google Scholar] [CrossRef]
- Ki-Ho, H.; Landers, J.P.; Frazier, A.B. Continuous paramagnetophoretic microseparator for blood cells in TRANSDUCERS ’03. In Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No. 03TH8664), Boston, MA, USA, 8–12 June 2003; Volume 2, pp. 1229–1232. [Google Scholar] [CrossRef]
- Han, K.-H.; Frazier, A. Diamagnetic capture mode magnetophoretic microseparator for blood cells. J. Microelectromech. Syst. 2005, 14, 1422–1431. [Google Scholar] [CrossRef]
- Han, K.-H.; Frazier, A.B. Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 2005, 6, 265–273. [Google Scholar] [CrossRef]
- Han, K.-H.; Frazier, A. Paramagnetic capture mode magnetophoretic microseparator for blood cells. IEE Proc. Nanobiotechnol. 2006, 153, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Inglis, D.; Riehn, R.; Austin, R.H.; Sturm, J.C. Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 2004, 85, 5093–5095. [Google Scholar] [CrossRef] [Green Version]
- Miltenyi, S.; Muller, W.; Weichel, W.; Radbruch, A. High gradient magnetic cell separation with MACS. Cytometry 1990, 11, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Furdui, V.I.; Harrison, D.J. Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 2004, 4, 614–618. [Google Scholar] [CrossRef] [Green Version]
- Han, K.-H.; Han, A.; Frazier, A.B. Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood. Biosens. Bioelectron. 2006, 21, 1907–1914. [Google Scholar] [CrossRef]
- Kim, S.; Song, H.; Ahn, H.; Kim, T.; Jung, J.; Cho, S.K.; Shin, D.-M.; Choi, J.-R.; Hwang, Y.-H.; Kim, K. A Review of Advanced Impedance Biosensors with Microfluidic Chips for Single-Cell Analysis. Biosensors 2021, 11, 412. [Google Scholar] [CrossRef] [PubMed]
- Shiriny, A.; Bayareh, M. On magnetophoretic separation of blood cells using Halbach array of magnets. Meccanica 2020, 55, 1903–1916. [Google Scholar] [CrossRef]
- Halbach, K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nucl. Instrum. Methods 1980, 169, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Descamps, L.; Audry, M.-C.; Howard, J.; Mekkaoui, S.; Albin, C.; Barthelemy, D.; Payen, L.; Garcia, J.; Laurenceau, E.; Le Roy, D.; et al. Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting. Cells 2021, 10, 1734. [Google Scholar] [CrossRef] [PubMed]
- Verpoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis 2002, 23, 677–712. [Google Scholar] [CrossRef]
- Yu, Z.T.F.; Yong, K.M.A.; Fu, J. Microfluidic Blood Cell Sorting: Now and Beyond. Small 2014, 10, 1687–1703. [Google Scholar] [CrossRef] [Green Version]
- Byeon, Y.; Ki, C.-S.; Han, K.-H. Isolation of nucleated red blood cells in maternal blood for Non-invasive prenatal diagnosis. Biomed. Microdevices 2015, 17, 1–7. [Google Scholar] [CrossRef]
- Hackett, S.; Hamzah, J.; Davis, T.; Pierre, T.S. Magnetic susceptibility of iron in malaria-infected red blood cells. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2009, 1792, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Massoudi, M.; Antaki, J.F.; Gandini, A. Removal of malaria-infected red blood cells using magnetic cell separators: A computational study. Appl. Math. Comput. 2012, 218, 6841–6850. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.B.; Wu, W.-T.; Kameneva, M.V.; Antaki, J.F. Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes. Ann. Biomed. Eng. 2017, 45, 2888–2898. [Google Scholar] [CrossRef]
- Glynn, M.T.; Kinahan, D.J.; Ducrée, J. Rapid, low-cost and instrument-free CD4+ cell counting for HIV diagnostics in resource-poor settings. Lab Chip 2014, 14, 2844–2851. [Google Scholar] [CrossRef] [PubMed]
- Naeim, F.; Nagesh, R.P.; Song, S.X.; Phan, R.T. Chapter 2—Principles of Immunophenotyping. In Atlas of Hematopathology, 2nd ed.; Naeim, F., Nagesh, R.P., Song, S.X., Phan, R.T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 29–56. [Google Scholar]
- Liu, Q.; Chernish, A.; DuVall, J.A.; Ouyang, Y.; Li, J.; Qian, Q.; Bazydlo, L.A.L.; Haverstick, D.M.; Landers, J.P. The ARTμS: A novel microfluidic CD4+ T-cell enumeration system for monitoring antiretroviral therapy in HIV patients. Lab Chip 2015, 16, 506–514. [Google Scholar] [CrossRef]
- World Health Organization. What’s New in Treatment Monitoring: Viral Load and CD4 Testing; Update; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Wang, Z.; Sargent, E.H.; Kelley, S.O. Ultrasensitive Detection and Depletion of Rare Leukemic B Cells in T Cell Populations via Immunomagnetic Cell Ranking. Anal. Chem. 2021, 93, 2327–2335. [Google Scholar] [CrossRef]
- Schneider, T.; Karl, S.; Moore, L.R.; Chalmers, J.J.; Williams, P.; Zborowski, M. Sequential CD34 cell fractionation by magnetophoresis in a magnetic dipole flow sorter. Analyst 2009, 135, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Plouffe, B.D.; Mahalanabis, M.; Lewis, L.H.; Klapperich, C.M.; Murthy, S.K. Clinically Relevant Microfluidic Magnetophoretic Isolation of Rare-Cell Populations for Diagnostic and Therapeutic Monitoring Applications. Anal. Chem. 2012, 84, 1336–1344. [Google Scholar] [CrossRef]
- Shi, W.; Wang, S.; Maarouf, A.; Uhl, C.G.; He, R.; Yunus, D.; Liu, Y. Magnetic particles assisted capture and release of rare circulating tumor cells using wavy-herringbone structured microfluidic devices. Lab Chip 2017, 17, 3291–3299. [Google Scholar] [CrossRef]
- Huang, N.-T.; Hwong, Y.-J.; Lai, R.L. A microfluidic microwell device for immunomagnetic single-cell trapping. Microfluid. Nanofluidics 2018, 22, 16. [Google Scholar] [CrossRef]
- Cho, H.; Kim, J.; Jeon, C.-W.; Han, K.-H. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells. Lab Chip 2017, 17, 4113–4123. [Google Scholar] [CrossRef]
- Earhart, C.M.; Hughes, C.E.; Gaster, R.S.; Ooi, C.C.; Wilson, R.J.; Zhou, L.Y.; Humke, E.W.; Xu, L.; Wong, D.J.; Willingham, S.B.; et al. Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Lab Chip 2013, 14, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Ozkumur, E.; Shah, A.M.; Ciciliano, J.C.; Emmink, B.L.; Miyamoto, D.T.; Brachtel, E.; Yu, M.; Chen, P.-I.; Morgan, B.; Trautwein, J.; et al. Inertial Focusing for Tumor Antigen–Dependent and –Independent Sorting of Rare Circulating Tumor Cells. Sci. Transl. Med. 2013, 5, 179ra47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Toom, E.E.; Verdone, J.E.; Gorin, M.A.; Pienta, K.J. Technical challenges in the isolation and analysis of circulating tumor cells. Oncotarget 2016, 7, 62754–62766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masouleh, B.K.; Baraniskin, A.; Schmiegel, W.; Schroers, R. Quantification of circulating endothelial progenitor cells in human peripheral blood: Establishing a reliable flow cytometry protocol. J. Immunol. Methods 2010, 357, 38–42. [Google Scholar] [CrossRef]
- Yang, H.-M.; Kim, J.-Y.; Cho, H.-J.; Lee, J.-E.; Jin, S.; Hur, J.; Kwon, Y.-W.; Seong, M.-W.; Choi, E.-K.; Lee, H.-Y.; et al. NFATc1+CD31+CD45−Circulating multipotent stem cells derived from human endocardium and their therapeutic potential. Biomaterials 2019, 232, 119674. [Google Scholar] [CrossRef]
- Karabacak, N.M.; Spuhler, P.S.; Fachin, F.; Lim, E.J.; Pai, V.; Ozkumur, E.; Martel, J.M.; Kojic, N.; Smith, K.; Chen, P.-I.; et al. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 2014, 9, 694–710. [Google Scholar] [CrossRef] [Green Version]
- McGrath, J.; Jimenez, M.; Bridle, H. Deterministic lateral displacement for particle separation: A review. Lab Chip 2014, 14, 4139–4158. [Google Scholar] [CrossRef] [Green Version]
- Gourikutty, S.B.N.; Chang, C.-P.; Poenar, D.P. An integrated on-chip platform for negative enrichment of tumour cells. J. Chromatogr. B 2016, 1028, 153–164. [Google Scholar] [CrossRef]
- Gourikutty, S.B.N.; Chang, C.-P.; Puiu, P.D. Microfluidic immunomagnetic cell separation from whole blood. J. Chromatogr. B 2016, 1011, 77–88. [Google Scholar] [CrossRef]
- Sajay, B.N.G.; Chang, C.-P.; Ahmad, H.; Khuntontong, P.; Wong, C.C.; Wang, Z.; Puiu, P.D.; Soo, R.; Rahman, A.R.A. Microfluidic platform for negative enrichment of circulating tumor cells. Biomed. Microdevices 2014, 16, 537–548. [Google Scholar] [CrossRef]
- Hyun, K.-A.; Lee, T.Y.; Lee, S.H.; Jung, H.-I. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Biosens. Bioelectron. 2015, 67, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Sul, O.; Lee, S.-B. Enrichment of Circulating Tumor Cells from Whole Blood Using a Microfluidic Device for Sequential Physical and Magnetophoretic Separations. Micromachines 2020, 11, 481. [Google Scholar] [CrossRef]
- Yoon, Y.; Lee, J.; Ra, M.; Gwon, H.; Lee, S.; Kim, M.Y.; Yoo, K.-C.; Sul, O.; Kim, C.G.; Kim, W.-Y.; et al. Continuous Separation of Circulating Tumor Cells from Whole Blood Using a Slanted Weir Microfluidic Device. Cancers 2019, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Kim, J.; Cho, H.; Han, K.-H. Evaluation of Positive and Negative Methods for Isolation of Circulating Tumor Cells by Lateral Magnetophoresis. Micromachines 2019, 10, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yellen, B.B.; Erb, R.M.; Son, H.S.; Hewlin, J.R.; Shang, H.; Lee, G.U. Traveling wave magnetophoresis for high resolution chip based separations. Lab Chip 2007, 7, 1681–1688. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.D.; Kim, U.; Soh, H.T. Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. USA 2008, 105, 18165–18170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, U.; Soh, H.T. Simultaneous sorting of multiple bacterial targets using integrated Dielectrophoretic–Magnetic Activated Cell Sorter. Lab Chip 2009, 9, 2313–2318. [Google Scholar] [CrossRef]
- Kumar, V.; Rezai, P. Multiplex Inertio-Magnetic Fractionation (MIMF) of magnetic and non-magnetic microparticles in a microfluidic device. Microfluid. Nanofluidics 2017, 21, 83. [Google Scholar] [CrossRef]
- Khashan, S.A.; Dagher, S.; Alazzam, A. Microfluidic multi-target sorting by magnetic repulsion. Microfluid. Nanofluidics 2018, 22, 64. [Google Scholar] [CrossRef]
- Ngamsom, B.; Esfahani, M.M.N.; Phurimsak, C.; Lopez-Martinez, M.J.; Raymond, J.-C.; Broyer, P.; Patel, P.; Pamme, N. Multiplex sorting of foodborne pathogens by on-chip free-flow magnetophoresis. Anal. Chim. Acta 2016, 918, 69–76. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, K.E.; Chalmers, J.J.; Zborowski, M. Magnetic Cell Separation: Characterization of Magnetophoretic Mobility. Anal. Chem. 2003, 75, 6868–6874. [Google Scholar] [CrossRef]
- McCloskey, K.; Moore, L.; Hoyos, M.; Rodriguez, A.; Chalmers, J.; Zborowski, M. Magnetophoretic Cell Sorting Is a Function of Antibody Binding Capacity. Biotechnol. Prog. 2003, 19, 899–907. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, K.E.; Chalmers, J.J.; Zborowski, M. Magnetophoretic mobilities correlate to antibody binding capacities. Cytometry 2000, 40, 307–315. [Google Scholar] [CrossRef]
- Robert, D.; Pamme, N.; Conjeaud, H.; Gazeau, F.; Iles, A.; Wilhelm, C. Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 2011, 11, 1902–1910. [Google Scholar] [CrossRef]
- Pamme, N.; Wilhelm, C. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 2006, 6, 974–980. [Google Scholar] [CrossRef]
- Civelekoglu, O.; Liu, R.; Boya, M.; Chu, C.-H.; Wang, N.; Sarioglu, A.F. A microfluidic device for electronic cell surface expression profiling using magnetophoresis. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 480–483. [Google Scholar] [CrossRef]
- Liu, R.; Wang, N.; Kamili, F.; Sarioglu, A.F. Microfluidic CODES: A scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels. Lab Chip 2016, 16, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Civelekoglu, O.; Wang, N.; Boya, M.; Ozkaya-Ahmadov, T.; Liu, R.; Sarioglu, A.F. High Dynamic Range Electrical Profiling of Surface Expression via Flow-Rate-Modulated-Magnetophoresis. In Proceedings of the 22nd International Conference on Miniaturized Systems for Chemistry and Life Sciences, Kaohsiung, Taiwan, 11–15 November 2018. [Google Scholar]
- Civelekoglu, O.; Wang, N.; Boya, M.; Ozkaya-Ahmadov, T.; Liu, R.; Sarioglu, A.F. Digital Photography Techniques in Microfluidics: Exposure Bracketing for High Dynamic Range Magnetophoretic Cytometry. In Proceedings of the 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences, Basel, Switzerland, 27–31 October 2019. [Google Scholar]
- Civelekoglu, O.; Wang, N.; Boya, M.; Ozkaya-Ahmadov, T.; Liu, R.; Sarioglu, A.F. Quantitative Measurement of Cell Surface Expression Via Magnetophoretic Cytometry. In Proceedings of the 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 975–978. [Google Scholar] [CrossRef]
- Civelekoglu, O.; Wang, N.; Boya, M.; Ozkaya-Ahmadov, T.; Liu, R.; Sarioglu, A.F. Electronic profiling of membrane antigen expressionviaimmunomagnetic cell manipulation. Lab Chip 2019, 19, 2444–2455. [Google Scholar] [CrossRef] [Green Version]
- Civelekoglu, O.; Liu, R.; Usanmaz, C.F.; Chu, C.-H.; Boya, M.; Ozkaya-Ahmadov, T.; Arifuzzman, A.K.M.; Wang, N.; Sarioglu, A.F. Electronic Measurement of Cell Antigen Expression in Whole Blood. Lab Chip 2021. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.; Hussain, K.; Rodrigues, D.; Zeinali, M.; Azizi, E.; Wicha, M.; Simeone, D.M.; Nagrath, S. Microfluidic continuum sorting of sub-populations of tumor cells via surface antibody expression levels. Lab Chip 2017, 17, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Poudineh, M.; Aldridge, P.M.; Ahmed, S.; Green, B.J.; Kermanshah, L.; Nguyen, V.; Tu, C.; Mohamadi, R.M.; Nam, R.K.; Hansen, A.; et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 2016, 12, 274–281. [Google Scholar] [CrossRef]
- Labib, M.; Wang, Z.; Ahmed, S.U.; Mohamadi, R.M.; Duong, B.; Green, B.; Sargent, E.H.; Kelley, S.O. Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. Nat. Biomed. Eng. 2020, 5, 41–52. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Civelekoglu, O.; Frazier, A.B.; Sarioglu, A.F. The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies. Magnetochemistry 2022, 8, 10. https://doi.org/10.3390/magnetochemistry8010010
Civelekoglu O, Frazier AB, Sarioglu AF. The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies. Magnetochemistry. 2022; 8(1):10. https://doi.org/10.3390/magnetochemistry8010010
Chicago/Turabian StyleCivelekoglu, Ozgun, A. Bruno Frazier, and A. Fatih Sarioglu. 2022. "The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies" Magnetochemistry 8, no. 1: 10. https://doi.org/10.3390/magnetochemistry8010010
APA StyleCivelekoglu, O., Frazier, A. B., & Sarioglu, A. F. (2022). The Origins and the Current Applications of Microfluidics-Based Magnetic Cell Separation Technologies. Magnetochemistry, 8(1), 10. https://doi.org/10.3390/magnetochemistry8010010