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Abstract: New tools for cancer diagnosis are being studied since early diagnosis can be crucial for
a successful treatment. In this context, the use of NMR probes constitutes an efficient method of
diagnosis. In this study, we investigated the use of ciprofloxacin to indirectly label the overexpression
of topoisomerase-II enzymes by changes in 19F NMR chemical shifts of ciprofloxacin. Increased
topoisomerase-II expression has been associated with cancer occurrence, mainly with aggressive
forms of breast cancer, thus constituting a promising molecular target for new tumor cell identi-
fiers. Using DFT calculations, we performed a spectroscopy analysis of ciprofloxacin in different
chemical environments and evaluated the solvent and enzymatic effects. Our results show that
ciprofloxacin forms a stable complex with the enzyme, and the main intermolecular interactions
between ciprofloxacin and human topoisomerase-IIβ are hydrogen bonds, followed by π-π stacking
and electrostatic interactions. Additionally, a shift of 6.04 ppm occurs in the 19F NMR signal when
ciprofloxacin interacts with the human topoisomerase-IIβ enzyme, and this parameter may be an
indirect marker indicating the overexpression of these enzymes in the body.

Keywords: spectroscopic probe; computational methods; drug repositioning; cancer diagnosis

1. Introduction

Fluoroquinolones (FQ), introduced more than 20 years ago, are a quinolone derivative
class of molecules known for their antibacterial activity [1]. The broad-spectrum commer-
cialized antibacterial agent ciprofloxacin (CPX) is representative of the FQs [2–4]. These
compounds exert antibacterial activity through the inhibition of two bacterial enzymes:
DNA gyrase and topoisomerase II [5,6]. The latter is considered to be the primary tar-
get of several anticancer agents, such as doxorubicin and etoposide [7–9]. Researchers
continue to investigate the development of new anticancer drugs based on evidence in-
dicating increased levels of topoisomerase II in several types of proliferating cancer cells,
including gallbladder cancer [10], aggressive breast cancer [10–12], epithelial ovarian can-
cer [10,13–15], lymphomas and sarcomas [16–18], and colon cancer [10]. Increased levels of
this enzyme associated with aggressive breast cancer are related to increased expression
of the oncogene HER2 neu, predicted disease-related death, lymph node metastasis, and
advanced tumor stage [19].

Currently, cancer is one of the deadliest diseases in the world [20–23], and one factor
that contributes to numerous deaths is the difficulty in diagnosis [24,25]. An early diagnosis
can be influenced by three main factors: awareness of search for healthcare, clinical and
diagnostic evaluation, and access to treatment [26]. Regarding the latter, it is important to
stress that access barriers are mainly a problem in underdeveloped countries. In developed
countries, a prognosis is reached in more than 70% of cases, while in underdeveloped
countries only 20–50% of patients receive an early diagnosis, which compromises the
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chance of a cure [27]. In this sense, the research, development, and implementation of fast,
simple, and low-cost tools can help change this reality [28–30]. New research into diagnostic
tools is aimed at developing systems that are increasingly capable of locating species in
different environments, with high specificity and resolution [28,31–34]. For this purpose,
many spectroscopic techniques have been explored, such as nuclear magnetic resonance
(NMR) [29,35–42]. Molecules that interact with key enzymes can act as spectroscopic
probes [43]. These molecules are of great interest due to their high sensitivity and ease of
operation, enabling rapid location within live systems [44].

In CPX molecules, the presence of a fluorine atom allows the application of 19F NMR
spectroscopy techniques. The large chemical shift range, together with the high sensitivity
of 19F NMR nuclei, makes the use of 19F NMR an extremely attractive proposition [45].
Additionally, considering the scarcity of naturally occurring fluorine compounds, 19F
NMR offers an attractive option for investigating the interactions between proteins and
other biomolecules, as well as the structure and mechanisms of action of fluorinated in-
hibitors [46]. Moreover, another advantage of 19F NMR is that this technique is particularly
useful for studying large proteins that cannot be easily probed by conventional NMR
experiments [47].

Computational methods have been widely employed to predict the spectroscopic
properties of different compounds for various purposes [48–50]. Theoretical methods offer
a fast, efficient and practical way to investigate changes in the NMR properties of different
compounds, which can be caused by several factors, such as changes in the chemical
environment or structure of the molecule that can occur due to interactions with biological
macromolecules [29,51]. In that context, the aim of this study is to theoretically investigate
the behavior of CPX in the human topoisomerase-II β (hTOPO-II) active site, evaluating
how this interaction affects the 19F NMR chemical shift of CPX to propose the use of CPX
as a spectroscopic NMR probe for cancer diagnosis.

2. Methodology
2.1. Molecular Dynamics (MD) Simulations

The theoretical analysis in this study was performed with the DNA topoisomerase II
β enzyme. FQs are known inhibitors of both DNA gyrase and topoisomerase. However,
considering our proposal to use this drug as an NMR probe in humans, we have determined
that there is no need for a study on the interaction of ciprofloxacin with DNA gyrase since
this enzyme is not present in large eukaryotes [8,52,53]. The first Molecualr Dynamics
(MD) simulation was performed with CPX in the active site of the hTOPO-II enzyme. For
the simulation, the crystallographic structure of hTOPO-II in complex with DNA (PDB-ID
5ZAD) was obtained from Protein Data Bank [54] while CPX topology and charge data
were sourced from the Automated Topology Builder (ATB) Repository [55]. The simulation
was performed by employing the GROMACS® Package [56] using the Gromos 54a7 force
field [57]. The system CPX:hTOPO-IIβ was solvated inside a cubic box with the SPC water
model. A steepest descent algorithm was employed for the minimization step, stopping
minimization when the maximum force was under 10.0 kJ/mol. A heading step of 1 ps was
performed in the NVT ensemble, and for equilibrium simulation in the NPT ensemble, the
temperature and pressure, respectively, were controlled by the v-rescale thermostat (300 K)
and Berendsen barostat (1 bar). The last simulation step was the performance of 10 ns of MD
simulation using the Parrinello-Rahman barostat and v-rescale thermostat. Coordinates,
velocities, and energies were saved at 10.0 ps of simulation, obtaining 1000 frames at the
end of simulation. For both steps, the leap-frog integrator was adopted.

Finally, to select the best conformations, the optimal wavelet signal compression
algorithm (OWSCA) [58] was used. This algorithm is based on a wavelet compression
strategy, in which an optimization algorithm is applied to compress the maximum number
of wavelet coefficients, instead of using heuristically chosen parameters. A second MD
simulation of free CPX in a water box (CPX:explicit water system) was also performed
under the same conditions mentioned above for comparison of 19FNMR chemical shifts.
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2.2. 19F NMR Chemical Shift (δ) Calculations

All 19F NMR shielding constant calculations of this step were performed using the
GAUSSIAN 09 software package [59] at the DFT level, with the B3LYP functional and
Dunning basis set [60] with diffuse function [61,62] aug-cc-pVDZ, and by applying the
gauge-including atomic orbital (GIAO) method [63]. These levels of theory were selected
based on previous parametrization studies performed on NMR calculations [64] for the CPX
molecule [49]. Calculations were made for CPX in the selected frames of two MD systems
using the ONIOM model [65]. In the CPX:explicit water system, the first solvation shell
was maintained, and the obtained values were compared with the results obtained for the
CPX:hTOPO-II system. Additionally, 19F NMR shielding constants were calculated for CPX
in a vacuum (CPX:vacuum) and, using the IEF-PCM solvation model [66], when employing
water as solvent (CPX: implicit water). For both systems, the initial structures were gener-
ated from a conformational analysis in Spartan 14® software using molecular mechanics.
After this step, the ten lowest energy conformations obtained were subjected to geometry
optimization calculations in Gaussian software at the B3LYP/aug-cc-pVDZ level of theory.
Then, NMR calculations were performed in the same way as in the previous systems.

The theoretical 19F NMR chemical shifts were calculated in ppm according to
Equation (1) [64]. The chemical shifts were expressed relative to the external chemical
shift reference CF3COOH. Theoretical results obtained were compared with experimental
data, where measurements were carried out using the same reference compound [67,68].

δteor = σcal
re f − σcal

CPX (1)

where σcal
re f and σcal

CPX are the isotropic NMR shieldings of the reference compound (CF3COOH)
and the CPX frame, respectively. To analyze the agreement between theoretical values for
chemical shifts and the experimental 19F NMR chemical shift data, the ∆δ calculation was
performed using Equation (2), as follows [64]:

∆δ = δexp − δcal (2)

3. Results and Discussion

It is well-known that CPX, like all FQs, is a bacterial topoisomerase inhibitor [6,69].
However, due to the presence of these enzymes in the human body, many experimental
researches have been focused recently on the potential of this drug and its derivatives to
inhibit human topoisomerases [12,70–76]. Theoretical investigations have already been
conducted in order to better understand the mechanisms of action and the main differences
between the interactions of TOPO-II in the two organisms [77,78]. A previous study that
investigated the interaction of thirteen FQs with human topoisomerases using molecular
docking techniques showed that CPX is able to form a hydrogen bond with the hTOPO-IIβ
active site on the amino acid Asp 479 [79]. The study found that the binding affinity was
−9.62 kcal·mol−1. Another recent theoretical investigation explored how CPX binds to
different sites of the hTOPO-IIβ enzyme [77]. Through molecular docking calculations, the
authors showed that CPX has a similar interaction energy in both human and bacterial
enzymes and that CPX preferentially interacts in the same locale as the chemotherapeutic
agent etoposide. The study found that the interaction energy of CPX was −71.62 kcal·mol−1

and that CPX was able to form hydrogen bonds with Glu477, Tyr 821, Gln778, and Asp
479 amino acid residues.

All the studies referenced above utilized the molecular docking technique in their
investigations. Molecular docking is an important computational technique in structural
biology and computer-aided drug design [80]. The main goal of this type of computational
simulation is to evaluate the most feasible binding geometries of a ligand to a target protein
whose three-dimensional structure is known [81,82]. Despite their fundamental importance
in this research field, docking studies only provide a static view of the interactions between
the ligand and the protein. MD simulations, on the other hand, are used to analyze the
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dynamic behavior of these interactions as well as of the entire system, helping to reproduce
the biological events in a computer simulation [83,84]. Here, the main proposal is to
investigate the possibility of using the well-known antibiotic ciprofloxacin as a 19F NMR
chemical shift probe to localize the overexpression of hTPO-IIβ, which is associated with
cancer incidence [10,85]. For this, a dynamic analysis of the system is of crucial importance.

3.1. MD Simulations

In order to analyze the influence of the chemical environment on the conformational
change of CPX, two MD simulations were performed. One simulation was carried out with
CPX in the hTOPO-II active site (CPX:hTOPO-II system) and the other was performed with
CPX only in a water box (CPX:explicit water). With the analysis of the root mean square
deviation (RMSD) of CPX in both systems (Figure 1), it was possible to observe that the
systems reached equilibrium at around 2000 ps of simulation, and this time was used as
the starting time for the selection of representative frames using an OWSCA algorithm.
As shown in Figure 1, there was a slightly higher flexibility of CPX in the aqueous system
when compared to molecules in the enzyme active site. Once in the active site, the molecule
has greater conformational restriction due to the presence of the surrounding amino acids,
with which it engaged in intermolecular interactions. Additionally, the RMSD levels for
CPX in the hTOPO-II active site were around 0.1 nm (1 Å), indicating high stability of the
structures [86,87].
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Figure 1. RMSF (left) and RMSD (right) for ciprofloxacin molecule inside the active site (CPX:hTOPO-
II) and out of the active site of the topoisomerase-II enzyme (CPX: explicit water).

Figure 1 also shows the root mean square fluctuation (RMSF). Together with the
RMSD, the relative RMSF provides information about the fluctuation of each residue in
the simulation. Understanding the relationship between the flexibility of the residues and
the interaction with the ligand facilitates the identification of regions with great flexibility.
Generally, the flexibility of the terminal residue and surface loop regions is higher and
the protein core is more limited [88]. As can be seen, the fluctuation of residues around
400–600 is more restricted than at other points, which may indicate that CPX forms a
stable connection in this region. The total energy variation obtained for CPX in both
systems, CPX:hTOPO-II and CPX:explicit water, is shown in Figure 2 (A and B). The
values remained balanced over the course of the simulation, showing a stabilization of
both systems. Regarding the ligand–protein interaction energy, also shown in Figure 2,
in the CPX:hTOPO-II system, the average value of the total interaction energy was equal
to −94.27 ± 1.02 kJ.mol−1, which corresponds to the sum of the short-range electrostatic
(coulombic) interactions, −36.27 ± 0.77 kJ·mol−1, and the short-range Lennard-Jones
interactions, whose average value was equal to −58 ± 0.67 kJ·mol−1.
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Figure 2. Energy graphs extracted from MD simulations. (A,B) Total energy variation for the
CPX:hTOPO-II and CPX:explicit water systems, respectively. (C) Interaction energy graph for the
CPX:hTOPO-II complex. In C, the black line corresponds to Coulombic-type interactions while the
red line corresponds to Lennard-Jones-type interaction energy.

The hydrogen bonds formed between CPX and hTOPO-II β were the main interactions
responsible for the stability of the molecule in the enzyme active site, as shown in Table 1.
This details the main residues that participated in the intermolecular interactions for the
representative conformations selected by the OWSCA algorithm. Additionally, the number
of hydrogen bonds formed during the MD simulation for all frames is shown in Figure 3.
By analyzing the figure, it can be observed that the CPX shows three hydrogen bonds with
hTOPO-IIβ, two of which are quite frequent during most of the simulation time.

Table 1. Intermolecular interactions between human topoisomerase-II β enzyme and ciprofloxacin
molecule during molecular dynamics simulation.

Frame Time (ps) Residue Interaction Type

1 2000 Asn 520 HBond

2 2200 Asn 520 HBond

3 2300 Leu 507 HBond

4 2400 Asn 520 HBond

5 2600 Asn 520; Gln 516 HBond



Magnetochemistry 2022, 8, 181 6 of 15

Table 1. Cont.

Frame Time (ps) Residue Interaction Type

6 3000 Asn 520 HBond

7 3100 Asn 520 HBond

8 3200 Glu 519; Asn 520; Ala 521 HBond

9 3700 Asn 520; Ala 521 HBond

10 3900 Asn 520; Ala 521 HBond

11 4200 Asn 520 HBond

12 4400 Asn 520; Ala 521 HBond

13 4700 Asn 520; Ala 521 HBond

14 5100 Asn 520; Ala 521 HBond

15 5500 Ala 521 HBond

16 7000 - -

17 7300 Lys 505 π-π; Electrostatic HBond

18 7500 - -

19 7700 Arg 503 HBond

20 7900 Arg 503; Lis 505; Gly 504 π-π

21 8000 - -

22 8250 Lys 505 HBond; π-π

23 8800 - -

24 9000 Ile 506 HBond

25 9200 Ile 506 HBond

26 9400 Ile 506 HBond

27 9500 -

28 9800 Ile 506 HBond

29 10,000 Ile 506 HBond
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Figure 4A shows the hydrogen bonds formed for frame 8, at 3200 ps of simulation,
which is the point when the greatest number of hydrogen interactions can occur. The
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residues that participate in the interaction are Glu 519, Asn 520, and Ala 521. Figure 4B
also shows the π-π stacking interactions between CPX and amino acids residues Arg 503,
Lis 505, and Gly 504.
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In the next step, the chemical shift calculation was performed for the representative
configurations in both systems. For the CPX:explicit water system, the first solvation shell
was maintained in order to represent the presence of explicit solvent molecules in the NMR
calculation. For the CPX:hTOPO-II system, amino acid residues participating in hydrogen
interactions with CPX were maintained in order to represent the change in the chemical
environment of the molecule inside the active site.

3.2. Spectroscopic Parameters: 19F- Chemical Shifts (δ)

Fluorinated compounds have a wide range of applications, including anti-inflammatory
drugs, anesthesiology, and cancer therapy. Di- and trifluoromethyl groups can considerably
improve the profile of bioactive compounds by increasing their uptake and permeability as
they exhibit unique properties such as high electronegativity, lipophilicity, and high steric
demand [89]. 19F NMR spectroscopy is a rapidly emerging tool and an attractive option
for studies of new spectroscopic probes for biological use [90–93]. The main advantages
include its high sensitivity, the very low background signal, the scarce natural occurrence
of fluorinated compounds, and the high magnetic moment that results in a 19F NMR sensi-
tivity similar to that of 1H [94]. The fluorinated compound chosen for this work is a widely
marketed and prescribed antibiotic drug throughout the world [49,95]. This means that
CPX is safe for in vivo use and that much information related to its pharmacodynamics and
pharmacokinetics is already well-known [96–98]. The repositioning drug strategy, which
consists of proposing new uses for existing drugs [99], is a growing field of research. The
implementation of known compounds for new applications saves a considerable amount of
time and resources related to the study of the bioavailability, toxicity, and implementation
of these compounds [100–102].

Theoretical calculations of 19F NMR chemical shifts were performed to investigate
whether the specific interaction of CPX with the hTOPO-IIβ enzyme can be used as a
biologic human topoisomerase identifier. Table 2 contains the average of the calculated
values for the theoretical 19F NMR shifts in all tested systems. The data show a high
similarity between the experimental value and the theoretical value obtained for CPX in
the CPX:explicit water system. The low ∆δ value indicates that the method and the level of
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theory selected are very accurate for this type of calculation [49]. Secondly, the data show
that the value obtained in the calculation using the implicit solvation model, CPX:implicit
water, is far from the experimental value. It is worth mentioning that results for the system
CPX:implicit are similar to values obtained for CPX in a vacuum. Such results indicate
that explicit solvation is adequate for representing the solvent effect on CPX. It can also be
inferred that the explicit presence of the water molecules in the calculation is important
since it creates the proper hydrogen bonding network of water molecules for calculating
19F NMR spectroscopic parameters [103]. As mentioned, the fluorine nucleus has a high
sensitivity when compared to the 13C and 15N nuclei, being almost as sensitive as 1H [104].
In this context, although solvent exposure effects can be difficult to observe in nuclei such
as 13C and 15N NMR, for the 19F nucleus, solvent-induced isotopic shifts can be as high as
0.25 ppm, offering an efficient way to probe solvent exposure [105].

Table 2. Experimental vs. theoretically computed 19F NMR chemical shifts at the DFT/B3LYP/aug-
cc-pVDZ level for a CPX molecule.

System 19F δppm ∆δppm

CPX:aqueous solution (experimental) −43.70 0.00

CPX:explicit water −43.54 −0.16

CPX:hTOPO-II −49.73 6.03

CPX:vacuum −55.11 11.41

CPX:implicit water −56.20 12.50

Analysis of the effect on the 19F NMR chemical shifts caused by the interaction of CPX
with hTOPO-II β (Table 2 and Figures 5 and 6) shows that there was a variation of 6.03 ppm
in relation to the experimental value for CPX in aqueous solution. NMR spectroscopy is a
technique extremely sensitive to conformational effects as well as molecular structure effects,
both of which can be directly affected by modifications in the chemical environment [106].
Interactions that are able to alter the electronic distribution or even the HOMO-LUMO
boundary orbitals can be factors that modify the chemical shift of molecules [107]. Analysis
of the figures reveals that the interactions of CPX with hTOPO-II caused a modification in
the electronic density (Figure 6) and the frontier orbitals of CPX (Figure 7), which provides
a possible explanation for the change in the fluorine chemical shift. This variation in the
19F NMR chemical shift of CPX when it was interacting with the enzyme, represented in
Figure 7, can provide important information regarding the occurrence of the ligand in the
free form, and in the complexed form with the human topoisomerase-IIβ enzyme. The
characteristic signal of CPX when complexed with the enzyme thus constitutes an interest-
ing form of indirect labeling of these proteins, helping to identify their overproduction in
the body and, consequently, in cancer cell mapping [8,18,85].

The results of this study lead us to propose CPX as a possible candidate for 19F NMR
probing, which can be utilized in cancer diagnosis [29,45]. The application of fluorine
probes is advantageous considering that the natural occurrence of fluorine in biological
systems is scarce and the signals from 19F NMR spectroscopy will not find any overlapping
background signals to compete with the fluorine probes, making the spectra simple and easy
to analyze [46,47]. In comparison, the enzyme concentration in tumor cells is higher [10].
Several previous studies have already proven the efficacy of CPX in inhibiting hTOPO-II,
leading to the anti-proliferative and cytotoxic activities of this molecule against several
malignant cells [74,108]. Accordingly, we can expect that the CPX probe will be efficient
and able to reach the desired location. Finally, our study is the first attempt to investigate
the use of 19F NMR of CPX as a probe for cancer diagnosis, providing a starting point for
further exploration of this new possibility. Additional experimental studies must be carried
out in order to obtain more information on the effective implementation of a probe for
this purpose.
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The results of this study show that the interaction of ciprofloxacin with human
topoisomerase-II β can alter the 19F NMR chemical shift signal of ciprofloxacin, when
compared to the same parameter for the free molecule in water. Thus, this well-known an-
timicrobial agent constitutes a possible 19F NMR chemical shift probe for cancer diagnosis,
capable of indirectly labeling the overexpression of human topoisomerase-IIβ enzyme in
the body, and, consequently, able to assist in the detection of cancer cells.

Considering the results of this study and the low toxicity of this commercially used
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ity of this assumption. Moreover, our theoretical findings add to the overall understanding
of the interaction between ciprofloxacin and the human topoisomerase-II β enzyme and
may provide new insights into how it exerts its anti-carcinogenic effect. The results of this
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