Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen
Abstract
:1. Introduction
1.1. Background and Motivation of the Research
1.2. The Basic Mechanism
2. Methods
3. Results and Discussions
3.1. Reactions Chain Initiation of Chain Oxidation
3.2. Chain Generation by Reaction with Dioxygen
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hayashi, H. Introduction to Dynamic Spin Chemistry: Magnetic Field Effects on Chemical and Biochemical Reactions; World Scientific Printers (S) Pte Ltd.: Singapore, 2004; 236p. [Google Scholar] [CrossRef]
- Buchachenko, L. Magneto-Biology and Medicine; Nova Science Publishers: New York, NY, USA, 2014; Volume 144, p. 3. [Google Scholar]
- Kokhan, V.; Matveeva, M.; Mukhametov, A.; Shtemberg, A. Risk of defeats in the central nervous system during deep space missions. Neurosci. Biobehav. Rev. 2016, 71, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Binhi, V.; Prato, F. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS ONE 2017, 12, e0179340. [Google Scholar] [CrossRef] [PubMed]
- Salikhov, K.; Sagdeev, R.M.Y.; Buchachenko, A.A. Spin Polarisation and Magnetic Field Effects in Radical Reaction; Salikhov, K.M., Molin, Y.N., Sagdeev, R.A., Buchachenko, R.L.A., Eds.; Elsevier: Amsterdam, The Netherlands; Akademia Klado: Budapest, Hungary, 1984; 419p. [Google Scholar]
- Kazin, V.; Guzov, E.; Pliss, E.; Moshareva, V.; Makaryin, V.; Levshin, N.; Baranov, A. The effect of a constant magnetic field on components of protein structures in human blood. Biophysics 2017, 62, 998–1007. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, L. Reactive oxygen species: Potential regulatory molecules in response to hypomagnetic field exposure. Bioelectromagnetics 2020, 41, 573–580. [Google Scholar] [CrossRef]
- Buchachenko, A.; Pliss, E. Isotope Effects of Hydrogen and Atom Tunnelling//Russian Chemical Reviews. 2016. V. 85. I. 6. p. 557–564. Available online: https://www.elibrary.ru/item.asp?id=27066411 (accessed on 10 February 2022).
- Sampson, C.; Keens, R.; Kattnig, D. On the magnetosensitivity of lipid peroxidation: Two- versus three-radical dynamics. Phys. Chem. Chem. Phys. 2019, 21, 13526. [Google Scholar] [CrossRef] [Green Version]
- Lukzen, N.; Ivanov, K.; Sadovsky, V.; Sagdeev, R. Magnetic field effect on recombination of radicals diffusing on a two-dimensional plane. J. Chem. Phys. 2020, 152, 34103. [Google Scholar] [CrossRef]
- Eichwald, C.J.; Walleczek, J. Low-frequency-dependent effects of oscillating magnetic fields on radical pair recombination in enzyme kinetics. J. Chem. Phys. 1997, 107, 4943. [Google Scholar] [CrossRef]
- Woodward, J. Radical pairs in solution. Prog. React. Kinet. Mech. 2002, 27, 165–207. [Google Scholar] [CrossRef]
- Buchachenko, A. Experimental testing of molecular dynamic function of pairs by the isotope selectivity of radical recombination. Russ. Chem. Bull. 1995, 44, e1571–e1577. [Google Scholar] [CrossRef]
- Adam, B.; Sinayskiy, I.; Petruccione, F. An open quantum system approach to the radical pair mechanism. Sci. Rep. 2018, 8, 15719. [Google Scholar] [CrossRef]
- Buchachenko, A.; Bukhvostov, A.; Ermakov, K.; Kuznetsov, D. A specific role of magnetic isotopes in biological and ecological systems. Physics and biophysics beyond. Prog. Biophys. Mol. Biol. 2020, 155, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Usselman, R.; Hill, I.; Singel, D.; Martino, C. Spin biochemistry modulates Reactive Oxygen Species (ROS) production by radio frequency magnetic fields. PLoS ONE 2014, 9, 93065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliss, E.; Grobov, A.; Kuzaev, A.; Buchachenko, A. Magnetic field effect on the oxidation of hydrocarbons by molecular oxygen. Mendeleev Commun. 2017, 27, 246–247. [Google Scholar] [CrossRef]
- Pliss, E.; Grobov, A.; Kuzaev, A.; Buchachenko, A.L. Magnetic field effect on the oxidation of organic substances by molecular oxygen. J. Phys. Org. Chem. 2019, 32, e3915. [Google Scholar] [CrossRef]
- Pliss, E.; Grobov, A.; Kuzaev, A.; Buchachenko, A. Magnetic field as a means to identify initiating reaction in oxidation of organic substances by molecular oxygen. Mendeleev Comm. 2020, 30, 433–435. [Google Scholar] [CrossRef]
- Pliss, E.; Grobov, A.; Kuzaev, A.; Buchachenko, A. Magnetic field effects on the initiation of chain oxidation. Mendeleev Commun. 2021, 31, 341–342. [Google Scholar] [CrossRef]
- Fedin, M.; Purtov, P.; Bagryanskaya, E. Spin relaxation of radicals in low and zero magnetic field. J. Chem. Phys. 2003, 118, 192–201. [Google Scholar] [CrossRef]
- Gohdo, M.; Wakasa, M.; Kitahama, Y.; Sakaguchi, Y.J. Magnetic field effects due to the relaxation mechanism observed for the photo-induced electron transfer reaction of zinc (II) tetraphenylporphyrin and 2-methyl-1, 4-naphthoquinone. Photochem. Photobiol. A Chem. 2008, 199, 130–135. [Google Scholar] [CrossRef]
- McKenzie, I. Spin relaxation of a short-lived radical in zero magnetic field. Phys. Chem. Chem. Phys. 2011, 13, 1168–1173. [Google Scholar] [CrossRef]
- Denisov, E.; Afanas’ev, I. Oxidation and Antioxidants in Organic Chemistry and Biology; CRC Press: Boca Raton, FL, USA, 2005; p. 992. [Google Scholar] [CrossRef]
- Pliss, E.; Safiulin, R.; Zlotsky, S. Inhibited Oxidation of Unsaturated Compounds. In Kinetics, Mechanism, Correlation of Structure with Reactionary Ability; LAP LAMBERT Academic Publishing: Saarbruchen, Germany, 2012; p. 130. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Becke, D.A. The performance of a family of density functional methods. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef] [Green Version]
- Miehlich, B.; Savin, S.; Preis, N. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 1477–1489. [Google Scholar] [CrossRef]
- Mueller, M. Fundamentals of quantum chemistry. Molecular spectroscopy and modern electronic structure computing. Science 2001, 2, 291–292. [Google Scholar] [CrossRef] [Green Version]
- Apra, E.; Bylaska, E.J.; De Jong, W.A.; Govind, N.; Kowalski, K.; Straatsma, T.P.; Valiev, M.; van Dam, H.J.; Alexeev, Y.; Anchell, J.; et al. NWChem: Past, present, and future. J. Chem. Phys. 2020, 152, 184102. [Google Scholar] [CrossRef] [PubMed]
- Van Lenthe, E.; Baerends, E.; Snijders, J. Relativistic total energy using regular approximations. J. Chem. Phys. 1993, 101, 9783–9792. [Google Scholar] [CrossRef]
- Van Lenthe, E.; Ehlers, A.; Baerends, E. Geometry optimization in the Zero Order Regular Approximation for relativistic effects. J. Chem. Phys. 1999, 110, 8943–8953. [Google Scholar] [CrossRef] [Green Version]
- Nichols, P.; Govind, N.; Bylaska, E.; de Jong, W. Gaussian basis set and planewave relativistic spin−orbit methods in NWChem. J. Chem. Theory Comput. 2009, 5, 491–549. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [Green Version]
- Khudyakov, I.; Arsu, N.; Jockusch, S.; Turro, J. Magnetic and spin effects in the photoinitiation of polymerization. Desig. Monomers Polym. 2003, 6, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Rintoul, I. Kinetic control of aqueous polymerization using radicals generated in different spin states. Processes. Open Access Chem. Biolog. Proc. Eng. J. 2017, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Denisov, E.; Denisova, T.; Pokidova, T. Handbook of Radicals Initiators; Wiley: New York, NY, USA, 2003; p. 886. [Google Scholar] [CrossRef] [Green Version]
Parameter | t = 0 | t = 1 ps | |
---|---|---|---|
Singlet | Triplet | ||
gxx | 2.002226 | 2.002388 | 2.002331 |
gyy | 2.003132 | 2.003412 | 2.003585 |
gzz | 2.003851 | 2.004030 | 2.003647 |
Aeff ·10−8, Hz | 2.39 | 1.84 | 2.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pliss, E.M.; Soloviev, M.E. Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen. Magnetochemistry 2022, 8, 44. https://doi.org/10.3390/magnetochemistry8040044
Pliss EM, Soloviev ME. Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen. Magnetochemistry. 2022; 8(4):44. https://doi.org/10.3390/magnetochemistry8040044
Chicago/Turabian StylePliss, Evgenii M., and Mikhail E. Soloviev. 2022. "Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen" Magnetochemistry 8, no. 4: 44. https://doi.org/10.3390/magnetochemistry8040044
APA StylePliss, E. M., & Soloviev, M. E. (2022). Magnetic Field Effect on the Oxidation of Unsaturated Compounds by Molecular Oxygen. Magnetochemistry, 8(4), 44. https://doi.org/10.3390/magnetochemistry8040044