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Abstract: Magnetic multilayer with large perpendicular magnetic anisotropy (PMA) has attracted
sustained interest owing to its importance to fundamental physics and applications. In this work, the
high quality of Pt/Co/Pt heterostructures with large PMA was successfully achieved to exhibit a large
anomalous Hall effect (AHE) with squared Hall loops. By calculating the proportional relationship
between the longitudinal resistivity (ρxx) and the abnormal Hall coefficient (Rs), it is confirmed
that the basic mechanism of AHE comes from the external skew scattering (SS) and side jump (SJ),
while SS contribution, related to asymmetric scattering from impurities, is dominant in the AHE.
Furthermore, the obvious magneto-optical Kerr effect (MOKE) was also observed using the polar
MOKE microscopy. The obviously circular magnetic domain can form and propagate in response to
the applied out-of-plane magnetic field, resulting in the magnetization reversal of the entire film. This
work offers important information in terms of both AHE and MOKE in the ultrathin ferromagnetic
films with perpendicular anisotropy, establishing the application foundation for the nonvolatile
memories and spintronics.

Keywords: magneto-optical Kerr effect; anomalous Hall effect; perpendicular magnetic anisotropy;
magnetic domain wall

1. Introduction

The anomalous Hall effect (AHE) of ferromagnets has attracted much attention owing
to its potential physical principles and wide applications [1–5]. For example, Trukhanova
E.L. et al. investigated the effectiveness of Ni80Fe20/Cu films of different thicknesses for
shielding direct current and alternating current electromagnetic signals. In general, the
AHE of magnetic films or oxide magnetic materials is attributed to internal and external
mechanisms [6–8]. The intrinsic mechanism is not related with the impurity scattering and
associated with the Berry curvature of the band structures. While the extrinsic mechanisms,
including the skew scattering (SS) and side jump (SJ) contributions, are related to spin–orbit
coupling-dependent scattering from impurities or interfaces. SS is derived by asymmet-
ric electron scattering and SJ comes from the transverse displacement of the electrons
wave function by impurity scattering [9,10]. So far, various kinds of strategies have been
developed to modulate AHE for spintronic applications based on these mechanisms [11,12].

As the typical magnetic metal layers that have strong perpendicular magnetic anisotropy
(PMA), the Co/Pt layers possess great application potential in high-density nonvolatile
magnetic memories and spintronic devices [13,14]. Aboaf et al. researchers controlled
different Pt components in Pt/Co alloy magnetic films to achieve different magnetization
and coercivity [15]. A.V. Svalov et al. studied the influence of magnetic fields of different
directions and strengths on the anomalous Hall effect in Pt/Co films with different thick-
nesses [16]. Through the first principal calculation and related experiments, it is confirmed
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that the origin of PMA in Co/heavy metals is the hybridization 3d electron orbitals of Co
and 5d electron orbitals of heavy metal in a multilayer membrane system [17–19]. In order to
understand and observe the magnetization reversal process of the Pt/Co/Pt magnetic film,
the magnetic domain of the film was observed using the magneto-optical Kerr microscope
with the application of magnetic field outside the surface. The complete and clear magnetic
domain expansion image means a large PMA in the heterostructure [13,20–23]. In this
work, the mechanisms of AHE and magneto-optic Kerr effect in Pt/Co/Pt heterostructure
have been studied. Our experimental results and data scaling relationships show that both
SJ and SS contribute to the AHE in the Pt/Co/Pt heterostructured films and SS plays a
dominant role in the AHE. In addition, the clear magnetic domain image was observed by
magneto-optic Kerr microscope. The ferromagnetic heterostructures with large AHE and
PMA hold great promise for magnetic sensors and nonvolatile memory.

2. Experimental Section

Magnetic thin films of Pt/Co/Pt heterostructures were prepared by magnetron sput-
tering with 4 mTorr pressure under Ar conditions. Lower partial pressure of nitrogen
means better quality of thin film crystals [24]. The metal targets were high purity Pt (99.9%)
and Co (99.9%), respectively. Firstly, 120 å Pt layer was grown on Si/SiO2 substrate as
buffer layer and the Co layer was deposited on the Pt layer. Then, an additional 20 å Pt
layer was deposited on top of the Co layer to avoid oxidation. Figure 1 shows the X-ray
diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements for Pt/Co/Pt
heterostructures. The magnetic properties of the heterostructures at the temperatures from
100 K to 300 K are measured by PPMS. The magnetic resistance was also measured in the
same temperature range by the standard four-probe technique. Magneto-optical images
are observed at room temperature with a homemade magneto-optical Kerr effect (MOKE)
microscope, using a LED with wavelength of 650 nm as the light source.
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Figure 1. (a) Schematic of Pt/Co/Pt heterostructure on Si/SiO2 substrate. (b) XPS survey spectra of
the Pt in Pt/Co/Pt heterostructure. The inset is the XRD spectra of the heterostructure.

3. Results and Discussion

The architecture of the Pt/Co/Pt heterostructures is indicated in Figure 1a.
In Figure 1b, the XRD and XPS were used to further characterize the crystal quality

of the magnetic film. The Pt signals with the binding energy of 72.1 eV and 75.1 eV were
observed. The peak at 75.1 eV indicates that the surface of the Pt layer adsorbs the H2O
and O2 in air [7,25]. The XRD result in the inset of Figure 1b shows the diffraction peak of
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Pt is located at around 39◦ (Green) indicating a well (111) phase of Pt layer. The peak of 44◦

(Red) is corresponding to the Co (111) layer [26].
The magnetic properties of the Pt/Co/Pt film were further measured using the PPMS

system. As shown in Figure 2, the film exhibits the obvious out-of-plane (OOP) magnetic
hysteresis loops of Pt/Co/Pt thin films as a function of temperature, presenting squared
OOP hysteresis loops indicating strong perpendicular magnetic anisotropy [27,28]. The sat-
uration magnetization obviously decreases with decreasing temperature. On the contrary,
the coercivity increases with the decrease in temperature. The large temperature depen-
dence of the hysteresis loop is probably attributed to the 20 å Pt with a better (111) phase,
which improves the crystal and interface quality between Pt/Co. The effective anisotropy
Ke f f can be calculated by: Ke f f = MsHk/2, where Ms is the saturation magnetization and
Hk is the anisotropy field in VSM, which measuring the area between the hard and easy
axes of the magnetization curves [29,30]. When the temperature ranges from 300 to 100 K,
the Ke f f of heterostructure is calculated to be from 3.5 × 105 erg/cc to 7.5 × 105 erg/cc,
showing a strong PMA and great application promise in magnetic tunnel junctions. There
is a strong orbital hybridization between the Pt (heavy metals) 5d and Co 3d orbitals at
the Co/Pt interface, which increases the magnetic moment of the vertical orbital in the
Co layer.
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Figure 2. M-H hysteresis loops of Pt/Co/Pt heterostructure under OOP magnetic field between
100 K and 300 K. The inset is the photograph of the film.

To further study the AHE of thin films, the heterostructure devices with four electrodes
Hall bar geometry are fabricated by lithography technology. Figure 3a indicates the optical
microscope image of the Hall bar device. The measurement schematic is presented in
Figure 3b. Direct current is applied with 100 µA in the X-axis. The voltages in X (Vxx)
and Y (Vxy) directions are measured with a magnetic field applied along the Z-direction,
respectively. Figure 4a displays the dependence of the transverse Hall resistivity (ρAH) on
the magnetic field at different temperatures. The M-H and ρAH-H curves show the obvious
PMA in the heterostructure with the high squareness ratio of the hysteresis loop [31]. We
observed the obvious anomalous Hall effect, where the ρAH exhibits squared hysteresis
loop. The coercivity increases with the decrease in temperature, which is consistent with
the results from the vibrating sample magnetometer measurement in Figure 2. At the
field higher than coercivity, the Hall resistivity ρAH shows a linear and independence on
external magnetic field because of the highly alignment of the spins. Figure 4b displays
the temperature dependence of the ρAH and ρxx, respectively. ρxx is the longitudinal
resistivity, which is the resistivity at the magnetic field of 0.15 T with the magnetization
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reaching saturation. Both ρxx and ρAH increase significantly with increasing temperature,
demonstrating the metallic behavior of the film. The metallic nature makes the interaction
of spin and charge degrees of freedom form the AHE well. Figure 4c,d display the curves of
ρAH-ρxx and Rs-ρxx, respectively. There is a positive signal with Hall resistivity indicating
that the Fermi level is on the side of the spin-down band, implying the majority of electron
characteristics. Fermi level is on the side of the spin-down band [32]. The reason is that the
heavy metal Pt layer increases the electron scattering at the Co/Pt interface, inducing the
spin–orbit torque on the heterostructures [3,33–35]. To further understand the origin of the
AHE, we fitted the Rs-ρxx curves using a simple formula:

Rs = aρxx + bρ2
xx (1)

where Rs is the anomalous Hall coefficient, which can be calculated by Rs = ρAH/(Ms × 4π),
for the AHE of the heterostructure shown in Figure 4a; the fitting constants of a and b indicate
the contribution of SS and SJ for AHE, respectively. From the fitting curves, the a and b are
2.09 × 10−5 T−1 and 2.45 × 10−6 µΩ · cm/T, respectively. The absolute magnitude of SS is an
order of magnitude larger than that of the SJ, which reveals that the AHE is attributed to both
SS and SJ but the contribution of SS is dominant in the AHE of the Pt/Co/Pt heterostructure.
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Figure 3. (a) Optical image of Pt/Co/Pt heterostructure device with Hall bar. The scale bar is 20 µm.
(b) Schematic diagram of the measurement device for Hall and longitudinal resistivity.

We further used the magneto-optic Kerr microscope to characterize the magnetic
domain of Pt/Co/Pt films. The polarization can be changed upon the reflection of polarized
light from the surface of magnetic film, which is called magneto-optic Kerr effect (MOKE),
enabling the easy observation of coercivity, magnetization reversal and domain structure.
Figure 5a shows the hysteresis loops measured by MOKE. A wide-field MOKE microscope
in configured polarized light is used to capture images of magnetic domains which are
sensitive to out-of-plane magnetization in magnetic films. The evolution of the magnetic
domain as a function of applied field by subtracting the background has been shown in
Figure 5b–i. The dark and bright regions are corresponding to magnetic domains with
downward and upward magnetization, respectively. Because of rectangularity of the
hysteresis loop in Pt/Co/Pt film, circular magnetic domains nucleate at random positions,
then diffuse and propagate in the entire film (see Supplementary Material). The magnetic
domain wall is the boundary between the two regions of light and dark. The complete and
clear magnetic domain expansion image because of the high-quality interface in Pt/Co/Pt
can enable a stronger hybridization and a large increase in PMA.
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4. Conclusions

In this work, we have successfully fabricated the Pt/Co/Pt heterostructure with supe-
rior anomalous Hall effect and magneto-optic Kerr effect. We found that the underlying
mechanism of AHE is ascribed to both SS and SJ. Circular magnetic domain of the het-
erostructure has been clearly observed through a magneto-optic Kerr microscope. The
square hysteresis loop and clear magnetic domain indicate the high quality of the ferro-
magnetic film with large PMA. This work offers key information for fundamental physics
and potential applications of ultrathin ferromagnetic film.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/magnetochemistry8050056/s1, Video S1: The video for the evolution of the magnetic domain
can be seen in the Supporting Information.
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