Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.W.; Mizoguchi, H.; Kodama, K.; Shamoto, S.; Otomo, T.; Matsuishi, S.; Kamiya, T.; Hosono, H. Magnetic Structure and Electromagnetic Properties of LnCrAsO with a ZrCuSiAs-type Structure (Ln = La, Ce, Pr, and Nd). Inorg. Chem. 2013, 52, 13363–13368. [Google Scholar] [CrossRef]
- McGuire, M.A.; Garlea, V.O. Short- and long-range magnetic order in LaMnAsO. Phys. Rev. B 2016, 93, 054404. [Google Scholar] [CrossRef] [Green Version]
- Yanagi, H.; Kawamura, R.; Kamiya, T.; Kamihara, Y.; Hirano, M.; Nakamura, T.; Osawa, H.; Hosono, H. Itinerant ferromagnetism in the layered crystals LaCoOX (X = P, As). Phys. Rev. B 2008, 77, 224431. [Google Scholar] [CrossRef] [Green Version]
- Ohta, H.; Yoshimura, K. Magnetic properties of LCoAsO (L = La–Gd). Phys. Rev. B 2009, 80, 184409. [Google Scholar] [CrossRef] [Green Version]
- Prando, G.; Bonfa, P.; Profeta, G.; Khasanov, R.; Bernardini, F.; Mazzani, M.; Bruning, E.M.; Pal, A.; Awana, V.P.S.; Grafe, H.J.; et al. Common effect of chemical and external pressures on the magnetic properties of RCoPO (R = La, Pr). Phys. Rev. B 2013, 87, 064401. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Yanagi, H.; Kamiya, T.; Kamihara, Y.; Hiramatsu, H.; Hirano, M.; Hosono, H. Nickel-Based Oxyphosphide Superconductor with a Layered Crystal Structure, LaNiOP. Inorg. Chem. 2007, 46, 7719–7721. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.-C.; Mei, Y.-X.; Li, Y.-K.; Li, L.; Tang, Z.-T.; Liu, Y.; Zhang, P.; Zhai, H.-F.; Xu, Z.-A.; et al. A New ZrCuSiAs-Type Superconductor: ThFeAsN. J. Am. Chem. Soc. 2016, 138, 2170–2173. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-C.; Shao, Y.-T.; Wang, C.; Wang, Z.; Xu, Z.-A.; Cao, G.-H. Enhanced superconductivity in ThNiAsN. Europhys. Lett. 2017, 118, 57004. [Google Scholar] [CrossRef]
- Shiroka, T.; Shang, T.; Wang, C.; Cao, G.-H.; Eremin, I.; Ott, H.-R.; Mesot, J. High-Tc superconductivity in undoped ThFeAsN. Nat. Commun. 2017, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Guo, G.-Y. Pressure induced Lifshitz transition in ThFeAsN. Phys. Rev. Mater. 2020, 4, 104802. [Google Scholar] [CrossRef]
- Sen, S.; Guo, G.-Y. Electronic structure, lattice dynamics, and magnetic properties of ThXAsN (X=Fe,Co,Ni) superconductors: A first-principles study. Phys. Rev. B 2020, 102, 224505. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, S.-Q.; Lu, H.-Y.; Gu, L.-T.; Chen, Z.-P. Electronic Properties and Lattice Dynamics Studies of the Nickel-Based Superconductor ThNiAsN. J. Supercond. Nov. Magn. 2018, 31, 3153–3158. [Google Scholar] [CrossRef]
- Zhang, F.; Li, B.; Ren, Q.; Mao, H.; Xia, Y.; Hu, B.; Liu, Z.; Wang, Z.; Shao, Y.; Feng, Z.; et al. ThMnPnN (Pn = P, As): Synthesis, Structure, and Chemical Pressure Effects. Inorg. Chem. 2020, 59, 2937–2944. [Google Scholar] [CrossRef] [PubMed]
- Corkett, A.J.; Free, D.G.; Clarke, S.J. Spin-reorientation transition in CeMnAsO. J. Clarke Inorg. Chem. 2015, 54, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Marcinkova, A.; Hansen, T.; Curfs, C.; Margadonna, S.; Bos, J.-W. Nd-induced Mn spin-reorientation transition in NdMnAsO. Phys. Rev. B 2010, 82, 174438. [Google Scholar] [CrossRef] [Green Version]
- Kimber, S.; Hill, A.; Zhang, Y.-Z.; Jeschke, H.; Valentí, R.; Ritter, C.; Schellenberg, I.; Hermes, W.; Pöttgen, R.; Argyriou, D.N. Local moments and symmetry breaking in metallic PrMnSbO. Phys. Rev. B 2010, 82, 100412. [Google Scholar] [CrossRef] [Green Version]
- Satya, A.T.; Mani, A.; Arulraj, A.; Chandrashekar, N.V.; Vinod, K.; Sundar, C.S.; Bharathi, A. Pressure-induced metallization of BaMn2As2. Phys. Rev. B 84, 180515(R); Erratum in Phys. Rev. B 2012, 85, 019901. [Google Scholar] [CrossRef]
- Sen, S.; Kabbour, H. Pressure induced magnetic and structural transitions in ThMnAsN: An ab-initio study. arXiv 2022, arXiv:2207.00977. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- Bloch, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505. [Google Scholar] [CrossRef]
- Yu, K.; Carter, E.A. Communication: Comparing ab initio methods of obtaining effective U parameters for closed-shell materials. J. Chem. Phys. 2014, 140, 121105. [Google Scholar] [CrossRef]
- Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 2005, 71, 035105. [Google Scholar] [CrossRef] [Green Version]
- Kulik, H.J.; Cococcioni, M.; Scherlis, D.A.; Marzari, N. Density Functional Theory in Transition-Metal Chemistry: A Self-Consistent Hubbard U Approach. Phys. Rev. Lett. 2006, 97, 103001. [Google Scholar] [CrossRef] [Green Version]
- Mosey, N.J.; Carter, E.A. Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. Phys. Rev. B 2007, 76, 155123. [Google Scholar] [CrossRef]
- Mosey, N.J.; Liao, P.; Carter, E.A. Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J. Chem. Phys. 2008, 129, 14103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryasetiawan, F.; Karlsson, K.; Jepsen, O.; Schönberger, U. Calculations of Hubbard U from first-principles. Phys. Rev. B 2006, 74, 125106. [Google Scholar] [CrossRef] [Green Version]
- Miyake, T.; Aryasetiawan, F. Screened Coulomb interaction in the maximally localized Wannier basis. Phys. Rev. B 2008, 77, 085122. [Google Scholar] [CrossRef]
- Şaşíoğlu, E.; Friedrich, C.; Blügel, S. Effective Coulomb interaction in transition metals from constrained random-phase approximation. Phys. Rev. B 2011, 83, 121101. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 2006, 73, 195107. [Google Scholar] [CrossRef]
ThMnAsN | ThMnPN | |||
---|---|---|---|---|
Magnetic | Energy | Mn Moment | Energy | Mn Moment |
Order | (meV/f.u.) | () | (meV/f.u.) | () |
NM | 0 | 0 | 0 | 0 |
FM | −317.8 | 2.39 | −332.8 | 2.03 |
A-AFM | −322.3 | 2.69 | −332.1 | 1.91 |
C-AFM | −781.1 | 3.52 | −701.7 | 3.34 |
G-AFM | −780.3 | 3.52 | −700.9 | 3.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sen, S.; Ghosh, H. Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study. Magnetochemistry 2023, 9, 16. https://doi.org/10.3390/magnetochemistry9010016
Sen S, Ghosh H. Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study. Magnetochemistry. 2023; 9(1):16. https://doi.org/10.3390/magnetochemistry9010016
Chicago/Turabian StyleSen, Smritijit, and Haranath Ghosh. 2023. "Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study" Magnetochemistry 9, no. 1: 16. https://doi.org/10.3390/magnetochemistry9010016
APA StyleSen, S., & Ghosh, H. (2023). Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study. Magnetochemistry, 9(1), 16. https://doi.org/10.3390/magnetochemistry9010016