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Abstract: A dicompartmental Schiff base ligand was synthesized and used for the assembly of a
lanthanide grid-like complex. Dinuclear Dy2 and tetranuclear Dy4 complexes were isolated from
the reaction of the ligand with different dysprosium salt. Single crystal X-ray diffractions show that
the two DyIII ions in Dy2 are adopted in the N3O coordination pockets of the ligand and further
coordinated by water molecules, whereas, for Dy4, the four DyIII ions are clamped by four ligands
through their terminal N3O coordination pockets, forming a grid-type assembly. Magnetic studies
reveal that complex Dy2 shows field-induced single-molecule magnetic behavior under 1000 Oe dc
field, complex Dy4 shows fast relaxation under zero field and field-induced single-molecule magnet
(SMM) behavior under 500 Oe. The difference in the magnetic relaxation is related to the various
deprotonation of the ligand and distinct topology of the assemblies.
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1. Introduction

Lanthanides single-molecule magnets (Ln-SMMs) have attracted much attention since
the first discovery of (Bu4N)[Tb(Pc)2] [1], which shows record energy barriers and different
relaxation mechanisms from that of the transition-metal-cluster SMMs. Since then, lan-
thanide has become the best candidate for the design and synthesis of high-performance
SMMs [2–5] due to its potential applications in high-density information storage, quantum
information processing [6], and molecular spintronic materials [7–12]. During the last two
decades, thousands of Ln-SMM have been reported, and the record energy barrier (Ueff)
and blocking temperature (TB) were refreshed up to 1541 cm−1 and 80 K,[13] respectively,
pushing the potential application of SMMs into reality. However, due to the presence of fast
quantum tunneling of magnetization (QTM), the relaxations of magnetizations in most of
the reported SMMs are short cut, resulting in a relatively low blocking temperature [14–16].

One efficient way for suppressing QTM in Ln-SMM is restricting the lanthanide ions
in an axial ligand field, such as C∞v [17,18], D4d [19–22], D5h [23–25], and D6d coordination
geometries for DyIII ions. Due to the inherent high coordination number and flexible coor-
dination nature of lanthanide ions, it is very difficult and challenging to fix the lanthanide
ions in a perfect due coordination geometry. Alternatively, introducing magnetic interaction
between lanthanide ions can suppress the QTM efficiently [26], especially in polynuclear
SMMs. For instance, the reported single-electron Ln–Ln coupling in dimetallofullerenes
shows very strong exchange interactions between 4f moments that result in a gigantic
coercivity of 8.2 teslas at 5 K and blocking temperature up to 25.2 K [27–29]. Long and
co-workers reported a mixed-valence dilanthanide complexes (CpiPr5)2Dy2I3 that gives
rise to an enormous coercive magnetic field with a lower bound of 14 tesla up to 60 K [30].
Additionally, high-performance polynuclear SMMs are also found in radical [31–33] and
µ2-OH− bridged [34–36] dinuclear lanthanide complexes, in which the spin centers are in
axial ligand field and strongly coupled, suppressing the QTM efficiently. For Ln-SMMs
with higher nuclearity, the poor axial ligand field, as well as the complicated topology of
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the molecule, make it difficult to manipulate the relaxation processes and suppress the
QTM [37–39].

Our research interests are focused on the unique magnetic behavior [40] in grid-type
lanthanide assemblies, in which the QTM could be suppressed by the magnetic interaction
between lanthanide ions [41]. For this, we have designed several types of ditopic and
tritopic hydrazone ligands with suitable coordination pockets to accommodate lanthanide
ions and arrange them in a grid [42–44] or hexagonal [45–47] topology. Herein, the linkers in
the ligands are very important for the transmission of intermolecular magnetic interactions.
As was reported in the literature, pyrimidine is a good linker to arrange transition metal
ions into grid-type topologies [48–52]. However, the assembly of lanthanide grids based on
pyrimidine ligands is rare [53]. Herein, we designed a pyrimidine-based dicompartmental
Schiff base ligand with a pyrimidine linker, by using which a dinuclear Dy2 was isolated
(Scheme 1). After optimizing the reaction conditions, tetranuclear Dy4 featuring a [2 × 2]
grid topology was also obtained. The magnetic study revealed that complex Dy2 shows
field-induced single-molecule magnetic behavior under a 1000 Oe dc field. Dy4 shows fast
relaxation under zero field, which was slowed down by the application of 500 Oe, resulting
in the field-induced single-molecule magnet.
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Scheme 1. Schematic drawing of the assemblies of complexes Dy2 and Dy4 from the dicompartmental
Schiff base ligand.

2. Materials and Methods
2.1. Synthesis of Ligand H2L

A 100-mL flask was charged with a magnetic stirrer bar and 4,6-dihydrazineylpyrimid-
ine [54] (1.4 g, 10 mmol, 1 eq) in 50 mL methanol. 6-(hydroxymethyl)-2-carbaldehyde-
pyridine [55] (2.74 g, 20 mmol, 2 eq) was then added. The reaction was stirred and
refluxed overnight. Upon cooling, the precipitate was filtered, washed with ether, and
dried under vacuum, giving the pure product H2L (((pyrimidine-4,6-diylbis(hydrazin-2-
yl-1-ylidene))bis(methaneylylidene))bis(pyridine-6,2- diyl))dimethanol) as a pale yellow
powder. Yield: 3.1 g (82%). Elemental analysis (%) calcd for C18H18N8O2, MW = 378.16: C,
57.14, H, 4.79, N, 29.61; found C, 57.28, H, 4.81, N, 29.65. 1H NMR (500 MHz, DMSO-d6)
δ = 11.43 (2 H, s), 8.24 (1 H, d, J 0.9), 8.14 (2 H, s), 7.93–7.85 (4 H, m), 7.46 (2 H, d, J 7.3),
6.94 (1 H, s), 5.47 (2 H, d, J 6.0), 4.62–4.58 (4 H, m). IR (KBr disks) ῦ [cm−1] = 3394 (w),
3190 (m), 3047 (w), 1608 (s), 1585 (s), 1562 (s), 1504 (m), 1462 (m), 1421 (m), 1375 (m),
1323 (m), 1255 (m), 1198 (m), 1134 (s), 1084 (m), 993 (m), 916 (w), 833 (s), 746 (s), 719 (m),
651 (m), 624 (w), 561 (w), 501 (w) 463 (w).

2.2. Synthesis of Dy2

DyBr3·9H2O (0.6 mmol) and ligand H2L (0.2 mmol) in a mixture of 10 mL methanol
and 5 ml DCM was stirred at room temperature for 10 min. The reaction was stirred at
room temperature overnight. The solution was filtered and exposed to air to allow the
slow evaporation of the solvent. Yellow crystals of Dy2 suitable for X-ray diffraction were
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obtained after 4 days. Yield: 90 mg, (32%, based on metal salt). Elemental analysis (%)
calcd for [Dy2(H2L)(H2O)10]·Br6·3H2O (C18H44Br6Dy2N8O15, MW = 1417.07): C, 15.26, H,
3.14, N, 7.91; found C, 15.28, H, 3.11, N, 7.85. IR (KBr disks) ῦ [cm−1] = 3336 (br, w),
3207 (br, w), 3060 (br, w), 1635 (s), 1610 (s), 1568 (m), 1531 (w), 1514 (w), 1487 (m),
1456 (m), 1410 (w), 1290 (m), 1221 (w), 1188 (s), 1146 (m), 1101 (w), 1049 (w), 1012 (w),
827 (w), 740 (w), 696 (w), 655 (w), 605 (w), 567 (w), 544 (m), 501 (w), 476 (m), 459 (w), 447 (w).

2.3. Synthesis of Dy4

A mixture of Dy(ClO4)3·6H2O (0.3 mmol) and ligand H2L (0.2 mmol) in a mixture of
10 mL methanol and 5 ml DCM was stirred at room temperature for 10 min, triethylamine
(0.2 mmol) was then added dropwise. The reaction was stirred at room temperature
overnight. The solution was filtered and exposed to air to allow the slow evaporation
of the solvent. Yellow crystals of Dy4 suitable for X-ray diffraction were obtained af-
ter 5 days. Yield: 97 mg (65%, based on metal salt). Elemental analysis (%) calcd for
[Dy4L4]·(ClO4)4·12MeOH·4H2O (C84H120Cl4Dy4N32O40, MW = 3009.91): C, 33.52, H,
4.02, N, 14.89; found C, 33.49, H, 4.03, N, 14.78. IR (KBr disks) ῦ [cm−1] = 3456 (br, w),
3343 (br, w), 3016 (br, w), 2981 (br, w), 1635 (s), 1606 (s), 1558 (m), 1533 (m), 1477 (s),
1417 (m), 1375 (w), 1297 (m), 1223 (w), 1193 (s), 1145 (w), 1101 (s), 1036 (w), 1006 (w),
898 (w), 771 (w), 654 (w), 625 (m), 597 (w), 578 (w), 525 (w), 501 (w), 469 (w).

2.4. Crystallography

Single-crystal X-ray diffraction data were collected by the Bruker Apex II CCD diffrac-
tometer (Bruker AXS GMBH, Germany), using graphite-monochromatized Mo-Kα ra-
diation (λ = 0.71073 Å). In the Olex2 package [56], the structures were solved by us-
ing SHELXT [57] (direct methods), and all non-hydrogen atoms were refined by using
SHELXL [58] (full-matrix least-squares techniques) on F2 with anisotropic thermal parame-
ters). All hydrogen atoms were introduced in calculated positions and refined with fixed
geometry relative to their carrier atoms. The solvent voids (164.1 Å3 and 14.1 e− peer cell)
in Dy4 were refined using a solvent masking routine in the Olex2 package. Due to the
poor diffraction of Dy4, it is difficult to introduce hydrogen atoms on some of the solvent
molecules in the lattice. Crystallographic data of Dy2 and Dy4 are listed in Table S1. CCDC
2220302 and 2220303 contain supplementary crystallographic data for this paper.

2.5. Magnetic Measurements

Magnetic measurements were performed by using a Quantum Design MPMS-XL-7
SQUID magnetometer (Quantum Design, United States) equipped with a 7 T magnet.
Susceptibility measurements were carried out on the polycrystalline sample of the two
complexes. In the temperature range of 2–300 K, the direct-current (dc) susceptibility
measurements were obtained under an applied field of 1000 Oe. Diamagnetic corrections
were made with Pascal’s constants [59] for all the constituent atoms and the contributions
of the sample holder. The field-dependent magnetizations were obtained in the field range
of 0−7 T. In the frequency range of 1–1488 Hz, the alternating-current (ac) susceptibility
measurements were obtained in a 3 Oe ac oscillating field under various dc fields.

3. Results and Discussions
3.1. Structures of Dy2 and Dy4

The ligand H2L ((((pyrimidine-4,6-diylbis(hydrazin-2-yl-1-ylidene)) bis(methaneylyli-
dene))bis(pyridine-6,2-diyl))dimethanol) was synthesized from the condensation of
4,6-dihydrazineylpyrimidine and 6-(hydroxymethyl)-2- carbaldehyde-pyridine in good
yield (Figure S1). As shown in Scheme 1, two four-membered O-N-N-N pockets reside at
both sides of the ligand, which can capture two DyIII ions in a planar arrangement. Indeed,
a dinuclear Dy2, with formula of [Dy2(H2L)(H2O)10]·Br6·3H2O, was obtained from the
reaction of DyBr3·9H2O (0.6 mmol) and ligand H2L. Yellow crystals of Dy2 suitable for
X-ray diffraction were obtained after the workup. Single-crystal X-ray diffraction revealed
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that complex Dy2 crystallizes in the triclinic space group P-1 with Z = 2 (Table S1). The
asymmetric unit contains one ligand, two DyIII ions, ten coordinated water, six free Br-,
and three water molecules in the lattice. The ligand is not deprotonated and coordinates
with the DyIII ions by its coordination pockets on both sides (Figure 1a). Dy1 and Dy2
reside in the four-membered O-N-N-N pocket, with each further coordinated with five
H2O molecules, forming a nine-coordination environment (O6N3). The Dy-O bonds are
in the range of 2.37–2.46 Å, which is much shorter than the Dy-N bond (2.50–2.57 Å,
Table S1), probably because of the hard-base behavior of the coordinated O atoms. The
DyIII ions in the molecule are separated by the pyrimidine group with a distance of 6.67 Å.
The Br- anions reside in the lattice to balance the positive charge of the molecule and
form hydrogen bondings with the coordinated and free H2O, bridging the molecules into
three-dimensional frameworks (Figure S6).
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Figure 1. Structures of complexes Dy2 (a) and Dy4 (b). The cations and solvents have been omitted
for clarity.

After adjusting the ligand–metal ratio and reaction conditions, fortunately, a tetranu-
clear grid-like complex Dy4 ([Dy4L4]·(ClO4)4·12MeOH·4H2O) was isolated. Single crystal
X-ray diffraction shows that complex Dy4 crystallizes in the tetragonal space group P42/nmc
with Z = 2. The molecule contains four double deprotonated ligands, four DyIII ions, four
perchloride, and some solvent molecules (MeOH and H2O) in the lattice. The molecule
features a [2 × 2] grid topology with the four ligands as the edges and four DyIII ions
bending in the corners (Figure 1b). Due to the high symmetry of the molecule, all the
DyIII ions and ligands are identical, with each DyIII ion clamped by two N3O coordination
pockets from two crossed ligands, forming an eight-coordination environment. The ligands
are deprotonated on both hydroxymethyl group sites, resulting in relatively short Dy-O
bonds (2.27 Å), which is also much shorter than that of in complex Dy2 (Dy-O > 2.39
Å). The shortest intramolecular Dy···Dy distance is 6.9 Å longer than that of Dy2 (6.67
Å). This can be ascribed to the deprotonation of the hydroxymethyl groups that drag the
DyIII ions close to the terminal sites of the ligand. The long Dy···Dy distance suggests the
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weak or negligible magnetic exchange interaction within the complex. The molecules pack
along the crystallographic C axis and are separated by the ClO4

- and solvent molecules in
the lattice.

To gain more insight into the coordination difference of DyIII ions in the two complexes,
the coordination geometries of the DyIII centers were quantified by the SHAPE analyses [60,61].
As shown in Figure S8, the DyIII ions in Dy2 are both nine coordinated, and the coordination
geometry of Dy1 and Dy2 in Dy2 are close to Muffin (Cs) with CShM value of 1.369 and
capped square antiprism (C4v) with CShM value of 0.743 (Table S4), respectively. In
Dy4, the four DyIII ions are identical, and eight are coordinated in an N6O2 coordination
environment, the coordination geometry for Dy1 in a large distorted augmented trigonal
prism (C2v) with a CShM value of 3.284. The difference in the coordinate geometry of the
DyIII ions in Dy2 and Dy4 will influence the magnetic relaxation significantly (see below).

3.2. Magnetic Properties of Dy2 and Dy4

3.2.1. Static Magnetic Properties of Dy2 and Dy4

Direct current (dc) magnetic susceptibility measurements were carried out on polycrys-
talline samples under an applied field of 1000 Oe in the temperature range of
2–300 K. As shown in Figure 2, the temperature-dependent χMT product (χM = molar
magnetic susceptibility) of the two complexes show similar profiles. The χMT at 300 K are
27.44 and 53.39 cm3·K·mol−1 for Dy2 and Dy4, respectively, which are close to the expected
value for two (28.34 cm3·K·mol−1) and four (56.68 cm3·K·mol−1) free-ion approximation of
DyIII ions (S = 5/2, L = 5, 6H15/2, g = 4/3). Upon cooling, the χMT products decrease gradu-
ally before a quick drop below 10 K and reach the value of 17.78 cm3·K·mol−1 (Dy2) and
40.41 cm3·K·mol−1 (Dy4) at 2 K. The quick drop of the χMT products at low temperatures
can be ascribed to the thermal depopulation of the Stark sublevels as well as the possibility
of dominated weak antiferromagnetic interaction between the DyIII ions.
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The field-dependent molar magnetizations (M) vs. H plot for Dy2 and Dy4 at 1.9 K
(Figures S10 and S11) shows a sharp increase at low fields and then linear increases at high
fields, reaching the values of 10.68 µB (Dy2) and 19.85 µB (Dy4) at 7 T, which are close to the
expected value for two (10 µB) and four DyIII ions (20 µB) in a pure mJ = |±15/2 > ground
state. The M versus H curves at 3 and 5 K also show similar increasing tendencies but do
not overlap on the curve at 1.9 k, which can be attributed to significant magnetic anisotropy
and/or the existence of low-lying excited states.
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3.2.2. Dynamic Magnetic Properties of Dy2 and Dy4

To investigate the dynamics of magnetization, alternating current (AC) susceptibility
measurements were carried out with an oscillating field of 3.0 Oe. However, complex
Dy2 does not show any relaxation under zero dc field. It seems the magnetic interactions
between the two DyIII ions are very weak and cannot suppress the fast relaxation of the
complex. Field-dependent ac susceptibility measurements were carried out at 1.9 K with
a frequency of 1000 Hz. As shown in Figure S12, the out-of-phase ac susceptibility (χ”)
peak is detected around 1000 Oe, which should be the optimized dc field that can slow
down the magnetic relaxation. Thus, we performed the ac susceptibility measurements
under 1000 Oe dc field, and the temperature-dependent χ” showed frequency-dependent
peaks at low temperatures (Figure S13), indicating the slow relaxation of the magnetization.
The frequency-dependent χ” peaks shift to a higher frequency when raising the temper-
ature, suggesting the thermal relaxation behaviors. For complex Dy4, the χ” signals are
observed under zero dc field but without peaks (Figure S14). This is probably related to
the fast relaxation of QTM that shortcuts the relaxation of the magnetization.[62,63] This
kind of relaxation can usually be suppressed by the application of dc field.[64,65] The
optimized dc field was determined through the field-dependent ac susceptibility measure-
ments (Figure S15), giving the optimized dc field of 500 Oe. After applying this dc field,
frequency- and temperature-dependent χ” peaks were observed in the ac measurements
(Figures 3 and S16), indicative of the field-induced single-molecule magnetic property.
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Figure 3. Frequency-dependent ac susceptibility of Dy2 (a) and Dy4 (b) under indicated dc field and
temperature. The dots and solid lines are the data from ac measurements.

To explore the magnetic relaxation mechanics, Cole–Cole plots were represented as χ”
versus χ′ (Figure 4). For complexes Dy2 and Dy4, the Cole–Cole plots show semi-circular
profiles (Figure 4), suggesting the presence of a homogeneous relaxation process. Fitting
the Cole–Cole plots with the CC-FIT2 program [66] using the Debye model [67] gives the
temperature-dependent relaxation time. The relevant parameters of the fitting results are
listed in Tables S5 and S6. Thereafter, we fit temperature-dependent relaxation by the
following equation [68] to investigate the mechanics of the relaxation process:

1
τobs

=
1

τQTM
+ AH4T + CTn + τ−1

0 exp
(
−Ue f f

/
T
)

(1)
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where 1/τQTM, AH4T, CTn, and τ0
−1·exp(−Ueff/T) represent quantum tunneling, direct,

Raman, and Orbach relaxation processes, respectively. The relevant parameters obtained
from the best fittings are listed in Table S7. Both complexes show Raman and Orbach
relaxation processes with comparative Raman relaxation parameters (Table S7). The energy
barriers of the two complexes are also comparative with Ueff = 17(4) K, τ0 = 4.3(3) × 10−7

s, C = 144(5) s−1·K−n, and n = 3(0.3) for Dy2, and Ueff = 16(2) K, τ0 = 1.0(2) × 10−3 s,
C = 98(9) s−1·K−n, and n = 3(0.8) for Dy4.
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Figure 4. Cole-Cole plots for Dy2 under 1000 Oe (a) and Dy4 under 500 Oe (b) at the indicated
temperature range. The solid lines represent the best fit.

The low energy barriers for both complexes are probably related to the poor axial
ligand field of the DyIII ions. In complex Dy2, the DyIII ions reside in nine coordination
environments with Dy-O bond length in the range of 2.37–2.46 Å and Dy-N bond of
2.50–2.57 Å, which indicate a relatively weak ligand field. For Dy4, the deprotonated
hydroxymethyl groups give two shortest Dy-O bonds of 2.27 Å, which probably provides
an axial ligand field that dominates the anisotropy of the complex. In order to investigate
the anisotropies differences in the two complexes, we use the Magellan program [69]
to calculate the anisotropy axes of each DyIII ion. The calculation is based on the X-ray
structures and electrostatic model of the complexes, with the DyIII ions containing three
positive charges and the coordinated O− and free Br- possessing one negative charge. For
complex Dy2, the anisotropy axes of Dy1 and Dy2 are close to the cape-point of the capped
square antiprism coordination polyhedron (Figure 5). For complex Dy4, the anisotropy
axis of the Dy1 is parallel to the O1···O1’ direction (Figure 5), which is beneficial from the
shortest Dy-O bonds (2.27 Å) that provides a relatively stronger axial ligand field. Therefore,
complex Dy4 shows magnetic relaxation under zero field and a relatively slower relaxation
time at low temperatures than that of Dy2.



Magnetochemistry 2023, 9, 4 8 of 11

Magnetochemistry 2021, 7, x FOR PEER REVIEW 8 of 12 
 

 

Figure 4. Cole-Cole plots for Dy2 under 1000 Oe (a) and Dy4 under 500 Oe (b) at the indicated 
temperature range. The solid lines represent the best fit. 

The low energy barriers for both complexes are probably related to the poor axial 
ligand field of the DyIII ions. In complex Dy2, the DyIII ions reside in nine coordination 
environments with Dy-O bond length in the range of 2.37–2.46 Å and Dy-N bond of 
2.50–2.57 Å, which indicate a relatively weak ligand field. For Dy4, the deprotonated hy-
droxymethyl groups give two shortest Dy-O bonds of 2.27 Å, which probably provides 
an axial ligand field that dominates the anisotropy of the complex. In order to investi-
gate the anisotropies differences in the two complexes, we use the Magellan program 
[69] to calculate the anisotropy axes of each DyIII ion. The calculation is based on the X-
ray structures and electrostatic model of the complexes, with the DyIII ions containing 
three positive charges and the coordinated O− and free Br- possessing one negative 
charge. For complex Dy2, the anisotropy axes of Dy1 and Dy2 are close to the cape-point 
of the capped square antiprism coordination polyhedron (Figure 5). For complex Dy4, 
the anisotropy axis of the Dy1 is parallel to the O1···O1’ direction (Figure 5), which is 
beneficial from the shortest Dy-O bonds (2.27 Å) that provides a relatively stronger axial 
ligand field. Therefore, complex Dy4 shows magnetic relaxation under zero field and a 
relatively slower relaxation time at low temperatures than that of Dy2. 

 
Figure 5. Orientations of the main magnetic axes of the ground state of Dy2 (a) and Dy4 (b) calcu-
lated based on the molecule structure. 

4. Conclusions 
In conclusion, we synthesized a novel dicompartmental Schiff base ligand based on 

pyrimidine, by using which a dinuclear Dy2 and tetranuclear Dy4 grid were constructed. 
Due to the distinct coordination environments and topology in the two complexes, the 
magnetic relaxation of these complexes is different. In Dy2, the DyIII ions are in a rela-
tively weak ligand field with relatively long coordination bonds; therefore, the complex-
es only show field-induced single-molecule magnet behavior. For complexes Dy4, the 
deprotonated ligand gives a pair of relatively short Dy-O bonds, resulting in the axial 
ligand field that slows down the relaxation. Therefore, complex Dy4 shows relaxation 
under zero dc field and field-induced single-molecule magnetic behavior under 500 Oe 

Figure 5. Orientations of the main magnetic axes of the ground state of Dy2 (a) and Dy4 (b) calculated
based on the molecule structure.

4. Conclusions

In conclusion, we synthesized a novel dicompartmental Schiff base ligand based on
pyrimidine, by using which a dinuclear Dy2 and tetranuclear Dy4 grid were constructed.
Due to the distinct coordination environments and topology in the two complexes, the
magnetic relaxation of these complexes is different. In Dy2, the DyIII ions are in a relatively
weak ligand field with relatively long coordination bonds; therefore, the complexes only
show field-induced single-molecule magnet behavior. For complexes Dy4, the deprotonated
ligand gives a pair of relatively short Dy-O bonds, resulting in the axial ligand field that
slows down the relaxation. Therefore, complex Dy4 shows relaxation under zero dc field
and field-induced single-molecule magnetic behavior under 500 Oe dc field. Although
the magnetic interactions in both complexes are weak and have no positive effect on the
magnetic relaxation, the assembly of grid-type lanthanide clusters in the work provides an
efficient strategy to regulate the topology of lanthanide ions. The next step will be focused
on the enhancement of the magnetic coupling between lanthanide ions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/magnetochemistry9010004/s1, Figure S1: Schematic drawings of the synthetic route of
ligand H2L, Figure S2: 1H-NMR spectrum of ligand H2L in DMSO-d6, Figures S3–S5: IR spectra
of ligand H2L, complexes Dy2 and Dy4, Figures S6 and S7: Packing models of complexes Dy2 and
Dy4, Figures S8 and S9: Coordination polyhedrons of DyIII ions in complexes Dy2 and Dy4, Figures
S10 and S11: Field-dependent molar magnetization of Dy2 and Dy4, Figures S12–S16: Field- and
temperature-dependent ac susceptibility of Dy2 and Dy4, Figures S17 and S18: Plots of τ vs. T−1

for Dy2 and Dy4, Figures S19 and S20: Orientations of the main magnetic axes of the ground state
of Dy2 and Dy4, Table S1: Crystallographic data of Dy2 and Dy4, Tables S2 and S3: Selected bond
distances (Å) and angles (º) of Dy2 and Dy4, Table S4: The CShM values calculated by SHAPE 2.1 of
DyIII ions in Dy2 and Dy4, Tables S5 and S6: CC-Fit results for frequency-dependent ac susceptibility
of Dy2 and Dy4, Table S7: Parameters obtained from fitting the plots of the relaxation time τ vs. 1/T
for Dy2 and Dy4.
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