Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder
Abstract
:1. Introduction
2. Methodology
2.1. Spin Transport at Low Temperatures
2.2. Recursive Approach to Dynamical Spin Response Functions
2.3. Dynamical Spin Response Functions in the Presence of Disorder: The Augmented Space Approach
2.4. Atomistic Spin Dynamics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moriya, T. Electron Correlation and Magnetism in Narrow-Band Systems: Proceedings of the Third Taniguchi International Symposium, Mount Fuji, Japan, 1–5 November 1980; Springer Science, Business Media: Berlin/Heidelberg, Germany, 2012; Volume 29. [Google Scholar]
- Moriya, T.; Hasegawa, H. A Unified Theory of Magnetism in Narrow Band Electron Systems. J. Phys. Soc. Jpn. 1980, 48, 1490. [Google Scholar] [CrossRef]
- Antropov, V.P.; Katsnelson, M.I.; Harmon, B.N.; van Schilfgaarde, M.; Kusnezov, D. Spin dynamics in magnets: Equation of motion and finite temperature effects. Phys. Rev. B 1996, 54, 1019. [Google Scholar] [CrossRef] [PubMed]
- Nowak, U.; Mryasov, O.N.; Wieser, R.; Guslienko, K.; Chantrell, R. Spin dynamics of magnetic nanoparticles: Beyond Brown’s theory. Phys. Rev. B 2005, 72, 172410. [Google Scholar] [CrossRef] [Green Version]
- Hellsvik, J.; Thonig, D.; Modin, K.; Iusan, D.; Bergman, A.; Eriksson, O.; Bergqvist, L.; Delin, A. General method for atomistic spin-lattice dynamics with first-principles accuracy. Phys. Rev. B 2019, 99, 104302. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, O.; Bergman, A.; Bergqvist, L.; Hellsvik, J. Atomistic Spin Dynamics: Foundations and Applications; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Skubic, B.; Hellsvik, J.; Nordström, L.; Eriksson, O. A method for atomistic spin dynamics simulations: Implementation and examples. J. Phys. Condens. Matter 2008, 20, 315203. [Google Scholar] [CrossRef]
- Dalosto, S.; Riera, J. Magnetic order in ferromagnetically coupled spin ladders. Phys. Rev. B 2000, 62, 928. [Google Scholar] [CrossRef] [Green Version]
- Hopster, H. Spin-polarized electron energy loss spectroscopy. Surf. Rev. Lett. 1994, 1, 89. [Google Scholar] [CrossRef]
- Vollmer, R.; Etzkorn, M.; Kumar, P.S.A.; Ibach, H.; Kirschner, J. Spin-Polarized Electron Energy Loss Spectroscopy of High Energy, Large Wave Vector Spin Waves in Ultrathin fcc Co Films on Cu(001). Phys. Rev. Lett. 2003, 91, 147201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollmer, R.; Etzkorn, M.; Kumar, P.A.; Ibach, H.; Kirschner, J. Spin-wave excitation observed by spin-polarized electron energy loss spectroscopy: A new method for the investigation of surface- and thin-film spin waves on the atomic scale. Thin Solid Films 2004, 464, 42. [Google Scholar] [CrossRef]
- Vollmer, R.; Etzkorn, M.; Kumar, P.A.; Ibach, H.; Kirschner, J. Spin-polarized electron energy loss spectroscopy: A method to measure magnon energies. J. Magn. Magn. Mater. 2004, 272, 2126. [Google Scholar] [CrossRef]
- Zhang, Y.; Chuang, T.-H.; Zakeri, K.; Kirschner, J. Relaxation Time of Terahertz Magnons Excited at Ferromagnetic Surfaces. Phys. Rev. Lett. 2012, 109, 087203. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, K.; Zhang, Y.; Chuang, T.-H.; Kirschner, J. Magnon Lifetimes on the Fe(110) Surface: The Role of Spin-Orbit Coupling. Phys. Rev. Lett. 2012, 108, 197205. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, K.; Zhang, Y.; Kirschner, J. Surface magnons probed by spin-polarized electron energy loss spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2013, 189, 157. [Google Scholar] [CrossRef]
- Prokop, J.; Zhang, Y.; Tudosa, I.; Peixoto, T.R.F.; Zakeri, K.; Kirschner, J. Magnons in a Ferromagnetic Monolayer. Phys. Rev. Lett. 2009, 102, 177206. [Google Scholar] [CrossRef] [Green Version]
- Bergman, A.; Taroni, A.; Bergqvist, L.; Hellsvik, J.; Hjörvarsson, B.; Eriksson, O. Magnon softening in a ferromagnetic monolayer: A first-principles spin dynamics study. Phys. Rev. B 2010, 81, 144416. [Google Scholar] [CrossRef] [Green Version]
- Fidler, J.; Schrefl, T. Micromagnetic modelling - the current state of the art. J. Phys. D Appl. Phys. 2000, 33, R135. [Google Scholar] [CrossRef]
- Krieger, K.; Dewhurst, J.; Elliott, P.; Sharma, S.; Gross, E. Laser-Induced Demagnetization at Ultrashort Time Scales: Predictions of TDDFT. J. Chem. Theory Comput. 2015, 11, 4870. [Google Scholar] [CrossRef]
- Gilbert, T.L. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 2004, 40, 3443. [Google Scholar] [CrossRef]
- Shimizu, M. Itinerant electron magnetism. Rep. Prog. Phys. 1981, 44, 329. [Google Scholar] [CrossRef]
- Sabiryanov, R.F.; Bose, S.K.; Mryasov, O.N. Effect of topological disorder on the itinerant magnetism of Fe and Co. Phys. Rev. B 1995, 51, 8958. [Google Scholar] [CrossRef]
- Sabiryanov, R.F.; Jaswal, S.S. Magnons and Magnon-Phonon Interactions in Iron. Phys. Rev. Lett. 1999, 83, 2062. [Google Scholar] [CrossRef]
- Bonetti, S.; Hoffmann, M.C.; Sher, M.-J.; Chen, Z.; Yang, S.-H.; Samant, M.G.; Parkin, S.S.P.; Dürr, H.A. THz-Driven Ultrafast Spin-Lattice Scattering in Amorphous Metallic Ferromagnets. Phys. Rev. Lett. 2016, 117, 087205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadhukhan, B.; Bergman, A.; Kvashnin, Y.O.; Hellsvik, J.; Delin, A. Spin-lattice couplings in two-dimensional CrI3 from first-principles computations. Phys. Rev. B 2022, 105, 104418. [Google Scholar] [CrossRef]
- Kamberskỳ, V. On the Landau–Lifshitz relaxation in ferromagnetic metals. Can. J. Phys. 1970, 48, 2906. [Google Scholar] [CrossRef]
- Kamberskỳ, V. On ferromagnetic resonance damping in metals. Czechoslov. J. Phys. B 1976, 26, 1366. [Google Scholar] [CrossRef]
- Brataas, A.; Tserkovnyak, Y.; Bauer, G.E. Scattering Theory of Gilbert Damping. Phys. Rev. Lett. 2008, 101, 037207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Starikov, A.A.; Yuan, Z.; Kelly, P.J. First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder. Phys. Rev. B 2011, 84, 014412. [Google Scholar] [CrossRef] [Green Version]
- Ebert, H.; Mankovsky, S.; Ködderitzsch, D.; Kelly, P.J. Ab Initio Calculation of the Gilbert Damping Parameter via the Linear Response Formalism. Phys. Rev. Lett. 2011, 107, 066603. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Zou, K.; Zhu, J. Quantum scattering time and its implications on scattering sources in graphene. Phys. Rev. B 2009, 80, 241415. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.H.; Sarma, S.D. Single-particle relaxation time versus transport scattering time in a two-dimensional graphene layer. Phys. Rev. B 2008, 77, 195412. [Google Scholar] [CrossRef]
- Das, B.; Subramaniam, S.; Melloch, M.R.; Miller, D.C. Single-particle and transport scattering times in a back-gated GaAs/AlxGa1-xAs modulation-doped heterostructure. Phys. Rev. B 1993, 47, 9650. [Google Scholar] [CrossRef] [PubMed]
- Sadhukhan, B.; Bandyopadhyay, S.; Nayak, A.; Mookerjee, A. Disorder induced lifetime effects in binary disordered systems: A first principles formalism and an application to disordered graphene. Int. J. Mod. Phys. B 2017, 31, 1750218. [Google Scholar] [CrossRef] [Green Version]
- Sadhukhan, B.; Zhang, Y.; Ray, R.; van den Brink, J. First-principles calculation of shift current in chalcopyrite semiconductor ZnSnP2. Phys. Rev. Mater. 2020, 4, 064602. [Google Scholar] [CrossRef]
- Saha, T.; Mookerjee, A. The effects of local lattice distortion in non-isochoric alloys: CuPd and CuBe. J. Phys. Condens. Matter 1996, 8, 2915. [Google Scholar] [CrossRef]
- Kaphle, G.C.; Adhikari, N.; Mookerjee, A. Study of Spin Glass Behavior in Disordered PtxMn1-x Alloys: An Augmented Space Recursion Approach. Adv. Sci. Lett. 2015, 21, 2681. [Google Scholar] [CrossRef]
- Alam, A.; Mookerjee, A. Ab initio electronic structure calculation of disorder ternary alloys: A reciprocal-space formulation. Phys. Rev. B 2010, 81, 184205. [Google Scholar] [CrossRef]
- Ganguly, S.; Venkatasubramanian, A.; Tarafder, K.; Dasgupta, I.; Mookerjee, A. Augmented space recursion study of the effect of disorder on superconductivity. Phys. Rev. B 2009, 79, 224204. [Google Scholar] [CrossRef] [Green Version]
- Rahaman, M.; Mookerjee, A. Augmented-space cluster coherent potential approximation for binary random and short-range ordered alloys. Phys. Rev. B 2009, 79, 054201. [Google Scholar] [CrossRef]
- Alam, A.; Saha-Dasgupta, T.; Mookerjee, A.; Chakrabarti, A.; Das, G.P. Electronic structure and phase stability of disordered hexagonal close-packed alloys. Phys. Rev. B 2007, 75, 134203. [Google Scholar] [CrossRef]
- Alam, A.; Ghosh, S.; Mookerjee, A. Phonons in disordered alloys: Comparison between augmented-space-based approximations for configuration averaging to integration from first principles. Phys. Rev. B 2007, 75, 134202. [Google Scholar] [CrossRef]
- Saha, T.; Dasgupta, I.; Mookerjee, A. Augmented-space recursive method for the study of short-ranged ordering effects in binary alloys. Phys. Rev. B 1994, 50, 13267. [Google Scholar] [CrossRef]
- Sadhukhan, B.; Singh, P.; Nayak, A.; Datta, S.; Johnson, D.D.; Mookerjee, A. Band-gap tuning and optical response of two-dimensional SixC1-x : A first-principles real-space study of disordered two-dimensional materials. Phys. Rev. B 2017, 96, 054203. [Google Scholar] [CrossRef] [Green Version]
- Sadhukhan, B.; Nayak, A.; Mookerjee, A. Effect of disorder on the optical response of NiPt and Ni3Pt alloys. Comput. Mater. Sci. 2017, 140, 1. [Google Scholar] [CrossRef] [Green Version]
- Sadhukhan, B.; Nayak, A.; Mookerjee, A. Effect of random vacancies on the electronic properties of graphene and T graphene: A theoretical approach. Indian J. Phys. 2017, 91, 1541. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570. [Google Scholar] [CrossRef]
- Viswanath, V.; Müller, G. Recursion method in quantum spin dynamics: The art of terminating a continued fraction. J. Appl. Phys. 1990, 67, 5486. [Google Scholar] [CrossRef] [Green Version]
- Muller, G.; Viswanath, V. The Recursion Method: Application to Many-Body Dynamics; Springer: Berlin, Germany, 1994. [Google Scholar]
- Gagliano, E.R.; Balseiro, C.A. Dynamical Properties of Quantum Many-Body Systems at Zero Temperature. Phys. Rev. Lett. 1987, 59, 2999. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, V.S.; Zhang, S.; Müller, G.; Stolze, J. Zero-temperature dynamics of the one-dimensional XXZ and t-J models: A weak-coupling continued-fraction analysis. Phys. Rev. B 1995, 51, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viswanath, V.; Müller, G. The recursion method applied to the T=0 dynamics of the 1D s=1/2 Heisenberg and XY models. J. Appl. Phys. 1991, 70, 6178. [Google Scholar] [CrossRef] [Green Version]
- Mookerjee, A. A new formalism for the study of configuration-averaged properties of disordered systems. J. Phys. C Solid State Phys. 1973, 6, L205. [Google Scholar] [CrossRef]
- Mookerjee, A. Averaged density of states in disordered systems. J. Phys. C Solid State Phys. 1973, 6, 1340. [Google Scholar] [CrossRef]
- Mookerjee, A. Fermion-field theory and configuration averaging. J. Phys. C Solid State Phys. 1975, 8, 1524. [Google Scholar] [CrossRef]
- Mookerjee, A. Structure of the scattering diagrams for conductivity in random binary alloys and the self-consistent CCPA. J. Phys. C Solid State Phys. 1986, 19, 193. [Google Scholar] [CrossRef]
- Mookerjee, A. Cluster approximations to response functions in disordered systems and macroscopic conservation laws. J. Phys. C Solid State Phys. 1976, 9, 1225. [Google Scholar] [CrossRef]
- Chowdhury, S.; Jana, D.; Sadhukhan, B.; Nafday, D.; Baidya, S.; Saha-Dasgupta, T.; Mookerjee, A. Configuration and self-averaging in disordered systems. Indian J. Phys. 2016, 90, 649. [Google Scholar] [CrossRef] [Green Version]
- Haydock, R.; Nex, C.M.M. Densities of states, moments, and maximally broken time-reversal symmetry. Phys. Rev. B 2006, 74, 205121. [Google Scholar] [CrossRef] [Green Version]
- Luchini, M.; Nex, C. A new procedure for appending terminators in the recursion method. J. Phys. C Solid State Phys. 1987, 20, 3125. [Google Scholar] [CrossRef]
- Beer, N.; Pettifor, D.G. The Recursion Method and the Estimation of Local Densities of States. In The Electronic Structure of Complex Systems; Phariseau, P., Temmerman, W.M., Eds.; NATO ASI Series (Series B: Physics); Springer: Boston, MA, USA, 1984; Volume 113. [Google Scholar]
- Pettifor, D.G.; Weaire, D.L. The Recursion Method and Its Applications: Proceedings of the Conference, Imperial College, London, England, 13–14 September 1984; Springer Science, Business Media: Berlin/Heidelberg, Germany, 2012; Volume 58. [Google Scholar]
- Lee, C. New Approach to Study Critical Dynamics by Using Continued Fraction Representation. J. Phys. Soc. Jpn. 1989, 58, 3910. [Google Scholar] [CrossRef]
- Haydock, R.; Heine, V.; Kelly, M. Electronic structure based on the local atomic environment for tight-binding bands. J. Phys. C Solid State Phys. 1972, 5, 2845. [Google Scholar] [CrossRef]
- Ebert, H. The Munich SPR-KKR Package. Available online: https://www.ebert.cup.uni-muenchen.de/kkr/kkrlicense/ (accessed on 11 November 2022).
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Liechtenstein, A.; Katsnelson, M.; Gubanov, V. Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. Met. Phys. 1984, 14, L125. [Google Scholar] [CrossRef]
- Uppsala Atomistic Spin Dynamics (Uppasd). Available online: http://www.physics.uu.se/uppasd (accessed on 11 November 2022).
- Sasıoğlu, E.; Friedrich, C.; Blügel, S. Strong magnon softening in tetragonal FeCo compounds. Phys. Rev. B 2013, 87, 020410. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, A.; Sasıoğlu, E.; Mavropoulos, P.; Ležaić, M.; Sanyal, B.; Bihlmayer, G.; Blügel, S. Tuning the Curie temperature of FeCo compounds by tetragonal distortion. Appl. Phys. Lett. 2013, 103, 102404. [Google Scholar] [CrossRef] [Green Version]
- Lynn, J.W. Temperature dependence of the magnetic excitations in iron. Phys. Rev. B 1975, 11, 2624. [Google Scholar] [CrossRef]
- Mook, H.A.; Nicklow, R.M. Neutron Scattering Investigation of the Magnetic Excitations in Iron. Phys. Rev. B 1973, 7, 336. [Google Scholar] [CrossRef]
- Halilov, S.; Perlov, A.; Oppeneer, P.; Eschrig, H. Magnon spectrum and related finite-temperature magnetic properties: A first-principle approach. Europhys. Lett. 1997, 39, 91. [Google Scholar] [CrossRef]
- Oogane, M.; Wakitani, T.; Yakata, S.; Yilgin, R.; Ando, Y.; Sakuma, A.; Miyazaki, T. Magnetic Damping in Ferromagnetic Thin Films. Jpn. J. Appl. Phys. 2006, 45, 3889. [Google Scholar] [CrossRef]
- Muniz, R.B.; Mills, D.L. Theory of spin excitations in Fe(110) monolayers. Phys. Rev. B 2002, 66, 174417. [Google Scholar] [CrossRef]
- Costa, A.T.; Muniz, R.B.; Cao, J.X.; Wu, R.Q.; Mills, D.L. Magnetism of an Fe monolayer on W(110). Phys. Rev. B 2008, 78, 054439. [Google Scholar] [CrossRef]
- Zakeri, K.; Peixoto, T.; Zhang, Y.; Prokop, J.; Kirschner, J. On the preparation of clean tungsten single crystals. Surf. Sci. 2010, 604, L1. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 2010, 9, 721. [Google Scholar] [CrossRef]
- Liu, L.; Pai, C.; Li, Y.; Tseng, H.; Ralph, D.; Buhrman, R. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 2012, 336, 555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Lee, O.J.; Gudmundsen, T.J.; Ralph, D.C.; Buhrman, R.A. Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect. Phys. Rev. Lett. 2012, 109, 096602. [Google Scholar] [CrossRef] [PubMed]
Alloy | Fe0.5Co0.5 | |||||
---|---|---|---|---|---|---|
Component | Fe | Co | ||||
Atomic radius | = 2.64 Å | = 2.60 Å | ||||
Charge | sp | d | Tot | sp | d | Tot |
Atomic state | 2.0 | 6.0 | 8.0 | 2.0 | 7.0 | 9.0 |
B2 ordered | 1.44 | 6.52 | 7.96 | 1.46 | 7.58 | 9.04 |
BCC disordered | 1.43 | 6.55 | 7.99 | 1.43 | 7.63 | 9.06 |
Alloy | Fe-Fe | Fe-Co | Co-Co |
---|---|---|---|
(meV) | (meV) | (meV) | |
FeCo | 2.065 | 2.302 | 1.740 |
FeCo | 2.083 | 2.117 | 1.418 |
Fe20Co80 | 1.919 | 1.880 | 1.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadhukhan, B.; Chimata, R.; Sanyal, B.; Mookerjee, A. Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder. Magnetochemistry 2023, 9, 44. https://doi.org/10.3390/magnetochemistry9020044
Sadhukhan B, Chimata R, Sanyal B, Mookerjee A. Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder. Magnetochemistry. 2023; 9(2):44. https://doi.org/10.3390/magnetochemistry9020044
Chicago/Turabian StyleSadhukhan, Banasree, Raghuveer Chimata, Biplab Sanyal, and Abhijit Mookerjee. 2023. "Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder" Magnetochemistry 9, no. 2: 44. https://doi.org/10.3390/magnetochemistry9020044
APA StyleSadhukhan, B., Chimata, R., Sanyal, B., & Mookerjee, A. (2023). Magnetization Dynamics in FexCo1-x in Presence of Chemical Disorder. Magnetochemistry, 9(2), 44. https://doi.org/10.3390/magnetochemistry9020044