Diverse Magnetic Properties of Two New Binuclear Complexes Affected by [FeN6] Octahedral Distortion: Two-Step Spin Crossover versus Antiferromagnetic Interactions
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Synthesis
3.1.1. {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2MeOH·2MeCN (1)
3.1.2. {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2CH2Cl2 (2)
3.2. Single Crystal X-ray Diffractometry (SCXRD)
3.3. Powder X-ray Diffractometry (PXRD)
3.4. Magnetic Measurements
3.5. Fluorescence Spectroscopy
3.6. Other Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahn, O.; Martinez, C.J. Spin-Transition Polymers: From Molecular Materials toward Memory Devices. Science 1998, 279, 44–48. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Salmon, L.; Nicolazzi, W. Molecular spin crossover phenomenon: Recent achievements and prospects. Chem. Soc. Rev. 2011, 40, 3313–3335. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, H.J.; Gural’skiy, I.A.; Quintero, C.M.; Tricard, S.; Salmon, L.; Molnar, G.; Bousseksou, A. Molecular actuators driven by cooperative spin-state switching. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooker, S. Spin crossover with thermal hysteresis: Practicalities and lessons learnt. Chem. Soc. Rev. 2015, 44, 2880–2892. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.K.; Ruben, M. Emerging trends in spin crossover (SCO) based functional materials and devices. Coord. Chem. Rev. 2017, 346, 176–205. [Google Scholar] [CrossRef]
- Wang, M.; Li, Z.Y.; Ishikawa, R.; Yamashita, M. Spin crossover and valence tautomerism conductors. Coord. Chem. Rev. 2021, 435, 213819. [Google Scholar] [CrossRef]
- Hogue, R.W.; Singh, S.; Brooker, S. Spin crossover in discrete polynuclear iron(ii) complexes. Chem. Soc. Rev. 2018, 47, 7303–7338. [Google Scholar] [CrossRef] [Green Version]
- Halcrow, M.A. Structure:function relationships in molecular spin-crossover complexes. Chem. Soc. Rev. 2011, 40, 4119–4142. [Google Scholar] [CrossRef]
- Li, A.M.; Hochdörffer, T.; Wolny, J.A.; Schünemann, V.; Rentschler, E. Abrupt Spin Crossover Behavior in a Linear N1,N2-Triazole Bridged Trinuclear Fe(II) Complex. Magnetochemistry 2018, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Craig, G.A.; Roubeau, O.; Aromí, G. Spin state switching in 2,6-bis(pyrazol-3-yl)pyridine (3-bpp) based Fe(II) complexes. Coord. Chem. Rev. 2014, 269, 13–31. [Google Scholar] [CrossRef]
- Halcrow, M.A. Iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridines—A versatile system for spin-crossover research. Coord. Chem. Rev. 2009, 253, 2493–2514. [Google Scholar] [CrossRef]
- Boillot, M.L.; Weber, B. Mononuclear ferrous and ferric complexes. Comptes Rendus Chim. 2018, 21, 1196–1208. [Google Scholar] [CrossRef]
- Sciortino, N.F.; Scherl-Gruenwald, K.R.; Chastanet, G.; Halder, G.J.; Chapman, K.W.; Letard, J.F.; Kepert, C.J. Hysteretic three-step spin crossover in a thermo- and photochromic 3D pillared Hofmann-type metal-organic framework. Angew. Chem. Int. Ed. 2012, 124, 10301–10305. [Google Scholar] [CrossRef]
- Bartual-Murgui, C.; Akou, A.; Salmon, L.; Molnar, G.; Thibault, C.; Real, J.A.; Bousseksou, A. Guest effect on nanopatterned spin-crossover thin films. Small 2011, 7, 3385–3391. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Shepherd, H.J.; Salmon, L.; Molnar, G.; Tong, M.L.; Bousseksou, A. The effect of an active guest on the spin crossover phenomenon. Angew. Chem. Int. Ed. 2013, 125, 1236–1240. [Google Scholar] [CrossRef]
- Gaspar, A.B.; Muñoz, M.C.; Real, J.A. Dinuclear iron(ii) spin crossover compounds: Singular molecular materials for electronics. J. Mater. Chem. 2006, 16, 2522–2533. [Google Scholar] [CrossRef]
- Sulaiman, A.; Jiang, Y.Z.; Javed, M.K.; Wu, S.Q.; Li, Z.Y.; Bu, X.H. Tuning of spin-crossover behavior in two cyano-bridged mixed-valence FeIII2FeII trinuclear complexes based on a TpR ligand. Inorg. Chem. Front. 2022, 9, 241–248. [Google Scholar] [CrossRef]
- Wang, J.H.; Vignesh, K.R.; Zhao, J.; Li, Z.Y.; Dunbar, K.R. Charge transfer and slow magnetic relaxation in a series of cyano-bridged FeIII4MII2 (M = FeII, CoII, NiII) molecules. Inorg. Chem. Front. 2019, 6, 493–497. [Google Scholar] [CrossRef]
- Klokishner, S.; Ostrovsky, S.; Palii, A.; Tsukerblat, B. Cooperative Spin Transitions Triggered by Phonons in Metal Complexes Coupled to Molecular Vibrations. Magnetochemistry 2022, 8, 24. [Google Scholar] [CrossRef]
- Bousseksou, A.; Molnár, G.; Real, J.A.; Tanaka, K. Spin crossover and photomagnetism in dinuclear iron(II) compounds. Coord. Chem. Rev. 2007, 251, 1822–1833. [Google Scholar] [CrossRef]
- Wu, D.Y.; Sato, O.; Einaga, Y.; Duan, C.Y. A spin-crossover cluster of iron(II) exhibiting a mixed-spin structure and synergy between spin transition and magnetic interaction. Angew. Chem. Int. Ed. 2009, 48, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dai, J.W.; Li, Z.Y.; Yamashita, M. Strong antiferromagnetic coupling of the cobalt(ii)-semiquinone radical in a dinuclear complex with 2,2′-bipyrimidine ligands. New J. Chem. 2020, 42, 3963–4776. [Google Scholar] [CrossRef]
- Klein, Y.; Sciortino, N.F.; Housecroft, C.E.; Kepert, C.J.; Neville, S.M. Structure and Magnetic Properties of the Spin Crossover Linear Trinuclear Complex [Fe3(furtrz)6(ptol)2(MeOH)4]·4(ptol)·4(MeOH) (furtrz: Furanylidene-4H-1,2,4-triazol-4-amine ptol: P-tolylsulfonate). Magnetochemistry 2016, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Furmeyer, F.; Carrella, L.M.; Ksenofontov, V.; Moller, A.; Rentschler, E. Phase Trapping in Multistep Spin Crossover Compound. Inorg. Chem. Front. 2020, 59, 2843–2852. [Google Scholar] [CrossRef]
- Wang, J.H.; Li, Z.Y.; Yamashita, M.; Bu, X.H. Recent progress on cyano-bridged transition-metal-based single-molecule magnets and single-chain magnets. Coord. Chem. Rev. 2021, 428, 213617. [Google Scholar] [CrossRef]
- Li, Y.; Javed, M.K.; Wu, S.Q.; Sulaiman, A.; Wu, Y.Y.; Li, Z.Y.; Sato, O.; Bu, X.H. Aggregation-induced emission meets magnetic bistability: Synergy between spin crossover and fluorescence in iron(ii) complexes. Chin. Chem. Lett. 2022, 34, 107492. [Google Scholar] [CrossRef]
- Yi, C.; Meng, Y.S.; Zhao, L.; Yao, N.T.; Liu, Q.; Wen, W.; Li, R.X.; Zhu, Y.Y.; Oshio, H.; Liu, T. A Smart Molecule Showing Spin Crossover Responsive Aggregation-Induced Emission. CCS Chem. 2022, 1–10. [Google Scholar] [CrossRef]
- Leita, B.A.; Moubaraki, B.; Murray, K.S.; Smith, J.P.; Cashion, J.D. Structure and magnetism of a new pyrazolate bridged iron(II) spin crossover complex displaying a single HS-HS to LS-LS transition. Chem. Commun. 2003, 2004, 156–157. [Google Scholar] [CrossRef]
- Moussa, N.O.; Trzop, E.; Mouri, S.; Zein, S.; Molnár, G.; Gaspar, A.B.; Collet, E.; Cointe, M.B.L.; Real, J.A.; Borshch, S.; et al. Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound {[Fe(bt)(NCS)2]2(bpym)}. Phys. Rev. B 2007, 75, 054101. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.J.; Cashion, J.D.; Chilton, N.F.; Etrillard, C.; Fuentealba, M.; Howard, J.A.K.; Létard, J.F.; Milsmann, C.; Moubaraki, B.; Sparkes, H.A.; et al. Spin Crossover in a 3,5-Bis(2-pyridyl)-1,2,4-triazolate-Bridged Dinuclear Iron(II) Complex [{Fe(NCBH3)(py)}2-(μ-L1)2]—Powder versus Single Crystal Study. Eur. J. Inorg. Chem. 2012, 2013, 850–864. [Google Scholar] [CrossRef]
- Albores, P.; Rentschler, E. cis-2,2′-Bipyrimidine-bridged polynuclear complex: A stairway-like mixed-valent {Fe4} cluster. Inorg. Chem. Front. 2010, 49, 8953–8961. [Google Scholar] [CrossRef] [PubMed]
- Zein, S.; Borshch, S.A. Energetics of Binuclear Spin Transition Complexes. J. Am. Chem. Soc. 2005, 127, 16197–16201. [Google Scholar] [CrossRef] [PubMed]
- Létard, J.F.; Real, J.A.; Moliner, N.; Gaspar, A.B.; Capes, L.; Cador, O.; Kahn, O. Light Induced Excited Pair Spin State in an Iron(II) Binuclear Spin-Crossover Compound. J. Am. Chem. Soc. 1999, 121, 10630–10631. [Google Scholar] [CrossRef]
- Batten, S.R.; Bjernemose, J.; Jensen, P.; Leita, B.A.; Murray, K.S.; Moubaraki, B.; Smith, J.P.; Toftlund, H. Designing dinuclear iron(II) spin crossover complexes. Structure and magnetism of dinitrile-, dicyanamido-, tricyanomethanide-, bipyrimidine- and tetrazine-bridged compounds. Dalton Trans. 2004, 20, 3370–3375. [Google Scholar] [CrossRef]
- Venkataramani, S.; Jana, U.; Dommaschk, M.; Sönnichsen, F.D.; Tuczek, F.; Herges, R. Magnetic Bistability of Molecules in Homogeneous Solution at Room Temperature. Science 2011, 331, 445–448. [Google Scholar] [CrossRef]
- Matouzenko, G.S.; Jeanneau, E.; Verat, A.Y.; Bousseksou, A. Spin crossover and polymorphism in a family of 1,2-bis(4-pyridyl)ethene-bridged binuclear iron(II) complexes. A key role of structural distortions. Dalton Trans. 2011, 40, 9608–9618. [Google Scholar] [CrossRef]
- Trzop, E.; Cointe, B.L.M.; Cailleau, H.; Toupet, L.; Molnar, G.; Bousseksou, A.; Gaspar, A.B.; Real, J.A.; Collet, E. Structural investigation of the photoinduced spin conversion in the dinuclear compound {[Fe(bt)(NCS)2]2(bpym)}: Toward controlled multi-stepped molecular switches. J. Appl. Crystallogr. 2007, 40, 158–164. [Google Scholar] [CrossRef]
- De Gaetano, Y.; Jeanneau, E.; Verat, A.Y.; Rechignat, L.; Bousseksou, A.; Matouzenko, G.S. Ligand-Induced Distortions and Magneto-Structural Correlations in a Family of Dinuclear Spin Crossover Compounds with Bipyridyl-Like Bridging Ligands. Eur. J. Inorg. Chem. 2013, 2013, 1015–1023. [Google Scholar] [CrossRef]
- Verat, A.Y.; Ould-Moussa, N.; Jeanneau, E.; Le Guennic, B.; Bousseksou, A.; Borshch, S.A.; Matouzenko, G.S. Ligand strain and the nature of spin crossover in binuclear complexes: Two-step spin crossover in a 4,4′-bipyridine-bridged iron(II) complex [{Fe(dpia)(NCS)2}2(4,4′-bpy)] (dpia = di(2-picolyl)amine; 4,4′-bpy = 4,4′-bipyridine). Chem. Eur. J. 2009, 15, 10070–10082. [Google Scholar] [CrossRef]
- Ding, Z.Y.; Meng, Y.S.; Xiao, Y.; Zhang, Y.Q.; Zhu, Y.Y.; Gao, S. Probing the influence of molecular symmetry on the magnetic anisotropy of octahedral cobalt(ii) complexes. Inorg. Chem. Front. 2017, 4, 1909–1916. [Google Scholar] [CrossRef]
- Amoore, J.J.M.; Neville, S.M.; Moubaraki, B.; Iremonger, S.S.; Murray, K.S.; Letard, J.F.; Kepert, C.J. Thermal- and Light-induced spin crossover in a guest-dependent dinuclear iron(II) system. Chem.-Eur. J. 2010, 16, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Villar, N.; Thompson, A.L.; Munoz, M.C.; Ugalde-Saldivar, V.M.; Goeta, A.E.; Moreno-Esparza, R.; Real, J.A. Solid- and solution-state studies of the novel mu-dicyanamide-bridged dinuclear spin-crossover system [(Fe(bztpen)]2[mu-N(CN)2](PF6)3 n H2O. Chem.-Eur. J. 2005, 11, 5721–5734. [Google Scholar] [CrossRef] [PubMed]
- Real, J.A.; Gaspar, A.B.; Munoz, M.C. Thermal, pressure and light switchable spin-crossover materials. Dalton Trans. 2005, 2062–2079. [Google Scholar] [CrossRef] [PubMed]
- Real, J.A.; Munoz, M.C.; Andres, E.; Garnier, T.; Gallois, B. Spin-Crossover Behavior in the Fe(tap)2(NCS)2▪nCH3CN System (tap=1,4,5,8-Tetraazaphenanthrene; n = 1,1/2). Craystal Structures and Magnetic Properties of Both Solvates. Inorg. Chem. 1994, 33, 3587–3594. [Google Scholar] [CrossRef]
- Cecconi, F.; Vaira, M.D.; Modollini, S.; Orlandini, A.; Sacconi, L. Singlet ⇋ Quintet Spin Transitions of Iron(II) Complexes with a P4Cl2 Donor Set. X-ray Structures of the Compound FeCl2 (Ph2PCH = CHPPh2)2 and of Its Acetone Solvate at 130 and 295K. Inorg. Chem. 1981, 20, 3423–3430. [Google Scholar] [CrossRef]
- Greenaway, A.M.; O’Connor, C.J.; Schrock, A.; Sinn, E. High- and Low-Spin Interconversion in a Series of (α-Picolylamine)iron(II) Complexes. Inorg. Chem. 1979, 18, 2692–2695. [Google Scholar] [CrossRef]
- Javed, M.K.; Sulaiman, A.; Yamashita, M.; Li, Z.Y. Shedding light on bifunctional luminescent spin crossover materials. Coord. Chem. Rev. 2022, 467, 214625. [Google Scholar] [CrossRef]
- Wang, C.F.; Wu, J.H.; Li, Q.X. Synchronously tuning the spin-crossover and fluorescence properties of a two-dimensional Fe(II) coordination polymer by solvent guests. Inorg. Chem. Front. 2022, 9, 3251–3258. [Google Scholar] [CrossRef]
Complex 1 | 100 K | 150 K | 300 K |
---|---|---|---|
Fe(1)–N(1) | 1.967 (4) | 1.994 (3) | 2.083 (8) |
Fe(1)–N(2) | 1.933 (5) | 1.953 (5) | 2.024 (9) |
Fe(1)–N(3) | 2.059 (3) | 2.097 (3) | 2.215 (6) |
Fe(1)–N(4A) | 2.065 (3) | 2.115 (3) | 2.278 (6) |
Fe(1)–N(5) | 2.055 (4) | 2.088 (3) | 2.211 (7) |
Fe(1)–N(6) | 1.980 (3) | 2.019 (3) | 2.148 (6) |
av. Fe–N(Å) | 2.010 | 2.045 | 2.161 |
Σ | 51.83 | 60.37 | 90.75 |
Fe–Feintramolecular(Å) | 5.544 | 5.645 | 5.970 |
N(1)–Fe(1)–N(2) | 92.04 (16) | 93.07 (13) | 96.8 (3) |
N(1)–Fe(1)–N(3) | 96.54 (15) | 97.77 (12) | 101.2 (3) |
N(1)–Fe(1)–N(4A) | 88.80 (14) | 88.48 (12) | 87.3 (3) |
N(1)–Fe(1)–N(5) | 93.85 (15) | 93.67 (12) | 94.1 (3) |
N(1)–Fe(1)–N(6) | 171.35 (14) | 169.78 (11) | 164.5 (3) |
N(2)–Fe(1)–N(3) | 91.21 (15) | 91.99 (12) | 92.6 (3) |
N(2)–Fe(1)–N(4A) | 171.19 (15) | 170.40 (12) | 166.0 (3) |
N(2)–Fe(1)–N(5) | 97.75 (15) | 98.82 (13) | 103.8 (3) |
N(2)–Fe(1)–N(6) | 93.65 (15) | 94.22 (13) | 95.9 (3) |
N(3)–Fe(1)–N(4A) | 79.99 (13) | 78.42 (10) | 73.5 (2) |
N(3)–Fe(1)–N(5) | 166.02 (13) | 163.81 (10) | 156.1 (3) |
N(3)–Fe(1)–N(6) | 89.85 (13) | 89.13 (10) | 87.0 (2) |
N(4A)–Fe(1)–N(5) | 90.93 (13) | 90.52 (10) | 89.2 (2) |
N(4A)–Fe(1)–N(6) | 86.57 (13) | 85.52 (11) | 82.4 (2) |
N(5)–Fe(1)–N(6) | 78.93 (13) | 78.14 (10) | 74.3 (2) |
Fe(1)–N(1)–C(1) | 176.7 (4) | 175.8 (3) | 173.6 (7) |
Fe(1)–N(2)–C(2) | 157.9 (4) | 157.4 (3) | 158.0 (8) |
Complex 2 | |||
---|---|---|---|
Fe(1)–N(1) | 2.088 (3) | N(1)–Fe(1)–N(6) | 89.30 (13) |
Fe(1)–N(2) | 2.050 (4) | N(2)–Fe(1)–N(3) | 109.33 (14) |
Fe(1)–N(3) | 2.207 (3) | N(2)–Fe(1)–N(4A) | 94.25 (14) |
Fe(1)–N(4A) | 2.246 (3) | N(2)–Fe(1)–N(5) | 93.27 (13) |
Fe(1)–N(5) | 2.229 (3) | N(2)–Fe(1)–N(6) | 166.35 (14) |
Fe(1)–N(6) | 2.178 (4) | N(3)–Fe(1)–N(4A) | 73.76 (12) |
av. Fe–N(Å) | 2.167 | N(3)–Fe(1)–N(5) | 151.56 (12) |
Fe–Feintramolecular(Å) | 5.9401 | N(3)–Fe(1)–N(6) | 84.24 (12) |
Σ | 88.16 | N(4A)–Fe(1)–N(5) | 87.94 (12) |
N(1)–Fe(1)–N(2) | 91.19 (14) | N(4A)–Fe(1)–N(6) | 88.11 (13) |
N(1)–Fe(1)–N(3) | 93.61 (13) | N(5)–Fe(1)–N(6) | 73.36 (12) |
N(1)–Fe(1)–N(4A) | 167.30 (13) | Fe(1)–N(1)–C(1) | 168.0 (3) |
N(1)–Fe(1)–N(5) | 103.22 (13) | Fe(1)–N(2)–C(2) | 159.3 (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Li, Y.-Q.; Li, Y.; Dai, J.-W.; Wang, J.-H.; Wu, Y.-Y.; Yamashita, M.; Li, Z.-Y. Diverse Magnetic Properties of Two New Binuclear Complexes Affected by [FeN6] Octahedral Distortion: Two-Step Spin Crossover versus Antiferromagnetic Interactions. Magnetochemistry 2023, 9, 69. https://doi.org/10.3390/magnetochemistry9030069
Gao Y, Li Y-Q, Li Y, Dai J-W, Wang J-H, Wu Y-Y, Yamashita M, Li Z-Y. Diverse Magnetic Properties of Two New Binuclear Complexes Affected by [FeN6] Octahedral Distortion: Two-Step Spin Crossover versus Antiferromagnetic Interactions. Magnetochemistry. 2023; 9(3):69. https://doi.org/10.3390/magnetochemistry9030069
Chicago/Turabian StyleGao, Yue, Yu-Qin Li, Yao Li, Jing-Wei Dai, Jin-Hua Wang, Ying-Ying Wu, Masahiro Yamashita, and Zhao-Yang Li. 2023. "Diverse Magnetic Properties of Two New Binuclear Complexes Affected by [FeN6] Octahedral Distortion: Two-Step Spin Crossover versus Antiferromagnetic Interactions" Magnetochemistry 9, no. 3: 69. https://doi.org/10.3390/magnetochemistry9030069
APA StyleGao, Y., Li, Y. -Q., Li, Y., Dai, J. -W., Wang, J. -H., Wu, Y. -Y., Yamashita, M., & Li, Z. -Y. (2023). Diverse Magnetic Properties of Two New Binuclear Complexes Affected by [FeN6] Octahedral Distortion: Two-Step Spin Crossover versus Antiferromagnetic Interactions. Magnetochemistry, 9(3), 69. https://doi.org/10.3390/magnetochemistry9030069