Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices
Abstract
:1. Introduction
2. Classification of TIs
2.1. Two-Dimensional TIs
2.2. Conducting Edge Sates for 2D TIs
2.3. Three-Dimensional TIs
2.4. Hybrid TIs
3. Properties and Characteristics of TIs
3.1. Low Power Dissipation
3.2. Spin-Polarized Electrons
3.3. Preparation Methods of TI
4. A Robust Approach towards Modification in MTIs
4.1. TIs as a Spintronics Device
4.2. Magnetic Topological Insulator (MTIs)
4.3. MnBi2Te4 a Classical Topological Insulator
4.4. Optimistic Approach towards Topological Insulator Antiferromagnetic in Spintronic
4.5. MTIs Spintronics Application
4.6. Realizing Topological Superconductivity in Topological Insulator Materials
4.7. Doped Based Typical Topological Superconductor for Topological Insulator
4.8. MTIs as a Potential Application in Magnetic Skyrmions Device
4.9. Emerging Topological Insulators for Future Representatives
5. Major Challenges in TIs
6. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Klitzing, K.V.; Dorda, G.; Pepper, M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett. 1980, 45, 494. [Google Scholar] [CrossRef] [Green Version]
- Maciejko, J.; Hughes, T.L.; Zhang, S.-C. The Quantum Spin Hall Effect. Annu. Rev. Condens. Matter Phys. 2011, 2, 31–53. [Google Scholar] [CrossRef]
- Qi, X.-L.; Zhang, S.-C. The quantum spin Hall effect and topological insulators. Phys. Today 2010, 63, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Moore, J. Topological insulators: The next generation. Nat. Phys. 2009, 5, 378–380. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, S.; Xu, P.; Zhang, H. Recent development and advances in Photodetectors based on two-dimensional topological insulators. J. Mater. Chem. C 2020, 8, 15526–15574. [Google Scholar] [CrossRef]
- Zunger, A.; Malyi, O.I. Understanding Doping of Quantum Materials. Chem. Rev. 2021, 121, 3031–3060. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, H.; Wang, J. Topological insulators photodetectors: Preparation, advances and application challenges. Mater. Today Commun. 2022, 33, 104190. [Google Scholar] [CrossRef]
- Köenig, M.; Wiedmann, S.; Brüene, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.-L.; Zhang, S.-C. Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science 2007, 318, 766–770. [Google Scholar] [CrossRef] [Green Version]
- Bernevig, B.A.; Hughes, T.L.; Zhang, S.-C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 2006, 314, 1757–1761. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.-W.; Zunger, A. Design Principles and Coupling Mechanisms in the 2D Quantum Well Topological Insulator HgTe/CdTe. Phys. Rev. Lett. 2010, 105, 176805. [Google Scholar] [CrossRef] [Green Version]
- Knez, I.; Du, R.-R.; Sullivan, G. Evidence for Helical Edge Modes in Inverted InAs/GaSb Quantum Wells. Phys. Rev. Lett. 2011, 107, 136603. [Google Scholar] [CrossRef] [Green Version]
- Knez, I.; Du, R.-R.; Sullivan, G. Andreev Reflection of Helical Edge Modes in InAs/GaSb Quantum Spin Hall Insulator. Phys. Rev. Lett. 2012, 109, 186603. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Han, D.; Bao, Y.; Cheng, F.; Ding, Z.; Tan, S.J.R.; Loh, K.P. Observation of Gap Opening in 1T′ Phase MoS2 Nanocrystals. Nano Lett. 2018, 18, 5085–5090. [Google Scholar] [CrossRef]
- Liu, L.; Guo, J. Assessment of performance potential of MoS2-based topological insulator field-effect transistors. J. Appl. Phys. 2015, 118, 124502. [Google Scholar] [CrossRef]
- Sankar, R.; Rao, G.N.; Muthuselvam, I.P.; Butler, C.; Kumar, N.; Murugan, G.S.; Shekhar, C.; Chang, T.-R.; Wen, C.-Y.; Chen, C.-W.; et al. Polymorphic Layered MoTe2 from Semiconductor, Topological Insulator, to Weyl Semimetal. Chem. Mater. 2017, 29, 699–707. [Google Scholar] [CrossRef]
- Gan, Y.; Liang, J.; Cho, C.-W.; Li, S.; Guo, Y.; Ma, X.; Wu, X.; Wen, J.; Du, X.; He, M.; et al. Bandgap opening in MoTe2 thin flakes induced by surface oxidation. Front. Phys. 2020, 15, 33602. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, Z.; Zhang, K.; Yao, W.; Yan, M.; Zhang, H.; Duan, W.; Zhou, S. Electronic structure of molecular beam epitaxy grown 1 T ′ -MoTe2 film and strain effect. Chin. Phys. B 2019, 28, 107307. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, M.X.; Chen, C.; Xu, X.; Jiang, J.; Yang, L.X.; Yang, H.F.; Lv, Y.Y.; Zhou, J.; Chen, Y.B. Experimental Ob-servation of Conductive Edge States in Weak Topological Insulator Candidate HfTe5. APL Mater. 2018, 6, 121111. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Chen, W.; Chen, Y.; Chen, Y.; Chen, Y.; Ding, F.; Fan, C.; Fan, H.J.; Fan, Z.; Gong, C.; et al. Recent Progress on Two-Dimensional Materials. Acta Phys. Chim. Sin. 2021, 37, 2108017. [Google Scholar] [CrossRef]
- Empante, T.A.; Zhou, Y.; Klee, V.; Nguyen, A.E.; Lu, I.-H.; Valentin, M.D.; Naghibi Alvillar, S.A.; Preciado, E.; Berges, A.J.; Merida, C.S. Chemical Vapor Deposition Growth of Few-Layer MoTe2 in the 2H, 1T′, and 1T Phases: Tunable Properties of MoTe2 Films. ACS Nano 2017, 11, 900–905. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Li, H.; Liu, Z. Freestanding atomically-thin two-dimensional materials beyond graphene meeting photocatalysis: Opportunities and challenges. Nano Energy 2017, 35, 79–91. [Google Scholar] [CrossRef]
- Liu, R.-Z.; Huang, X.; Zhao, L.-X.; Liu, L.-M.; Yin, J.-X.; Wu, R.; Chen, G.-F.; Wang, Z.-Q.; Pan, S.H. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe5. Chin. Phys. Lett. 2019, 36, 117301. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, C.; Liu, G.; Liang, A.; Zhao, L.; Huang, J.; Gao, Q.; Shen, B.; Liu, J.; Hu, C.; et al. Temperature-induced Lifshitz transition in topological insulator candidate HfTe 5. Sci. Bull. 2017, 62, 950–956. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, S.; Liu, C.; Zhang, J.; Xu, Y.; Yu, R.; Wu, Y.; Zhang, Y.; Fan, S. Antiferromagnetic topological insulator MnBi2Te4: Synthesis and magnetic properties. Phys. Chem. Chem. Phys. 2019, 22, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Yu, Y.; Shi, M.Z.; Guo, Z.; Xu, Z.; Wang, J.; Chen, X.H.; Zhang, Y. Quantum Anomalous Hall Effect in Intrinsic Magnetic Topological Insulator MnBi2Te4. Science 2020, 367, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Asaba, T.; Wang, Y.; Li, G.; Xiang, Z.; Tinsman, C.; Chen, L.; Zhou, S.; Zhao, S.; Laleyan, D.; Li, Y.; et al. Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2. Sci. Rep. 2018, 8, 6520. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, M.; Qin, J.; Xia, B.; Liu, C.; Wang, S.; Guan, D.; Li, Y.; Zheng, H.; Liu, J. Strain Tunable Semimetal–Topological-Insulator Transition in Monolayer 1 T′− WTe 2. Phys. Rev. Lett. 2020, 125, 046801. [Google Scholar] [CrossRef]
- Shahil, K.M.F.; Hossain, M.Z.; Goyal, V.; Balandin, A.A. Micro-Raman Spectroscopy of Mechanically Exfoliated Few-Quintuple Layers of Bi2Te3, Bi2Se3, and Sb2Te3 Materials. J. Appl. Phys. 2012, 111, 054305. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.S.; Kundhikanjana, W.; Cha, J.J.; Lai, K.; Kong, D.; Meister, S.; Kelly, M.A.; Shen, Z.X.; Cui, Y. Ultrathin Top-ological Insulator Bi2Se3 Nanoribbons Exfoliated by Atomic Force Microscopy. Nano Lett. 2010, 10, 3118–3122. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Feng, T.; Zhao, S.; Li, T.; Pan, Z.; Zhao, J. Saturable Absorption Characteristics of Bi2Se3 in a 2 Μm Q-Switching Bulk Laser. Opt. Express 2020, 28, 5639–5647. [Google Scholar] [CrossRef]
- Sun, L.; Lin, Z.; Peng, J.; Weng, J.; Huang, Y.; Luo, Z. Preparation of Few-Layer Bismuth Selenide by Liq-uid-Phase-Exfoliation and Its Optical Absorption Properties. Sci. Rep. 2014, 4, 4794. [Google Scholar] [CrossRef] [Green Version]
- Bansal, N.; Cho, M.R.; Brahlek, M.; Koirala, N.; Horibe, Y.; Chen, J.; Wu, W.; Park, Y.D.; Oh, S. Transferring MBE-Grown Topological Insulator Films to Arbitrary Substrates and Metal–Insulator Transition via Dirac Gap. Nano Lett. 2014, 14, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Schreyeck, S.; Tarakina, N.V.; Karczewski, G.; Schumacher, C.; Borzenko, T.; Brüne, C.; Buhmann, H.; Gould, C.; Brunner, K.; Molenkamp, L.W. Molecular Beam Epitaxy of High Structural Quality Bi2Se3 on Lattice Matched InP (111) Sub-strates. Appl. Phys. Lett. 2013, 102, 041914. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, Z.; Li, M.; Gao, X.P.A.; Zhang, Z. The Dimensional Crossover of Quantum Transport Properties in Few-Layered Bi2Se3 Thin Films. Nanoscale Adv. 2019, 1, 2303–2310. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.F.; Punugupati, S.; Wu, F.; Jin, Z.; Narayan, J.; Schwartz, J. Evidence for topological surface states in epitaxial Bi2Se3 thin film grown by pulsed laser deposition through magneto-transport measurements. Curr. Opin. Solid State Mater. Sci. 2014, 18, 279–285. [Google Scholar] [CrossRef]
- Kong, D.; Dang, W.; Cha, J.J.; Li, H.; Meister, S.; Peng, H.; Liu, Z.; Cui, Y. Few-Layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential. Nano Lett. 2010, 10, 2245–2250. [Google Scholar] [CrossRef] [Green Version]
- Alegria, L.D.; Schroer, M.D.; Chatterjee, A.; Poirier, G.R.; Pretko, M.; Patel, S.K.; Petta, J.R. Structural and Electrical Characterization of Bi2Se3 Nanostructures Grown by Metal-Organic Chemical Vapor Deposition. Nano Lett. 2012, 12, 4711–4714. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, H.-W.; Li, Y.; Zhang, H.; Zhang, S.; Pan, X.-C.; Jia, B.; Song, F.; Wang, J. Quantitative Analysis of Weak Antilocalization Effect of Topological Surface States in Topological Insulator BiSbTeSe2. Nano Lett. 2019, 19, 2450–2455. [Google Scholar] [CrossRef]
- Sotor, J.; Sobon, G.; Macherzynski, W.; Paletko, P.; Grodecki, K.; Abramski, K.M. Mode-locking in Er-doped fiber laser based on mechanically exfoliated Sb2Te3 saturable absorber. Opt. Mater. Express 2013, 4, 1–6. [Google Scholar] [CrossRef]
- Al-Dabagh, Z.A.I.; Al-Masoodi, A.H.H.; Ahmed, M.H.M.; Latiff, A.A.; Harun, S.W. Q-Switched and Mode-Locked Er-bium-Doped Fiber Lasers Using Antimony Telluride (Sb2Te3) Saturable Absorbers. J. Nanoelectron. Optoelectron. 2019, 14, 1088–1094. [Google Scholar] [CrossRef]
- Orujlu, E.N.; Aliev, Z.S.; Amiraslanov, I.R.; Babanly, M.B. Phase Equilibria of the MnTe-Sb2Te3 System and Synthesis of Novel Ternary Layered Compound–MnSb4Te7. Phys. Chem. Solid State 2021, 22, 39–44. [Google Scholar] [CrossRef]
- Lewin, M.; Mester, L.; Saltzmann, T.; Chong, S.-J.; Kaminski, M.; Hauer, B.; Pohlmann, M.; Mio, A.M.; Wirtssohn, M.; Jost, P.; et al. Sb2Te3 Growth Study Reveals That Formation of Nanoscale Charge Carrier Domains Is an Intrinsic Feature Relevant for Electronic Applications. ACS Appl. Nano Mater. 2018, 1, 6834–6842. [Google Scholar] [CrossRef]
- Zeng, Z.; Morgan, T.A.; Fan, D.; Li, C.; Hirono, Y.; Hu, X.; Zhao, Y.; Lee, J.S.; Wang, J.; Wang, Z.M. Molecular Beam Epitaxial Growth of Bi2Te3 and Sb2Te3 Topological Insulators on GaAs (111) Substrates: A Potential Route to Fabricate Topological Insulator Pn Junction. AIP Adv. 2013, 3, 072112. [Google Scholar] [CrossRef]
- Newbrook, D.W.; Richards, S.P.; Greenacre, V.K.; Hector, A.L.; Levason, W.; Reid, G.; de Groot, C.H.K.; Huang, R. Selective Chemical Vapor Deposition Approach for Sb2Te3 Thin Film Micro-Thermoelectric Generators. ACS Appl. Energy Mater. 2020, 3, 5840–5846. [Google Scholar] [CrossRef]
- Rimoldi, M.; Cecchini, R.; Wiemer, C.; Longo, E.; Cecchi, S.; Mantovan, R.; Longo, M. Effect of Substrates and Thermal Treatments on Metalorganic Chemical Vapor Deposition-Grown Sb2Te3 Thin Films. Cryst. Growth Des. 2021, 21, 5135–5144. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, G.H.; Kang, S.G.; Kang, M.-A.; An, K.-S.; Kim, H.; Lee, Y.K. Growth behavior of Bi2Te3and Sb2Te3thin films on graphene substrate grown by plasma-enhanced chemical vapor deposition. Phys. Status Solidi (RRL) Rapid Res. Lett. 2017, 11. [Google Scholar] [CrossRef]
- Harrison, S.E.; Li, S.; Huo, Y.; Zhou, B.; Chen, Y.L.; Harris, J.S. Two-Step Growth of High Quality Bi2Te3 Thin Films on Al2O3 (0001) by Molecular Beam Epitaxy. Appl. Phys. Lett. 2013, 102, 171906. [Google Scholar] [CrossRef]
- Avron, J.E.; Osadchy, D.; Seiler, R. A Topological Look at the Quantum Hall Effect. Phys. Today 2003, 56, 38–42. [Google Scholar] [CrossRef]
- Yao, Y.; Ye, F.; Qi, X.-L.; Zhang, S.-C.; Fang, Z. Spin-orbit gap of graphene: First-principles calculations. Phys. Rev. B 2007, 75, 041401. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Jiang, Y.; Song, Z.; Huang, H.; He, Y.; Fang, Z.; Weng, H.; Fang, C. Catalogue of topological electronic materials. Nature 2019, 566, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Trang, C.X.; Wu, W.; Hwang, J.; Cortie, D.; Medhekar, N.; Mo, S.; Yang, S.A.; Edmonds, M.T. Large Magnetic Gap in a Designer Ferromagnet–Topological Insulator–Ferromagnet Heterostructure. Adv. Mater. 2022, 34. [Google Scholar] [CrossRef]
- Maghirang, A.B.; Huang, Z.-Q.; Villaos, R.A.B.; Hsu, C.-H.; Feng, L.-Y.; Florido, E.; Lin, H.; Bansil, A.; Chuang, F.-C. Predicting two-dimensional topological phases in Janus materials by substitutional doping in transition metal dichalcogenide monolayers. Npj 2D Mater. Appl. 2019, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Sufyan, A.; Macam, G.; Hsu, C.-H.; Huang, Z.-Q.; Huang, S.-M.; Lin, H.; Chuang, F.-C. Theoretical prediction of topological insulators in two-dimensional ternary transition metal chalcogenides (MM′X4, M = Ta, Nb, or V; M′= Ir, Rh, or Co; X = Se or Te). Chin. J. Phys. 2021, 73, 95–102. [Google Scholar] [CrossRef]
- Dobardžić, E.; Dimitrijević, M.; Milovanović, M.V. Generalized Bloch theorem and topological characterization. Phys. Rev. B 2015, 91, 125424. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-M.; Rabin, O.; Cronin, S.B.; Ying, J.Y.; Dresselhaus, M.S. Semimetal–Semiconductor Transition in Bi1 − xSbx Alloy Nanowires and Their Thermoelectric Properties. Appl. Phys. Lett. 2002, 81, 2403–2405. [Google Scholar] [CrossRef]
- Liu, J.; Hsieh, T.H.; Wei, P.; Duan, W.; Moodera, J.; Fu, L. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator. Nat. Mater. 2013, 13, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Bergholtz, E.J.; Budich, J.C. Non-Hermitian Weyl physics in topological insulator ferromagnet junctions. Phys. Rev. Res. 2019, 1, 012003. [Google Scholar] [CrossRef] [Green Version]
- Bernevig, B.A.; Felser, C.; Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 2022, 603, 41–51. [Google Scholar] [CrossRef]
- Tian, W.; Yu, W.; Shi, J.; Wang, Y. The Property, Preparation and Application of Topological Insulators: A Review. Materials 2017, 10, 814. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ramaswamy, R.; Yang, H. FMR-related phenomena in spintronic devices. J. Phys. D Appl. Phys. 2018, 51, 273002. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Smith, D.J.; Fan, J.; Zhang, Y.-H.; Cao, H.; Chen, Y.P.; Leiner, J.; Kirby, B.J.; Dobrowolska, M.; Furdyna, J.K. Structural Properties of Bi2Te3 and Bi2Se3 Topological Insulators Grown by Molecular Beam Epitaxy on GaAs (001) Substrates. Appl. Phys. Lett. 2011, 99, 171903. [Google Scholar] [CrossRef]
- Plucinski, L.; Mussler, G.; Krumrain, J.; Herdt, A.; Suga, S.; Grützmacher, D.; Schneider, C.M. Robust surface electronic properties of topological insulators: Bi2Te3 films grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 98, 222503. [Google Scholar] [CrossRef] [Green Version]
- Krumrain, J.; Mussler, G.; Borisova, S.; Stoica, T.; Plucinski, L.; Schneider, C.M.; Grützmacher, D. MBE Growth Opti-mization of Topological Insulator Bi2Te3 Films. J. Cryst. Growth 2011, 324, 115–118. [Google Scholar] [CrossRef]
- Cao, H.; Venkatasubramanian, R.; Liu, C.; Pierce, J.; Yang, H.; Zahid Hasan, M.; Wu, Y.; Chen, Y.P. Topological In-sulator Bi2Te3 Films Synthesized by Metal Organic Chemical Vapor Deposition. Appl. Phys. Lett. 2012, 101, 162104. [Google Scholar] [CrossRef] [Green Version]
- Brom, J.E.; Weiss, L.; Choudhury, T.H.; Redwing, J.M. Hybrid physical–chemical vapor deposition of Bi2Se3 films. J. Cryst. Growth 2016, 452, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Cao, C.; Li, J.; Wang, Y.; Cao, T.; Tanveer, M.; Tahir, M.; Idrees, F.; Butt, F.K. Effect of synthesis technique on electrochemical performance of bismuth selenide. J. Power Sources 2013, 229, 216–222. [Google Scholar] [CrossRef]
- Fei, F.; Wei, Z.; Wang, Q.; Lu, P.; Wang, S.; Qin, Y.; Pan, D.; Zhao, B.; Wang, X.; Sun, J. Solvothermal Synthesis of Lateral Heterojunction Sb2Te3/Bi2Te3 Nanoplates. Nano Lett. 2015, 15, 5905–5911. [Google Scholar] [CrossRef]
- Alegria, L.D.; Petta, J.R. Controlled MOCVD Growth of Bi2Se3 Topological Insulator Nanoribbons. Nanotechnology 2012, 23, 435601. [Google Scholar] [CrossRef] [Green Version]
- Bendt, G.; Zastrow, S.; Nielsch, K.; Mandal, P.S.; Sánchez-Barriga, J.; Rader, O.; Schulz, S. Deposition of topological insulator Sb2Te3 films by an MOCVD process. J. Mater. Chem. A 2014, 2, 8215–8222. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Shin, D.W.; Makotchenko, V.G.; Nazarov, A.S.; Fedorov, V.E.; Kim, Y.H.; Choi, J.-Y.; Kim, J.M.; Yoo, J.-B. Expanded Graphite: One-Step Exfoliation Synthesis of Easily Soluble Graphite and Transparent Conducting Graphene. Adv. Mater. 2009, 21, 4383–4387. [Google Scholar] [CrossRef]
- Ambrosi, A.; Sofer, Z.; Luxa, J.; Pumera, M. Exfoliation of Layered Topological Insulators Bi2Se3 and Bi2Te3 via Electrochemistry. ACS Nano 2016, 10, 11442–11448. [Google Scholar] [CrossRef]
- Ren, L.; Qi, X.; Liu, Y.; Hao, G.; Huang, Z.; Zou, X.; Yang, L.; Li, J.; Zhong, J. Large-scale production of ultrathin topological insulator bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route. J. Mater. Chem. 2012, 22, 4921–4926. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Zhu, Y.; Zhang, M.; Liu, R.; Li, X.; Kang, X.; Li, Z.; Qiao, S. Synthesis and mechanical exfoliation of imine-linked two-dimensional conjugated polymers. J. Mater. Chem. C 2017, 6, 722–725. [Google Scholar] [CrossRef]
- Zhao, S.Y.F.; Beekman, C.; Sandilands, L.J.; Bashucky, J.E.J.; Kwok, D.; Lee, N.; LaForge, A.D.; Cheong, S.W.; Burch, K.S. Fabrication and characterization of topological insulator Bi2Se3 nanocrystals. Appl. Phys. Lett. 2011, 98, 141911. [Google Scholar] [CrossRef] [Green Version]
- Goyal, V.; Teweldebrhan, D.; Balandin, A.A. Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl. Phys. Lett. 2010, 97, 133117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, Y.; Mu, W.; Bai, W.; Sun, X.; Zhao, M.; Zhang, Z.; Shan, F.; Yang, Z. Advanced tape-exfoliated method for preparing large-area 2D monolayers: A review. 2D Mater. 2021, 8, 032002. [Google Scholar] [CrossRef]
- Yan, P.; Lin, R.; Ruan, S.; Liu, A.; Chen, H.; Zheng, Y.; Chen, S.; Guo, C.; Hu, J. A practical topological insulator saturable absorber for mode-locked fiber laser. Sci. Rep. 2015, 5, srep08690. [Google Scholar] [CrossRef] [Green Version]
- Zareapour, P.; Hayat, A.; Zhao, S.Y.F.; Kreshchuk, M.; Jain, A.; Kwok, D.C.; Lee, N.; Cheong, S.-W.; Xu, Z.; Yang, A.; et al. Proximity-induced high-temperature superconductivity in the topological insulators Bi2Se3 and Bi2Te3. Nat. Commun. 2012, 3, 1056. [Google Scholar] [CrossRef] [Green Version]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, L.; Song, Y.-F.; Tang, D.-Y.; Shen, D.-Y.; Zhao, L.-M. Vector soliton and noise-like pulse generation using a Ti3C2 MXene material in a fiber laser. Front. Inf. Technol. Electron. Eng. 2020, 22, 318–324. [Google Scholar] [CrossRef]
- Yan, B.; Guo, H.; He, G.; Mao, J.; Wang, F.; Yang, K.; Zhang, B.; He, J. Ta2NiSe5 nanosheets as a novel broadband saturable absorber for solid-state pulse laser generation. Sci. China Mater. 2021, 64, 1468–1476. [Google Scholar] [CrossRef]
- Marzo, A.M.L.; Gusmão, R.; Sofer, Z.; Pumera, M. Towards Antimonene and 2D Antimony Telluride through Electrochemical Exfoliation. Chem. A Eur. J. 2020, 26, 6583–6590. [Google Scholar] [CrossRef]
- Wang, H.; Mao, N.; Niu, C.; Shen, S.; Whangbo, M.-H.; Huang, B.; Dai, Y. Ferromagnetic dual topological insulator in a two-dimensional honeycomb lattice. Mater. Horiz. 2020, 7, 2431–2438. [Google Scholar] [CrossRef]
- Zhu, T.; Bishop, A.J.; Zhou, T.; Zhu, M.; O’Hara, D.J.; Baker, A.A.; Cheng, S.; Walko, R.C.; Repicky, J.J.; Liu, T.; et al. Synthesis, Magnetic Properties, and Electronic Structure of Magnetic Topological Insulator MnBi2Se4. Nano Lett. 2021, 21, 5083–5090. [Google Scholar] [CrossRef]
- Qi, X.L.; Zhang, S.C. Topological Insulators and Superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.; Zhang, W.; Zhang, H.-J.; Zhang, S.-C.; Dai, X.; Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 2010, 329, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Shi, J.; Shen, S.-Q. Competition between Weak Localization and Antilocalization in Topological Surface States. Phys. Rev. Lett. 2011, 107, 076801. [Google Scholar] [CrossRef] [Green Version]
- Kou, X.; Guo, S.-T.; Fan, Y.; Pan, L.; Lang, M.; Jiang, Y.; Shao, Q.; Nie, T.; Murata, K.; Tang, J.; et al. Scale-Invariant Quantum Anomalous Hall Effect in Magnetic Topological Insulators beyond the Two-Dimensional Limit. Phys. Rev. Lett. 2014, 113, 137201. [Google Scholar] [CrossRef] [Green Version]
- Bestwick, A.J.; Fox, E.J.; Kou, X.; Pan, L.; Wang, K.L.; Goldhaber-Gordon, D. Precise Quantization of the Anomalous Hall Effect near Zero Magnetic Field. Phys. Rev. Lett. 2015, 114, 187201. [Google Scholar] [CrossRef] [Green Version]
- Checkelsky, J.G.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K.S.; Kozuka, Y.; Falson, J.; Kawasaki, M.; Tokura, Y. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 2014, 10, 731–736. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-Z.; Zhao, W.; Kim, D.Y.; Zhang, H.; Assaf, B.A.; Heiman, D.; Zhang, S.-C.; Liu, C.; Chan, M.H.W.; Moodera, J.S. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 2015, 14, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Hirohata, A.; Takanashi, K. Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 2014, 47. [Google Scholar] [CrossRef]
- Klimovskikh, I.I.; Otrokov, M.M.; Estyunin, D.; Eremeev, S.V.; Filnov, S.O.; Koroleva, A.; Shevchenko, E.; Voroshnin, V.; Rybkin, A.G.; Rusinov, I.P.; et al. Tunable 3D/2D magnetism in the (MnBi2Te4)(Bi2Te3)m topological insulators family. Npj Quantum Mater. 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Chen, X.; Ma, X.-C.; He, K.; Jia, J.-F.; Xue, Q.-K. Molecular Beam Epitaxial Growth of Topological Insulators. Adv. Mater. 2011, 23, 1162–1165. [Google Scholar] [CrossRef]
- He, L.; Kou, X.; Wang, K.L. Review of 3D topological insulator thin-film growth by molecular beam epitaxy and potential applications. Phys. Status Solidi (RRL) Rapid Res. Lett. 2013, 7, 50–63. [Google Scholar] [CrossRef]
- Rienks, E.D.L.; Wimmer, S.; Sánchez-Barriga, J.; Caha, O.; Mandal, P.S.; Růžička, J.; Ney, A.; Steiner, H.; Volobuev, V.; Groiß, H. Large Magnetic Gap at the Dirac Point in Bi2Te3/MnBi2Te4 Heterostructures. Nature 2019, 576, 423–428. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Song, C.; Liao, L.; Zhou, Z.; Bai, H.; Zhou, Y.; Pan, F. Quantum anomalous Hall insulator state in ferromagnetically ordered MnBi2Te4/VBi2Te4 heterostructures. Phys. Rev. B 2020, 102, 085111. [Google Scholar] [CrossRef]
- Tokura, Y.; Yasuda, K.; Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 2019, 1, 126–143. [Google Scholar] [CrossRef]
- Yeats, A.L.; Pan, Y.; Richardella, A.; Mintun, P.J.; Samarth, N.; Awschalom, D.D. Persistent Optical Gating of a Topo-logical Insulator. Sci. Adv. 2015, 1, e1500640. [Google Scholar] [CrossRef] [Green Version]
- Tseng, P.; Chen, J.-W.; Hsueh, W.-J. Huge magnetoresistance in topological insulator spin-valves at room temperature. Sci. Rep. 2021, 11, 1–8. [Google Scholar] [CrossRef]
- Schnyder, A.P.; Brydon, P.M.R. Topological surface states in nodal superconductors. J. Phys. Condens. Matter 2015, 27, 243201. [Google Scholar] [CrossRef] [Green Version]
- Tsuei, C.C.; Kirtley, J.R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 2000, 72, 969–1016. [Google Scholar] [CrossRef]
- Stewart, G.R. Superconductivity in iron compounds. Rev. Mod. Phys. 2011, 83, 1589–1652. [Google Scholar] [CrossRef]
- Maeno, Y.; Kittaka, S.; Nomura, T.; Yonezawa, S.; Ishida, K. Evaluation of Spin-Triplet Superconductivity in Sr2RuO4. J. Phys. Soc. Jpn. 2012, 81, 011009. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.-T.; Liu, Y.; Bao, J.-K.; Xi, C.-Y.; Pi, L.; Cao, G.-H. Anisotropic upper critical magnetic fields in Rb2Cr3As3 superconductor. J. Phys. Condens. Matter 2017, 29, 424002. [Google Scholar] [CrossRef]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x = 0.05−0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef]
- Jiang, S.; Xing, H.; Xuan, G.; Wang, C.; Ren, Z.; Feng, C.; Dai, J.; Xu, Z.; Cao, G. Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1−xPx)2. J. Phys. Condens. Matter 2009, 21, 382203. [Google Scholar] [CrossRef] [Green Version]
- Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 2010, 9, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Hor, Y.S.; Williams, A.J.; Checkelsky, J.G.; Roushan, P.; Seo, J.; Xu, Q.; Zandbergen, H.W.; Yazdani, A.; Ong, N.P.; Cava, R.J. Superconductivity in CuxBi2Se3 and Its Implications for Pairing in the Undoped Topological Insulator. Phys. Rev. Lett. 2010, 104, 057001. [Google Scholar] [CrossRef] [Green Version]
- Kirshenbaum, K.; Syers, P.S.; Hope, A.P.; Butch, N.P.; Jeffries, J.R.; Weir, S.T.; Hamlin, J.J.; Maple, M.B.; Vohra, Y.K.; Paglione, J. Pressure-Induced Unconventional Superconducting Phase in the Topological InsulatorBi2Se3. Phys. Rev. Lett. 2013, 111, 087001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Yu, R.; Zhang, H.-J.; Dai, X.; Fang, Z. First-Principles Studies of the Three-Dimensional Strong Topological Insulators Bi2Te3, Bi2Se3 and Sb2Te3. New J. Phys. 2010, 12, 065013. [Google Scholar] [CrossRef]
- Matsubayashi, K.; Terai, T.; Zhou, J.S.; Uwatoko, Y. Superconductivity in the topological insulatorBi2Te3under hydrostatic pressure. Phys. Rev. B 2014, 90, 125126. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, J.L.; Kong, P.P.; Zhang, S.J.; Yu, X.H.; Liu, Q.Q.; Li, X.; Yu, R.C.; Ahuja, R.; Yang, W.G.; et al. Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure. Sci. Rep. 2013, 3, 2016. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Zhang, J.; Yu, G.; Ma, S.; Wang, Y.; Wang, Y. Thermoelectric Properties of Monolayer Sb2Te3. J. Appl. Phys. 2018, 124, 165104. [Google Scholar] [CrossRef]
- VanGennep, D.; E Jackson, D.; Graf, D.; Berger, H.; Hamlin, J.J. Evolution of the Fermi surface of BiTeCl with pressure. J. Phys. Condens. Matter 2017, 29, 295702. [Google Scholar] [CrossRef] [Green Version]
- Schindler, F.; Cook, A.M.; Vergniory, M.G.; Wang, Z.; Parkin, S.S.P.; Bernevig, B.A.; Neupert, T. Higher-Order Topological Insulators. Sci. Adv. 2018, 4, eaat0346. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, A.; Higuchi, Y.; Ochiai, T.; Kanou, M.; Ishikawa, F.; Nakano, S.; Nakayama, A.; Yamada, Y.; Sasagawa, T. Pressure-induced topological phase transition in the polar semiconductor BiTeBr. Phys. Rev. B 2017, 95, 125203. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.-J.; Struzhkin, V.V.; Cao, Z.-Y.; Goncharov, A.F.; Mao, H.-K.; Chen, F.; Chen, X.-H.; Gavriliuk, A.G.; Chen, X.-J. Realization of insulating state and superconductivity in the Rashba semiconductor BiTeCl. Phys. Rev. B 2016, 93, 100504. [Google Scholar] [CrossRef] [Green Version]
- He, L.-P.; Li, S.-Y. Quantum transport properties of the three-dimensional Dirac semimetal Cd3As2 single crystals. Chin. Phys. B 2016, 25, 117105. [Google Scholar] [CrossRef]
- Kealhofer, D.A.; Galletti, L.; Schumann, T.; Suslov, A.; Stemmer, S. Topological Insulator State and Collapse of the Quantum Hall Effect in a Three-Dimensional Dirac Semimetal Heterojunction. Phys. Rev. X 2020, 10, 011050. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Li, J.; Zhang, K.; Peng, S.; Huang, H.; Yan, M.; Li, N.; Zhang, Q.; Guo, S.; Lü, X.; et al. Pressure-induced Lifshitz transition in the type II Dirac semimetal PtTe2. Sci. China Phys. Mech. Astron. 2018, 62, 1–7. [Google Scholar] [CrossRef]
- Fan, Z.; Liang, Q.-F.; Chen, Y.B.; Yao, S.-H.; Zhou, J. Transition between strong and weak topological insulator in ZrTe5 and HfTe5. Sci. Rep. 2017, 7, srep45667. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Long, Y.J.; Zhao, L.X.; Nie, S.M.; Zhang, S.J.; Weng, Y.X.; Jin, M.L.; Li, W.M.; Liu, Q.Q.; Yu, R.C.; et al. Superconductivity in HfTe5 across weak to strong topological insulator transition induced via pressures. Sci. Rep. 2017, 7, 44367. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Shi, W.; Naumov, P.G.; Kumar, N.; Schnelle, W.; Barkalov, O.; Shekhar, C.; Borrmann, H.; Felser, C.; Yan, B.; et al. Pressure-Driven Superconductivity in the Transition-Metal Pentatelluride HfT E5. Phys. Rev. B 2016, 94, 054517. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, Y.; Guo, Z.; Han, F.; Chen, X.; Lu, P.; Wang, X.; An, C.; Zhou, Y.; Xing, J.; et al. Concurrence of superconductivity and structure transition in Weyl semimetal TaP under pressure. Npj Quantum Mater. 2017, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Mendes, J.B.S.; Vieira, A.S.; Cunha, R.O.; Ferreira, S.O.; dos Reis, R.D.; Schmidt, M.; Nicklas, M.; Rezende, S.M.; Azevedo, A. Efficient Spin-to-Charge Interconversion in Weyl Semimetal TaP at Room Temperature. Adv. Mater. Interfaces 2022, 9. [Google Scholar] [CrossRef]
- Qi, Y.; Naumov, P.G.; Ali, M.N.; Rajamathi, C.R.; Schnelle, W.; Barkalov, O.; Hanfland, M.; Wu, S.-C.; Shekhar, C.; Sun, Y.; et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 2016, 7, 11038. [Google Scholar] [CrossRef] [Green Version]
- Tafti, F.F.; Torikachvili, M.S.; Stillwell, R.L.; Baer, B.; Stavrou, E.; Weir, S.T.; Vohra, Y.K.; Yang, H.-Y.; McDonnell, E.F.; Kushwaha, S.K.; et al. Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity. Phys. Rev. B 2017, 95, 014507. [Google Scholar] [CrossRef] [Green Version]
- Lou, R.; Fu, B.-B.; Xu, Q.N.; Guo, P.-J.; Kong, L.-Y.; Zeng, L.-K.; Ma, J.-Z.; Richard, P.; Fang, C.; Huang, Y.-B.; et al. Evidence of topological insulator state in the semimetal LaBi. Phys. Rev. B 2017, 95, 115140. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Zhou, Y.; Yi, W.; Yang, C.; Guo, J.; Shi, Y.; Zhang, S.; Wang, Z.; Zhang, C.; Jiang, S.; et al. Superconductivity emerging from a suppressed large magnetoresistant state in tungsten ditelluride. Nat. Commun. 2015, 6, 7804. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.-Y.; Ma, Q.; Shen, H.; Fatemi, V.; Wu, S.; Chang, T.-R.; Chang, G.; Valdivia, A.M.M.; Chan, C.-K.; Gibson, Q.D.; et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2. Nat. Phys. 2018, 14, 900–906. [Google Scholar] [CrossRef] [Green Version]
- Han, H.J.; Liu, P.; Cha, J.J. 1D topological systems for next-generation electronics. Matter 2021, 4, 2596–2598. [Google Scholar] [CrossRef]
- Chi, Z.; Chen, X.; An, C.; Yang, L.; Zhao, J.; Feng, Z.; Zhou, Y.; Zhou, Y.; Gu, C.; Zhang, B.; et al. Pressure-induced superconductivity in MoP. Npj Quantum Mater. 2018, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Lu, X.; Dioguardi, A.P.; Rosa, P.S.F.; Bauer, E.D.; Si, Q.; Thompson, J.D. Unconventional and conventional quantum criticalities in CeRh0.58Ir0.42In5. Npj Quantum Mater. 2018, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Ni, Z.; Zhang, J.; Yuan, X.; Liu, Y.; Zou, Y.; Liao, Z.; Du, Y.; Narayan, A.; Zhang, H.; et al. Ultrahigh conductivity in Weyl semimetal NbAs nanobelts. Nat. Mater. 2019, 18, 482–488. [Google Scholar] [CrossRef]
- Cho, C.-W.; Shen, J.; Lyu, J.; Atanov, O.; Chen, Q.; Lee, S.H.; Hor, Y.S.; Gawryluk, D.J.; Pomjakushina, E.; Bartkowiak, M.; et al. Z3-vestigial nematic order due to superconducting fluctuations in the doped topological insulators NbxBi2Se3 and CuxBi2Se3. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Shruti; Maurya, V.K.; Neha, P.; Srivastava, P.; Patnaik, S. Superconductivity by Sr intercalation in the layered topological insulatorBi2Se3. Phys. Rev. B 2015, 92, 020506. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fang, Y.; Pei, C.; Qi, Y.; Wang, L. Phonon softening and higher-order anharmonic effect in the superconducting topological insulator Sr x Bi2Se3. J. Phys. Condens. Matter 2020, 32, 385701. [Google Scholar] [CrossRef]
- Qiu, Y.; Sanders, K.N.; Dai, J.; Medvedeva, J.E.; Wu, W.; Ghaemi, P.; Vojta, T.; Hor, Y.S. Time Reversal Symmetry Breaking Superconductivity in Topological Materials. arXiv 2015, arXiv:1512.03519. [Google Scholar]
- Wang, Z.; Taskin, A.A.; Frölich, T.; Braden, M.; Ando, Y. Superconductivity in Tl0.6Bi2Te3 Derived from a Topological Insulator. Chem. Mater. 2016, 28, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Segawa, K.; Ando, Y. Superconductor derived from a topological insulator heterostructure. Phys. Rev. B 2014, 90, 220504. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, K.; Kimizuka, H.; Tanaka, Y.; Sato, T.; Souma, S.; Takahashi, T.; Sasaki, S.; Segawa, K.; Ando, Y. Observation of two-dimensional bulk electronic states in the superconducting topological insulator heterostructureCux(PbSe)5(Bi2Se3)6: Implications for unconventional superconductivity. Phys. Rev. B 2015, 92, 100508. [Google Scholar] [CrossRef] [Green Version]
- Erickson, A.S.; Chu, J.-H.; Toney, M.F.; Geballe, T.H.; Fisher, I.R. Enhanced superconducting pairing interaction in indium-doped tin telluride. Phys. Rev. B 2009, 79, 024520. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, T.M.; Srivastava, G. Electronic and topological properties of Sn1-xInxTe. Comput. Mater. Sci. 2020, 182, 109777. [Google Scholar] [CrossRef]
- Zhong, R.D.; Schneeloch, J.A.; Liu, T.S.; Camino, F.E.; Tranquada, J.M.; Gu, G.D. Superconductivity induced by In substitution into the topological crystalline insulator Pb0.5Sn0.5Te. Phys. Rev. B 2014, 90, 020505. [Google Scholar] [CrossRef] [Green Version]
- Du, G.; Du, Z.; Fang, D.; Yang, H.; Zhong, R.D.; Schneeloch, J.; Gu, G.D.; Wen, H.-H. Fully gapped superconductivity in In-doped topological crystalline insulatorPb0.5Sn0.5Te. Phys. Rev. B 2015, 92, 020512. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Pfleiderer, C. Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility. Phys. Rev. B 2012, 85. [Google Scholar] [CrossRef] [Green Version]
- Yokouchi, T.; Kanazawa, N.; Tsukazaki, A.; Kozuka, Y.; Kikkawa, A.; Taguchi, Y.; Kawasaki, M.; Ichikawa, M.; Kagawa, F.; Tokura, Y. Formation of In-plane Skyrmions in Epitaxial MnSi Thin Films as Revealed by Planar Hall Effect. J. Phys. Soc. Jpn. 2015, 84. [Google Scholar] [CrossRef] [Green Version]
- Grigoriev, S.v.; Dyadkin, V.A.; Menzel, D.; Schoenes, J.; Chetverikov, Y.O.; Okorokov, A.I.; Eckerlebe, H.; Maleyev, S.v. Magnetic Structure of Fe1-x Cox Si in a Magnetic Field Studied via Small-Angle Polarized Neutron Diffraction. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 224424. [Google Scholar] [CrossRef]
- Kalin, J.; Sievers, S.; Füser, H.; Schumacher, H.W.; Bieler, M.; García-Sánchez, F.; Bauer, A.; Pfleiderer, C. Optically excited spin dynamics of thermally metastable skyrmions in Fe0.75Co0.25Si. Phys. Rev. B 2022, 106, 054430. [Google Scholar] [CrossRef]
- A Valkovskiy, G.; Altynbaev, E.; Kuchugura, M.D.; Yashina, E.G.; Sukhanov, A.S.; A Dyadkin, V.; Tsvyashchenko, A.V.; A Sidorov, V.; Fomicheva, L.N.; Bykova, E.; et al. Thermal expansion of monogermanides of 3d-metals. J. Phys. Condens. Matter 2016, 28, 375401. [Google Scholar] [CrossRef] [Green Version]
- Altynbaev, E.; Martin, N.; Heinemann, A.; Fomicheva, L.; Tsvyashchenko, A.; Mirebeau, I.; Grigoriev, S. Onset of a skyrmion phase by chemical substitution in MnGe-based chiral magnets. Phys. Rev. B 2020, 101, 100404. [Google Scholar] [CrossRef]
- Dhital, C.; DiTusa, J.F. Entropic signatures of the skyrmion lattice phase in MnSi1–xAlx and Fe1–yCoySi. Phys. Rev. B 2020, 102, 224408. [Google Scholar] [CrossRef]
- Qian, F.; Bannenberg, L.J.; Wilhelm, H.; Chaboussant, G.; Debeer-Schmitt, L.M.; Schmidt, M.P.; Aqeel, A.; Palstra, T.T.M.; Brück, E.; Lefering, A.J.E.; et al. New Magnetic Phase of the Chiral Skyrmion Material Cu2OSeO3. Sci. Adv. 2018, 4, eaat7323. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wang, Y.; Lin, J.; Pelliciari, J.; Li, J.; Han, M.-G.; Schmidt, M.; Kotliar, G.; Mazzoli, C.; Dean, M.P.M.; et al. Site-specific electronic and magnetic excitations of the skyrmion material Cu2OSeO3. Commun. Phys. 2022, 5, 1–7. [Google Scholar] [CrossRef]
- Xu, K.; Xiang, H.J. Unusual ferroelectricity induced by the Jahn-Teller effect: A case study on lacunar spinel compounds. Phys. Rev. B 2015, 92, 121112. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Rahman, S.; Sun, E.; Knill, C.; Zhang, D.; Wang, L.; Tsurkan, V.; Kézsmárki, I. From Semiconducting to Metallic: Jahn–Teller-Induced Phase Transformation in Skyrmion Host GaV4S8. J. Phys. Chem. C 2021, 125, 5771–5780. [Google Scholar] [CrossRef]
- Kim, S.-H.; Halasyamani, P.S.; Melot, B.C.; Seshadri, R.; Green, M.A.; Sefat, A.; Mandrus, D. Experimental and Computational Investigation of the Polar Ferrimagnet VOSe2O5. Chem. Mater. 2010, 22, 5074–5083. [Google Scholar] [CrossRef]
- Kurumaji, T.; Nakajima, T.; Feoktystov, A.; Babcock, E.; Salhi, Z.; Ukleev, V.; Arima, T.-H.; Kakurai, K.; Tokura, Y. Direct Observation of Cycloidal Spin Modulation and Field-induced Transition in Néel-type Skyrmion-hosting VOSe2O5. J. Phys. Soc. Jpn. 2021, 90. [Google Scholar] [CrossRef]
- Camosi, L.; Rougemaille, N.; Fruchart, O.; Vogel, J.; Rohart, S. Micromagnetics of antiskyrmions in ultrathin films. Phys. Rev. B 2018, 97, 134404. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Kane, C.L.; Mele, E.J. Topological Insulators in Three Dimensions. Phys. Rev. Lett. 2007, 98, 106803. [Google Scholar] [CrossRef] [Green Version]
- Bernevig, B.A.; Zhang, S.-C. Quantum Spin Hall Effect. Phys. Rev. Lett. 2006, 96, 106802. [Google Scholar] [CrossRef] [Green Version]
- Pavlosiuk, O.; Kaczorowski, D.; Wiśniewski, P. Shubnikov - de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi. Sci. Rep. 2015, 5, srep09158. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; RamaRao, S.D.; Peter, S.C. Rare-earth based half-Heusler topological quantum materials: A perspective. APL Mater. 2020, 8, 060903. [Google Scholar] [CrossRef]
- Al-Sawai, W.; Lin, H.; Markiewicz, R.S.; Wray, L.A.; Xia, Y.; Xu, S.-Y.; Hasan, M.Z.; Bansil, A. Topological electronic structure in half-Heusler topological insulators. Phys. Rev. B 2010, 82, 125208. [Google Scholar] [CrossRef] [Green Version]
- Nishide, A.; Taskin, A.A.; Takeichi, Y.; Okuda, T.; Kakizaki, A.; Hirahara, T.; Nakatsuji, K.; Komori, F.; Ando, Y.; Matsuda, I. Direct mapping of the spin-filtered surface bands of a three-dimensional quantum spin Hall insulator. Phys. Rev. B 2010, 81. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y.S.; Cava, R.J.; et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Analytis, J.G.; Chu, J.-H.; Liu, Z.K.; Mo, S.-K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science 2009, 325, 178–181. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, H.; Ding, B.; Hou, Z.; Liu, E.; Xi, X.; Wu, G.; Wang, W. Tunable positive magnetoresistance and crossover from weak antilocalization to weak localization transition in half-Heusler compounds RPtBi (R = lanthanide). Appl. Phys. Lett. 2020, 116, 101902. [Google Scholar] [CrossRef]
- Liu, C.; Lee, Y.; Kondo, T.; Mun, E.D.; Caudle, M.; Harmon, B.N.; Bud’Ko, S.L.; Canfield, P.C.; Kaminski, A. Metallic surface electronic state in half-Heusler compoundsRPtBi (R=Lu, Dy, Gd). Phys. Rev. B 2011, 83, 205133. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.K.; Yang, L.X.; Wu, S.-C.; Shekhar, C.; Jiang, J.; Yang, H.F.; Zhang, Y.; Mo, S.-K.; Hussain, Z.; Yan, B.; et al. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln=Lu, Y). Nat. Commun. 2016, 7, 12924. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Kim, J.; Shelton, W.A.; Plummer, E.W.; Jin, R. Nontrivial Berry Phase in Magnetic BaMnSb2 Semimetal. Proc. Natl. Acad. Sci. USA 2017, 114, 6256–6261. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, D.; Sanyal, S.P. Electronic, phonon and superconducting properties of LaPtBi half-Heusler compound. Solid State Commun. 2018, 273, 1–4. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, W.; Xu, G.; Zhang, X.; Wei, Z.; Shen, S.; Liu, E.; Yao, Y.; Chai, Y.; Sun, Y.; et al. High electron mobility and large magnetoresistance in the half-Heusler semimetal LuPtBi. Phys. Rev. B 2015, 92, 235134. [Google Scholar] [CrossRef] [Green Version]
- Polat, O.; Mohelský, I.; Arregi, J.A.; Horák, M.; Polčák, J.; Bukvišová, K.; Zlamal, J.; Sikola, T. An Investigation of Structural and Magnetotransport Features of Half-Heusler ScPtBi Thin Films. Mater. Res. Bull. 2022, 149, 111696. [Google Scholar] [CrossRef]
- Hosen, M.M.; Dhakal, G.; Dimitri, K.; Choi, H.; Kabir, F.; Sims, C.; Pavlosiuk, O.; Wiśniewski, P.; Durakiewicz, T.; Zhu, J.-X.; et al. Observation of Dirac state in half-Heusler material YPtBi. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Janka, O.; Niehaus, O.; Pöttgen, R.; Chevalier, B. Cerium Intermetallics with TiNiSi-Type Structure. Z. Für Nat. B 2016, 71, 737–764. [Google Scholar] [CrossRef]
- Müller, R.A.; Lee-Hone, N.; Lapointe, L.; Ryan, D.H.; Pereg-Barnea, T.; Bianchi, A.; Mozharivskyj, Y.; Flacau, R. Magnetic structure of GdBiPt: A candidate antiferromagnetic topological insulator. Phys. Rev. B 2014, 90, 041109. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Wang, W.; Zhang, X.; Du, Y.; Liu, E.; Wang, S.; Wu, G.; Liu, Z.; Zhang, X.X. Weak Antilocalization Effect and Noncentrosymmetric Superconductivity in a Topologically Nontrivial Semimetal LuPdBi. Sci. Rep. 2014, 4, 5709. [Google Scholar] [CrossRef] [Green Version]
- Gupta, Y.; Sinha, M.M.; Verma, S.S. A First Principle Study of Structural, Electronic, and Vibrational Properties of LuPdBi Half-Heusler Alloy. Phys. Status Solidi (B) 2019, 256, 1900117. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, Z.; Zhang, C.; Chen, J.; Li, P.; Wen, Y.; Zhang, Q.; Wang, W.; Zhang, X. Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Appl. Phys. Lett. 2019, 115, 172407. [Google Scholar] [CrossRef]
- Ramarao, S.; Pawbake, A.; Singh, A.K.; Núñez-Regueiro, M.; Méasson, M.-A.; Peter, S.C. Electrical transport properties of half-heusler ScPdBi single crystals under extreme conditions. J. Alloy. Compd. 2020, 848, 156632. [Google Scholar] [CrossRef]
- Polat, O.; Arregi, J.A.; Horák, M.; Polčák, J.; Bukvišová, K.; Zlámal, J.; Šikola, T. The fabrication and characterization of half-Heusler YPdBi thin films. J. Phys. Chem. Solids 2021, 161, 110447. [Google Scholar] [CrossRef]
- Plucinski, L.; Herdt, A.; Fahrendorf, S.; Bihlmayer, G.; Mussler, G.; Döring, S.; Kampmeier, J.; Matthes, F.; Bürgler, D.E.; Grützmacher, D.; et al. Electronic structure, surface morphology, and topologically protected surface states of Sb2Te3 thin films grown on Si(111). J. Appl. Phys. 2013, 113, 053706. [Google Scholar] [CrossRef] [Green Version]
Types of Topological Insulators | Metal Related to TIs | Preparing Techniques | Morphology | Refs. |
---|---|---|---|---|
2D TIs | CdTe/HgTe | Molecular beam epitaxy (MBE) | Quantum well (QWs) | [8,10] |
GaSb/AlSb/AlSb/InAs | MBE | QWs | [11,12] | |
1T’-MoS2 | MBE | Thin films | [13,14] | |
1T’-MoTe2 | Mechanical exfoliation | Nanoflakes | [15,16] | |
MBE | Thin films | [17,18,19] | ||
Chemical vapour deposition | Thin film and nanosheet | [20,21] | ||
HfTe5 | Chemical vapour deposition | Nanocrystals | [22,23] | |
MnBi2Te4 | Solid state reaction | Single crystals | [24,25] | |
Wte2 | MBE | Single layer thin film. | [26,27] | |
3D TIs | Bi2Se3 | Mechanical exfoliation | Nanosheets | [28,29] |
Liquid-phase exfoliation | Nanosheets | [30,31] | ||
MBE | Thin sheets | [32,33] | ||
Pulse laser deposition | Thin sheets | [34,35] | ||
Chemical vapour deposition | Nanowires, nanoplates, Nanoribbons, thin films | [36,37] | ||
Liquid-phase synthesis | Nanocrystalline, nanobelts, Nanotubes, nanosheets | [31,38] | ||
Sb2Te3 | Mechanical exfoliation | Nanosheets | [28,39] | |
Liquid-phase exfoliation | Nanosheets | [40,41] | ||
Molecular beam epitaxy | Thin films | [42,43] | ||
Pulse laser deposition | Thin films | [44,45] | ||
Chemical vapour deposition | Thin films | [44,45] | ||
Bi2Te3 | MBE | Thin films | [46,47] |
Methodology | Structurer Merits | Demerits | Refs. |
---|---|---|---|
MBE method |
|
| [61,62,63] |
Chemical Vapor Deposition (CVD) |
|
| [36,64,65] |
Solvothermal Synthesis |
|
| [66,67] |
MOCVD |
|
| [68,69] |
One Step Exfoliation Techniques |
|
| [70,71,72] |
Mechanical Exfoliation |
|
| [73,74,75] |
Scotch Tape Exfoiation |
|
| [76,77,78] |
Liquid Phase Exfoliation |
|
| [79,80,81] |
Electrochemical Exfoliation |
|
| [71,72,82] |
Materials | Nature | Tc | Space Group | Refs. |
---|---|---|---|---|
Bi2Se3 | Topological insulator | 0.3–7 K | R-3m | [111,112] |
Bi2Te3 | TIs | 2.6–9.5 K | R-3m | [97,113] |
Sb2Te3 | TIs | 3–7.3 K | R-3m | [114,115] |
BiTe | TIs | 1–5.2 K | P3ml | [116,117] |
BiTeBr | TIs | 1–4.8 K | P3ml | [116,118] |
BiTeCl | TIs | 4.8 K | P6mc | [116,119] |
Cd3As2 | Dirac Semimetal | 2.4 K | I4Imc | [120,121] |
ZrTe5 | Dirac Semimetal | 1.8–6 K | Cmcm | [122,123] |
HfTe5 | Dirac Semimetal | 1.8–4.8 K | Cmcm | [124,125] |
TaP | Weyl Semimetal | 1.8–3 K | I4Imd | [126,127] |
MoTe2 | Weyl Semimetal | 0.1–8.2 K | P21/m | [15,128] |
LaBi | Topological Semimetal | 4.8 K | Fm-3m | [129,130] |
WTe2 | Weyl Semimetal | 3.7 K | Pmn2I | [131,132] |
MoP | Semi metal | 2.5–4 K | P-m62 | [133,134] |
NbAs | Topological Semimetal | 2–2.6 K | C2/m | [135,136] |
Materials | Tc | Type | x | Refs. |
---|---|---|---|---|
CuxBi2Se3 | 3.8 K | TIs | 0.09 < x < 0.64 | [110,137] |
SrxBi2Se3 | 2.9 K | TIs | 0.058 < x < 0.1 | [138,139] |
NbxBi2Se3 | 3.2 K | TIs | 0.25 | [137,140] |
TixBi2Se3 | 2.8 K | TIs | 0.6 | [141] |
Cux(PbSe)5(Bi2Se3)6 | 2.85 K | TIs | 0.3 < x < 2.3 | [142,143] |
Sn1−xInxTe | 4.7 K | TCIs | 0.017 < x < 0.4 | [144,145] |
(Pb0.5Sn0.5)1−xInxTe | 4.7 K | TCIs | 0.1 < x < 0.3 | [146,147] |
Material | Symmetry Operation | Symmetry of the Crystal | Electronic Nature of Skyrmion | Magnetic Modulation (nm) | Transition Temp. (K) | Refs. |
---|---|---|---|---|---|---|
MnSi | T | P213 | Metal | 18 nm | 30 | [148,149] |
Fe1−xCoxSi | T | P213 | Semiconductor | 30–230 nm | 2–50 | [150,151] |
Mn1−xFexGe | T | P213 | Metal | 3–4 nm | 150–170 | [152,153] |
MnSi1−xGe | T | P213 | Metal | 9–18 nm | 30 | [99,154] |
Cu2OSeO3 | T | P213 | Metal | 62 nm | 59 | [155,156] |
GaV4S8 | C3v | R3m | Insulator | 19 nm | 13 | [157,158] |
VOSe2O5 | C4v | P4Cc | Insulator | 140 nm | 7.5 | [159,160] |
S.No | TIs Compound | Space Group | Properties | Refs. |
---|---|---|---|---|
1. | LaPtBi | F-43m | LaPtBi crystallizes in the MgAgAs-type fcc cubic structure. | [174] |
2. | LuPtBi | F-43m | Tc = 1.0 K Material is nano centrosymmetric | [175] |
3. | ScPtBi | F-43m | Polycrystalline nature (in thin films) follows the cubic MgAgAs-type crystal structure | [176] |
4. | YPtBi | F-43m | The non-centrosymmetric half Heusler compound YPtBi shows superconductivity below a critical temperature Tc = 0.77 K with a zero-temperature. | [177] |
5. | CePtBi | F-43m | It is semimetal with very low charge-carrier concentrations. It also shows a simple antiferromagnetic structure below TN = 1.15 K. | [178] |
6. | GdPtBi | F-43m | GdPtBi, shows three interpenetrating fcc lattices type crystal structure The spin direction for Gd in the antiferromagnetic strong SoC in GdPtBi play important role | [177] |
7. | LaPtBi | F-43m | LaPtBi show linear magnetoresistance (LMR), also called quantum magnetoresistance. It is gapless semiconductor | [179] |
8. | LuPdBi | F-43m | LuPdBi has a high level of optical absorption on complete visible spectrum, that is a crucial feature for optoelectronic devices. | [180,181] |
9. | ScPdBi | F-43m | It shows metallicity below 2 K retains its behaviour under severe circumstances (up to 9 T and 19 GPa). ScPdBi exhibited no significant magnetotransport impact. | [182,183] |
10. | YPdBi | F-43m | It shows a wide range of emergent features, including heavy-fermion behaviour, unconventional superconductivity, and magnetism. | [184] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Kumar, R.; Kumar, S.; Khanna, M.K.; Kumar, R.; Kumar, V.; Gupta, A. Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices. Magnetochemistry 2023, 9, 73. https://doi.org/10.3390/magnetochemistry9030073
Kumar P, Kumar R, Kumar S, Khanna MK, Kumar R, Kumar V, Gupta A. Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices. Magnetochemistry. 2023; 9(3):73. https://doi.org/10.3390/magnetochemistry9030073
Chicago/Turabian StyleKumar, Prashant, Ravi Kumar, Sanjeev Kumar, Manoj Kumar Khanna, Ravinder Kumar, Vinod Kumar, and Akanksha Gupta. 2023. "Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices" Magnetochemistry 9, no. 3: 73. https://doi.org/10.3390/magnetochemistry9030073
APA StyleKumar, P., Kumar, R., Kumar, S., Khanna, M. K., Kumar, R., Kumar, V., & Gupta, A. (2023). Interacting with Futuristic Topological Quantum Materials: A Potential Candidate for Spintronics Devices. Magnetochemistry, 9(3), 73. https://doi.org/10.3390/magnetochemistry9030073