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Abstract: A new molecular conductor of (TMTSF)5[Dy(NCS)4(NO3)2]CHCl3 was prepared using
the electrochemical oxidation method. The complex crystallizes in the Cmc21 (36) space group,
where the partially-oxidized TMTSF molecules form a 1D (one-dimensional) column structure. The
crystal shows a semiconducting behavior with a room temperature conductivity of 0.2 S·cm−1 and
an activation energy of 34 meV at ambient pressure.
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1. Introduction

The TMTSF cation constituted the first organic superconductor of (TMTSF)2PF6
and was reported in 1980 [1], describing a quasi 1D charge-transfer salt system with
a superconducting transition temperature (Tc) of 0.9 K under 12 kbar by the suppres-
sion of spin density wave (SDW) state. Since then, over 100 organic superconductors
have been reported and studied [2–5]. For example, β’-(BEDT-TTF)2ICl2 [BEDT-TTF =
bis(ethylenedithio)tetrathiafulvalene] was reported to have a high Tc of 14.2 K under
82 kbar [6], and its superconducting state is obtained under high pressure to suppress
the antiferromagnetic Mott insulating state. Other organic conducting systems include
potassium-doped para-terphenyl, which shows step-like transitions at about 125 K in the
temperature dependent magnetization curve [7].

The search for new organic superconductors and conductors is still ongoing [8–17],
and it is interesting to investigate the effects of 4f electrons on the conductivity properties of
TMTSF molecules [18,19]. Our group has been working on functional molecular conductors
and single-molecule magnets (SMMs) for a long time, reporting various hybrid systems by
combining different conductors of TTF (tetrathiafulvalene), BEDT-TTF, M(dmit)2 (dmit =
4,5-dimercapto-1,3-dithiole-2-dithione), and BEDO-TTF (bis(ethylenedioxy)tetrathiafulvalene)
with different single-molecule magnets (SMMs) such as [Co(pdms)2]2−, [Dy(NCS)7]4−,
[Mn2]2+ clusters, and so on [20–26]. The 4f electrons are well known to have large
anisotropic magnetic moments due to strong spin-orbital coupling, which is distinct from
3d electrons. The use of a polyvalent 4f metal complex as a counter-anion also indicates a
different degree of conduction band filling in the radical of TMTSF molecules, compared to
that of monovalent anions such as PF6

−, Cl−, I−, and so on [2]. Such a change in the filling
in the conduction band may lead to new physical properties of the molecular conductors.
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Herein, we used a polyvalent 4f metal complex of [Dy(NCS)4(NO3)2]3− as the counter-
anion to prepare a new quasi-1D magnetic molecular conductor of (TMTSF)5[Dy(NCS)4
(NO3)2]CHCl3 (1, Scheme 1) using an electro-crystallization method. Synthesis, crystal
structure, conductivity, optical, magnetic properties, and band structure calculations of
1 have been investigated and discussed in the present work.
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We filled the powders sample of compound 1 into a gelatin capsule. Eicosane with a melt-
ing point of 310 K was used to fix the sample in a plastic straw. 

2.3. Computational Methodology 
The band structure of compound 1 was calculated by VASP (Vienna Ab initio Simu-
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frozen in the core and described by the selected pseudopotentials. A 2 × 4 × 2 Monkhorst-

Scheme 1. Chemical structure of compound 1.

2. Materials and Methods
2.1. Synthesis

TMTSF, Dy(NO3)3·6H2O, tetrabutylammonium (TBA) thiocyanate salts, and organic
solvents were commercially purchased and used without any further purification. (TBA)3
Dy(NCS)4(NO3)2 complexes were obtained by following reported procedures [27].

Crystals of 1 were synthesized using an electro-crystallization method of TMTSF
(10 mg) and (TBA)3Dy(NCS)4(NO3)2 (80 mg) in CHCl3 (12 mL), with an addition of EtOH
(3 mL) on an ITO electrode under galvanostatic conditions (I = 0.5–2 µA) at 25 ◦C. The
crystals of complex 1 grew for 2–4 days depending on the applied current as thin black
needles of different sizes.

2.2. Physical Measurements

We measured the temperature-dependent resistivity of compound 1 by using a Quan-
tum Design PPMS 6000 (Quantum Design, San Diego, CA, USA) and Keithley 2611 System
Source Meter (Keithley Instruments, Solon, OH, USA). The four-probe method was used,
and the measurement was performed under ambient pressure. Gold wires (30 µm diameter)
were used to attach the crystal, and carbon paste was used as the electrode.

Single-crystal X-ray crystallographic measurements were performed by using a Rigaku
Saturn 70 CCD Diffractometer at 120 K. Graphite-monochromated Mo Kα radiation
(λ = 0.71073 Å) was generated by a VariMax microfocus X-ray rotating anode source. We
used the CrystalClear crystallographic software package for data processing. The structures
were solved and refined by using direct methods included in SIR-92 and SHELXL-2013,
respectively [28–30]. The non-H atoms were refined anisotropically, and H atoms were
refined by a riding model and were attached to the C atoms using idealized geometries.

We performed the magnetic measurements on compound 1 using MPMS3 (Quantum
Design) in the direct current (dc) mode and the alternating current (ac) mode, respectively.
We filled the powders sample of compound 1 into a gelatin capsule. Eicosane with a melting
point of 310 K was used to fix the sample in a plastic straw.

2.3. Computational Methodology

The band structure of compound 1 was calculated by VASP (Vienna Ab initio Sim-
ulation Package) [31,32] using the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional [33] with a kinetic energy cutoff of 640 eV. PAW pseudopotentials were applied
to describe the Dy, Se, C, N, H, O, and Cl atoms [34], where the f electrons of Dy are kept
frozen in the core and described by the selected pseudopotentials. A 2 × 4 × 2 Monkhorst-
Pack k-mesh was employed for the self-consistent calculation to obtain a converged charge
density for the further band structure calculation.
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To estimate the charge transfer integrals between two TMTSF units, the energy-
splitting-in-dimer (ESID) method was applied [35]. The wavefunction of the dimers was ob-
tained using the Gaussian16 program package [36] under a PBE0/def2-TZVP level [37,38].
The tight convergence threshold (10−8 for the root mean square change in the density
matrix) was used for the SCF procedure.

3. Results and Discussion
3.1. Crystal Structures

Compound (1) crystallized in the Cmc21 (36) space group with five TMTSF units, one
[Dy(NCS)4(NO3)2]3− unit, and one CHCl3 molecule. TMTSF molecules form a quasi-1D
π-π stacking column structure along the b axis as shown in Figure 1d. We checked the inter-
molecular π-π distance between neighboring TMTSF molecules in the 1D column. A small
difference of intermolecular distance of 3.44(1) Å and 3.50(1) Å has been observed between
each TMTSF molecule in the 1D column, suggesting a dimerization process of TMTSF
molecules in the 1D column. Among five TMTSF molecules, four out of them (TMTSF-b1
and TMTSF-b2) were located in the 1D column, while one TMTSF (TMTSF-a) shows or-
thogonal (T-shaped) packing form with the 1D column structure (Figure 1a). The distance
between the TMTSF-a and TMTSF-b2 molecules is 3.71 Å, and the close distance indicates
a T-type packing interaction between these two molecules (Figure 1c) [39]. Along the c-axis,
the layer is constituted by radical cations of TMTSF-a and [Dy(NCS)4(NO3)2]3− units alter-
natively. A close distance of 4.95 Å between TMTSF-b1 and complex [Dy(NCS)4(NO3)2]3−

was observed (Figure 1c). Compound 1 shows rectangular cavities in its crystal structure
(Figure 1c) with a size of 15.15 Å × 12.16 Å; they are built up by alternating TMTSF-a and
[Dy(NCS)4(NO3)2]3− units, and the cavities are occupied exclusively by TMTSF-b column.
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An examination of intramolecular C-C and C-Se distances in TMTSF-a and TMTSF-b
molecules (Figure 1a) was conducted, and the results are summarized in Table 1. A closer
C1-C2 is observed in the TMTSF-a molecule (1.31(2) Å) compared to that in TMTSF-b
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(1.385(11) and 1.392(10) Å). The different intramolecular bond length indicates a differ-
ent charge density for TMTSF-a and TMTSF-b molecules in compound 1. We made a
comparison of the C1-C2 distance between TMTSF molecules in compound 1 and other
reported TMTSF-type organic conductors, and summarized the results in Table S2. The
charge-neutral TMTSF molecule has a C1-C2 distance of 1.347 Å [40]. The TMTSF molecule
with an average oxidation ranging from +0.5, to +2/3, to +1 has the C1-C2 distance from
1.430 Å to 1.316 Å [41–47], with no clear relationship between the C1-C2 distance and the
charge density of the TMTSF molecule.

Table 1. Intramolecular bond length of TMTSF-a and TMTSF-b molecule in compound 1.

Bond Length TMTSF-a TMTSF-b1 TMTSF-b2

C1-C2 1.31(2) Å 1.385(11) Å 1.392(10) Å
C1-Se1 1.915(13) Å 1.867(7) Å 1.865(7) Å
C1-Se2 1.923(18) Å 1.867(8) Å 1.879(8) Å
C2-Se3 1.917(12) Å 1.885(7) Å 1.871(8) Å
C2-Se4 1.919(19) Å 1.866(8) Å 1.877(7) Å
C3-C4 1.34(3) Å 1.336(13) Å 1.354(12) Å
C5-C6 1.39(2) Å 1.339(13) Å 1.368(13) Å

3.2. Conductivity Properties

Single-crystal temperature-dependent resistivity measurements were performed on
compound 1 using the four-probe method along the b-axis of the crystal. The σ-T−1 relation-
ship shows a semiconductive behavior in Figure 2a, based on a decreased resistivity upon
increasing the temperature. Conductivity of 1 at room temperature (σrt) was determined
to be 0.2 S·cm−1. Analysis of the Ln(σ) versus T−1 plot shows a linear curve, as shown in
Figure 2b. The curve was fitted using a linear function giving an activation energy (Ea) of
34 meV at ambient pressure, which is the energy difference between the transport level
and the Fermi level of compound 1 [48]. The resistivity measurements were performed on
another two crystals of compound 1, giving similar σrt and Ea values (Figure S1).
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Figure 2. (a) Temperature dependence of σ (S·cm−1) for a single crystal of 1. (b) Ln(σ)-T−1 and its
fitting curve to a linear function (red line).

Since [Dy(III)(NCS)4(NO3)2]3− anion’s charge is −3 and the unit cell contains five
TMTSF molecules, the valence band made by TMTSF molecules should be partially filling.
Such a partially-filled band structure usually leads to metallic behavior instead of semi-
conductivity [49]. We note that the semiconductive or insulating behavior also shows up in
other organic conductors with a partially-filled band, such as (TMTSF)2X (X = PF6, AsF6,
SbF6, TaF6, NbF6) where a metal-insulating transitions occurs at 11–17 K [2], and (BEDT-
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TTF)2X with a Mott transition near the superconducting state in its phase diagram [3]. The
formal oxidation state of TMTSF and BEDT-TTF molecules in these organic conductors
is +0.5, indicating a quarter filling of the valence band. The insulating or semiconductive
behavior is due to a dimerization of TMTSF or BEDT-TTF molecules, making the charge
density +1 per site (Figure 3a). Mott localization occurs subsequently, based on the Coulomb
repulsion (U) between dimers, leading to an opening of the gap in their band structures
(Figure 3c) [3,10]. In compound 1, a similar dimerization was observed between two
TMTSF-b molecules (Figure 1d). We conceive that two possibilities may lead to the non-
metallic behaviors of compound 1: (a) formation of a dimer-Mott state where an overall
charge density of +1 may populate over the TMTSF-b dimer and a +1 charge is assigned for
the TMTSF-a molecule (Figure 3a), and (b) formation of a charge-ordering state due to the
charge disproportion for the TMTSF-b molecules, as shown in Figure 3b. Under these two
conditions, the TMTSF-b dimer would form a half-filled band in the 1D column structure.
The hopping integral (t) would be small due to a relatively long intermolecular distance of
3.50 Å between two TMTSF-b dimers. The Mott insulating phase shows up [3], leading to
the semiconductive behavior of compound 1.
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A comparison was made among compound 1 and other organic conductors con-
taining 4f metal complexes regarding the conductivity properties. The reported (BEDT-
TTF)5[Ln(NCS)]6 (Ln = Ho, Er, Yb and Y) compound has a semiconductive behavior with a
large activation energy of ~1.5 eV and the resistivity of 4–6 Ω·cm at 280 K [50]. Two BEDT-
TTF molecules co-exist in the crystal structure of (BEDT-TTF)5[Ln(NCS)]6; one is BEDT-TTF+

and the other is BEDT-TTF+0.5. The BEDT-TTF+0.5 molecule forms a chain structure, and
a dimerization of BEDT-TTF molecules leads to Mott localization and the semiconduc-
tive behavior of (BEDT-TTF)5[Ln(NCS)]6. The reported (BEDT-TTF)5Dy(NCS)7(KCl)0.5
compound has a comparable value of σrt (1.7 S·cm−1) with compound 1 [20]. (BEDT-
TTF)5Dy(NCS)6(NO3)C2H5OH compound is a semiconductor and has a smaller σrt of
0.01–0.1 S·cm−1 and 1–7 × 10−5 S·cm−1 along two axes of the crystal structure com-
pared to 1 [18]. In the literature, room-temperature conductivities of (BEDT-TTF)2[HoCl2
(H2O)6]Cl2(H2O)2, (BEDT-TTF)2Ln’Cl4(H2O)n(Ln’ = Dy, Tb, Ho) crystals were measured
and determined to be 0.004, 0.007, 0.0008, and 0.035 S/cm, respectively, with semiconductor
behavior and an activation energy of conductivity of 220 meV, 300 meV, 320, and 290 meV,
respectively [51]. Several factors can influence the conductivity properties of molecular
conductors, including the degree of charge transfer, dimensionality, and conformation
variations in the radical cations [3,18]. Moreover, these factors are considered to lead to the
discrepancy of conductivity properties among these 4f-π organic conductors. A high degree
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of charge-transfer interaction and high dimensionality usually leads to high conductivity
and superconductivity behaviors [3,22].

3.3. Optical Properties

To further investigate the electronic structure of 1, a polarized IR (infrared) reflectance
spectrum was recorded for the crystal of 1. The excitation light was polarized along
(// direction) and perpendicular (⊥ direction) to the long axis of the crystal, respectively.
As shown in Figure 4, the intensity of the reflection spectrum recorded at the // direction
is stronger than that along the ⊥ direction, indicating an anisotropic 1D electronic structure
of compound 1. A broad peak around 100 meV was observed in the reflectance spectrum,
which is attributed to the existence of a small energy band gap of crystal 1 in its band
structure.
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3.4. Magnetic Properties

The magnetic field dependence of static normalized magnetization (M/Ms) was mea-
sured on polycrystalline samples of 1 at 1.8 K (Figure 5). The magnetization process is
considered to be mostly contributed by a Dy(III) complex having a large magnetic moment
(J = 15/2, S = 5/2, L = 5), with minor contributions from the TMTSF radical cations. No
hysteresis was observed for compound 1 at 1.8 K (Figure 5a). The temperature dependence
of the magnetization curves was simulated on the PHI program using the following spin
Hamiltonian (Figure 5b) [52]:

ĤSO = λL̂·Ŝ (1)

ĤZEE = µBŜ·gJ ·B̂ (2)

ĤZFS = D
{

Ŝ2
z −

1
3

S(S + 1)
}

(3)

where λ, L, S, and B with hats, µB, gJ, D, and S refer to spin–orbit coupling constant,
operators of orbit and spin, magnetic field, the Bohr magneton, g-factor for lanthanide,
axial zero-field splitting (ZFS) constant, and total spin on the metal ion, respectively. The
simulation curves were applied typical values of gJ = 4/3 and λ = −360 cm−1 [52,53].
Without the ZFS parameter, the simulation curves (dotted lines) do not match with the
experiment plots. In contrast, applying D = −0.9 cm−1 matches well with the experimen-
tal plots, suggesting that Dy(III) centers in 1 have a small negative D term. A negative
D term is necessary for SMMs with uniaxial anisotropy. However, D of −0.9 cm−1 is
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too small to induce hysteresis. As expected, the dynamic susceptibility exhibited no sig-
nificant signals at 1.8 K in the measurement range in Figure S2. The susceptibility of
the out-of-phase component (χ”) rises at a higher frequency region in Figure S2, sug-
gesting that the peak would be out of measurement range (>1000 Hz) and a very fast
magnetic relaxation of SMMs of compound 1. Among the reported 4f-π system, SMM
behavior was observed in the (BEDT-TTF)5Dy(NCS)7(KCl)0.5 system [20], while it is ab-
sent in (BEDT-TTF)2[HoCl2(H2O)6]Cl2(H2O)2 and (BEDT-TTF)2Ln’Cl4(H2O)n(Ln’ = Dy,
Tb, Ho) compounds [51]. Molecular symmetry is found to be closely related to SMM
properties [54], and is considered to be a probable reason for the existence of strong and
weak SMM properties in (BEDT-TTF)5Dy(NCS)7(KCl)0.5 and compound 1, respectively,
as well as the absence of SMM properties in (BEDT-TTF)2[HoCl2(H2O)6]Cl2(H2O)2 and
(BEDT-TTF)2Ln’Cl4(H2O)n compounds.
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−3.5% under a magnetic field of 9 T at 30 K. 

Figure 5. Magnetic field-dependent magnetization of compound 1. (a) Loop at 1.8 K and (b) curves at
1.8 K (red line), 3.6 K (orange line), 7.2 K (yellow line), and 14 K (lime-green line). The solid-colored
lines show the simulation curves using S = 5/2, L = 5, gJ = 4/3, λ = −360 cm−1, D = −0.9 cm−1,
whereas the dotted lines are fitting curves without the D term.

We further examined the magnetoresistance (MR) of compound 1 and the results are
shown in Figure 6. Negative MR was observed for compound 1, where the MR approaches
−3.5% under a magnetic field of 9 T at 30 K.
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3.5. Band Structure Calculations

To understand the high conductivity of compound 1 (0.2 S·cm−1), we calculated its
band structure, which was shown in Figure 7. The Fermi level was calculated to be at
~1.47 eV which crosses the bands at XS, YG, UR, and TZ directions. The band dispersion
is much more significant along the b direction compared to that of other two directions,
which indicates that the TMTSF units have a stronger orbital overlap along the b axis
than the other two directions. The partially-filled bands are consistent with the fact that
TMTSF molecules in compound 1 are partially oxidized. Notably, the PBE functional lacks
accuracy to describe a localized electronic structure; hence, the on-site Coulomb repulsion
calculations have not been involved and considered here to describe the Mott-insulating
characteristics of compound 1. We further calculated the charge transfer integral (t) between
the TMTSF dimer of compound 1 and summarized the results in Figure S3. Larger t was
calculated and observed for TMTSF-b molecules along the 1D column b direction, compared
to that of TMTSF-a molecules, indicating the anisotropic 1D nature of the crystal 1.
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Figure 7. (a) The band structure of compound 1. The corresponding Fermi level is represented by
the green dash line. G (0, 0, 0); X (0.5, 0, 0); Y (0, 0.5, 0); Z (0, 0, 0.5); S (0.5, 0.5, 0); U (0.5, 0, 0.5);
T (0, 0.5, 0.5); R (0.5, 0.5, 0.5). (b) Density of states (DOS) of compound 1.

4. Conclusions

A new organic conductor (1) composed of a 1D cationic TMTSF column and 4f metal
complexes of [Dy(III)(NCS)4(NO3)2]3− has been prepared. Its conductivity at room tem-
perature was determined to be 0.2 S·cm−1 with an activation energy of 34 meV. This
preliminary study provides information for designing new hybrid materials based on
molecular conductors and polyvalent magnetic 4f metal complexes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/magnetochemistry9030077/s1, Figure S1: (a and c) Temperature
dependence of σ (S·cm−1) for two single crystals of 1. (b and d) Ln(σ)-T−1 and its fitting curve to
a linear function (red line) of panel a and c, respectively; Figure S2: Frequency dependence of (a)
the in-phase and (b) the out-of-phase magnetic susceptibility at 1.8 K as a function of the magnetic
field of compound 1; Figure S3: Calculation of charge transfer integral of t(hole) and t(electron) in
the TMTSF dimers of compound 1; Table S1: Summary of the crystal data of compound 1; Table S2:
A summary of C1-C2 distance in TMTSF-type molecules.
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