Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications
Abstract
:1. Introduction
- Applications in Environmental Remediation.
- Applications in Electrocatalysis.
- Applications in Organic Synthesis.
- Applications in Catalytic Synthesis of Biodiesel.
- Applications in Cancer Treatment.
2. Applications in Environmental Remediation
2.1. Catalytic Reduction of Pollutants
2.2. Catalytic Oxidation of Pollutants
2.3. Advanced Catalytic Oxidation Reactions
2.3.1. Fenton Catalytic Degradation of Pollutants
2.3.2. Photo-Fenton Catalytic Degradation of Pollutants
2.3.3. Catalytic Activation of Persulfate for the Degradation of Pollutants
2.4. As Support of Catalysts for Environmental Remediation
2.5. Concepts for the Future
3. Applications in Electrocatalysis
4. Applications in the Synthesis of Chemicals
4.1. Catalytic Hydrogenation/Dehydrogenation
4.2. Catalytic Oxidation
4.3. Catalytic Epoxidation
4.4. C-C Coupling Reactions
4.5. Catalytic Etherification
4.6. Other Catalytic Reactions for Organics
4.7. Concepts for the Future
5. Applications in Catalytic Synthesis of Biodiesel
Material | Reactants | Reaction Conditions | Yield | Recycle Time | Residual Activity | Ref. |
---|---|---|---|---|---|---|
Na2SiO3@Fe3O4/MCM-41 | Soybean oil Methanol | 25:1/3 wt.%/65 °C/8 h | 99.2% | 5 | >80% | [142] |
CaO@Fe3O4 | Palm oil Methanol | 12:1/4 wt.%/65 °C/2 h | 95.1% | 4 | 66% | [143] |
CaO–ZSM-5 zeolite/Fe3O4 | Used cooking oil Methanol | 5:1/3 wt.%/65 °C/4 h | 91% | 4 | 85% | [145] |
CaO@Fe3O4 | Soybean oil Methanol | 14:1/3 wt.%/65 °C/7.5 h | 99.5% | 4 | 21.3% | [144] |
Acidic ILs@SiO2@Fe3O4 | Soybean oil Methanol | 30:1/8 wt.%/65 °C/8 h | 94.2% | 5 | 91% | [146] |
PBIL@GO@ Fe3O4 | Seed oil Methanol | 10:1/25 wt.%/60 °C/4 h | 92.4% | 6 | 89.6% | [147] |
6. Applications in Bio-Catalysis
6.1. Applications in Biological Enzyme Catalysis
6.2. Applications in Cancer Treatment
6.3. Concepts for the Future
7. Toxicity of Fe3O4-Based Nanocatalysts in Environmental Remediation and Cancer Treatment
7.1. Toxicity of Fe3O4-Based Nanocatalyst in Environmental Remediation
7.2. Toxicity of Fe3O4-Based Nanocatalyst in Cancer Treatment
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Wu, F.G. Emerging single-atom catalysts/nanozymes for catalytic biomedical applications. Adv. Healthc. Mater. 2022, 11, 2101682. [Google Scholar] [CrossRef]
- Forsythe, R.C.; Cox, C.P.; Wilsey, M.K.; Muller, A.M. Pulsed laser in liquids made nanomaterials for catalysis. Chem. Rev. 2021, 121, 7568–7637. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Zhang, M.; Wu, L.; Guo, S.; Liu, X.; Zhao, J.; Xue, W.; Li, J.; Liu, C.; Li, X. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 2022, 5, 388–396. [Google Scholar] [CrossRef]
- Buckley, A.K.; Ma, S.; Huo, Z.; Gao, T.Z.; Kuhl, K.P. Nanomaterials for carbon dioxide conversion at industrial scale. Nat. Nanotechnol. 2022, 17, 811–813. [Google Scholar] [CrossRef]
- Liu, M.; Yu, T.; Huang, R.; Qi, W.; He, Z.; Su, R. Fabrication of nanohybrids assisted by protein-based materials for catalytic applications. Catal. Sci. Technol. 2020, 10, 3515–3531. [Google Scholar] [CrossRef]
- Hao, J.; Liu, B.; Maenosono, S.; Yang, J. One-pot synthesis of Au-M@SiO2 (M = Rh, Pd, Ir, Pt) core–shell nanoparticles as highly efficient catalysts for the reduction of 4-nitrophenol. Sci. Rep. 2022, 12, 7615. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Shao, X.; Wang, Q.; Ma, C.; Wang, K.; Han, D. Generation of molybdenum hydride species via addition of molecular hydrogen across metal-oxygen bond at monolayer oxide/metal composite interface. Int. J. Hydrogen Energy 2020, 45, 2975–2988. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Asgariyan, R.; Yilmaz, M.; Mengelizadeh, N.; Asghari, A.; Balarak, D.; Darvishmotevall, M. Synthesis of a doped α-Fe2O3/g-C3N4 catalyst for high-efficiency degradation of diazinon contaminant from liquid wastes. Magnetochemistry 2022, 8, 137. [Google Scholar] [CrossRef]
- Kinzel, N.W.; Werlé, C.; Leitner, W. Transition metal complexes as catalysts for the electroconversion of CO2: An organometallic perspective. Angew. Chem. Int. Ed. 2021, 60, 11628–11686. [Google Scholar] [CrossRef]
- Bohre, A.; Modak, A.; Chourasia, V.; Jadhao, P.R.; Sharma, K.; Pant, K.K. Recent advances in supported ionic liquid catalysts for sustainable biomass valorisation to high-value chemicals and fuels. Chem. Eng. J. 2022, 450, 138032. [Google Scholar] [CrossRef]
- Rakhtshah, J. A comprehensive review on the synthesis, characterization, and catalytic application of transition-metal Schiff-base complexes immobilized on magnetic Fe3O4 nanoparticles. Coord. Chem. Rev. 2022, 467, 214614. [Google Scholar] [CrossRef]
- Liu, M.; Shan, C.; Chang, H.; Zhang, Z.; Huang, R.; Lee, D.W.; Qi, W.; He, Z.; Su, R. Nano-engineered natural sponge as a recyclable and deformable reactor for ultrafast conversion of pollutants from water. Chem. Eng. Sci. 2022, 247, 117049. [Google Scholar] [CrossRef]
- Gu, Y.; Son, S.U.; Li, T.; Tan, B. Low-cost hypercrosslinked polymers by direct knitting strategy for catalytic applications. Adv. Funct. Mater. 2021, 31, 2008265. [Google Scholar] [CrossRef]
- Miceli, M.; Frontera, P.; Macario, A.; Malara, A. Recovery/reuse of heterogeneous supported spent catalysts. Catalysts 2021, 11, 591. [Google Scholar] [CrossRef]
- Mandari, V.; Devarai, S.K. Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: A critical review. BioEnerg. Res. 2021, 15, 935–961. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, H.; Guo, X.; Shao, S.; Ding, L.; Han, A.; Wang, L.; Liu, J. Co@C nanorods as both magnetic stirring nanobars and magnetic recyclable nanocatalysts for microcatalytic reactions. Appl. Catal. B 2022, 304, 120925. [Google Scholar] [CrossRef]
- Ganapathe, L.S.; Mohamed, M.A.; Mohamad Yunus, R.; Berhanuddin, D.D. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry 2020, 6, 68. [Google Scholar] [CrossRef]
- Dong, H.; Du, W.; Dong, J.; Che, R.; Kong, F.; Cheng, W.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365. [Google Scholar] [CrossRef]
- Yang, M.; Xu, Z.; Xiang, W.; Xu, H.; Ding, M.; Li, L.; Tang, A.; Gao, R.; Zhou, G.; Jia, C. High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy Storage Mater. 2022, 44, 433–440. [Google Scholar] [CrossRef]
- Noh, J.; Osman, O.I.; Aziz, S.G.; Winget, P.; Brédas, J.-L. Magnetite Fe3O4(111) surfaces: Impact of defects on structure, stability, and electronic properties. Chem. Mater. 2015, 27, 5856–5867. [Google Scholar] [CrossRef]
- Yan, W.; Wang, J.; Ding, J.; Sun, P.; Zhang, S.; Shen, J.; Jin, X. Catalytic epoxidation of olefins in liquid phase over manganese based magnetic nanoparticles. Dalton Trans. 2019, 48, 16827–16843. [Google Scholar] [CrossRef]
- Katz, E. Synthesis, properties and applications of magnetic nanoparticles and nanowires-A brief introduction. Magnetochemistry 2019, 5, 61. [Google Scholar] [CrossRef]
- Hosu, O.; Tertis, M.; Cristea, C. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry 2019, 5, 55. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, H.-V.; Xu, S.; Lee, T.R. Fe3O4 nanoparticles: Structures, synthesis, magnetic properties, surface functionalization, and emerging applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, Y.; Wen, L.; Xi, J.; Liu, P.; Hansen, T.W.; Li, P. Ni-Pd-incorporated Fe3O4 yolk-shelled nanospheres as efficient magnetically recyclable catalysts for reduction of N-containing unsaturated compounds. Catalysts 2023, 13, 190. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Maiorov, M.; Krumina, A.; Skaudžius, R.; Zarkov, A.; Kareiva, A.; Popov, A.I. Impact of gadolinium on the structure and magnetic properties of nanocrystalline powders of iron oxides produced by the extraction-pyrolytic method. Materials 2020, 13, 4147. [Google Scholar] [CrossRef]
- Jahoushi, K.A.A.; Ayesh, A.I.; El-Maghraby, H.F.; Alnoush, W.; Higgins, D.; Hassan, F.M.; Greish, Y.E. Tunable hydroxyapatite/magnetite nanohybrids with preserved magnetic properties. Adv. Mater. Interfaces 2022, 9, 2102120. [Google Scholar] [CrossRef]
- Tian, X.; Ruan, L.; Zhou, S.; Wu, L.; Cao, J.; Qi, X.; Zhang, X.; Shen, S. Appropriate size of Fe3O4 nanoparticles for cancer therapy by ferroptosis. ACS Appl. Bio Mater. 2022, 5, 1692–1699. [Google Scholar] [CrossRef]
- He, H.; Gao, C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. ACS Appl. Mater. Interfaces 2010, 2, 3201–3210. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Chu, C.; Zhou, Z.; Chen, B.; Pang, X.; Lin, G.; Lin, H.; Guo, Y.; Ren, E.; et al. Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat. Commun. 2020, 11, 5421. [Google Scholar] [CrossRef] [PubMed]
- Hotta, M.; Hayashi, M.; Nagata, K. High temperature measurement of complex permittivity and permeability of Fe3O4 powders in the frequency range of 0.2 to 13.5 GHz. ISIJ Int. 2011, 51, 491–497. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, X.; Zhong, Y.; Yang, S.; Wang, J. Flexible spiral-like multilayer composite with Fe3O4@rGO/waterborne polyurethane-Ni@polyimide for enhancing electromagnetic shielding. Colloids Surf. A 2023, 662, 131006. [Google Scholar] [CrossRef]
- Ziogas, P.; Bourlinos, A.B.; Tucek, J.; Malina, O.; Douvalis, A.P. Novel magnetic nanohybrids: From iron oxide to iron carbide nanoparticles grown on nanodiamonds. Magnetochemistry 2020, 6, 73. [Google Scholar] [CrossRef]
- Rajput, S.; Pittman, C.U., Jr.; Mohan, D. Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J. Colloid Interface Sci. 2016, 468, 334–346. [Google Scholar] [CrossRef]
- Kore, R.; Sawant, A.D.; Rogers, R.D. Recyclable magnetic Fe3O4 nanoparticle-supported chloroaluminate ionic liquids for heterogeneous lewis acid catalysis. ACS Sustain. Chem. Eng. 2021, 9, 8797–8802. [Google Scholar] [CrossRef]
- Elmi, G.R.; Saleem, K.; Baig, M.M.F.A.; Aamir, M.N.; Wang, M.; Gao, X.; Abbas, M.; Rehman, M.U. Recent advances of magnetic gold hybrids and nanocomposites, and their potential biological applications. Magnetochemistry 2022, 8, 38. [Google Scholar] [CrossRef]
- Meier, M.; Hulva, J.; Jakub, Z.; Kraushofer, F.; Bobić, M.; Bliem, R.; Setvin, M.; Schmid, M.; Diebold, U.; Franchini, C. CO oxidation by Pt2/Fe3O4: Metastable dimer and support configurations facilitate lattice oxygen extraction. Sci. Adv. 2022, 8, 4580. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, L.; Turrina, C.; Schwaminger, S.P. The effect of pH and viscosity on magnetophoretic separation of iron oxide nanoparticles. Magnetochemistry 2021, 7, 80. [Google Scholar] [CrossRef]
- Govan, J. Recent advances in magnetic nanoparticles and nanocomposites for the remediation of water resources. Magnetochemistry 2020, 6, 49. [Google Scholar] [CrossRef]
- Leonel, A.G.; Mansur, A.A.; Mansur, H.S. Advanced functional nanostructures based on magnetic iron oxide nanomaterials for water remediation: A review. Water Res. 2021, 190, 116693. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Banerjee-Ghosh, K.; Tassinari, F.; Naaman, R. Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nanoparticles. ACS Energy Lett. 2018, 3, 2308–2313. [Google Scholar] [CrossRef]
- Meyer, T.H.; Choi, I.; Tian, C.; Ackermann, L. Powering the future: How can electrochemistry make a difference in organic synthesis? Chem 2020, 6, 2484–2496. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Peng, W.; Tabatabaei, M.; Kalogirou, S.A.; Soltanian, S.; Hosseinzadeh-Bandbafha, H.; Mahian, O.; Lam, S.S. Machine learning technology in biodiesel research: A review. Prog. Energy Combust. Sci. 2021, 85, 100904. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, T.; Cui, M.; Guan, X.; Yuan, J.; Wang, Z.; Li, R.; Zhang, H.; Duan, S.; Wei, F. Targeted self-activating Au-Fe3O4 composite nanocatalyst for enhanced precise hepatocellular carcinoma therapy via dual nanozyme-catalyzed cascade reactions. Appl. Mater. Today 2020, 21, 100827. [Google Scholar] [CrossRef]
- Alexpandi, R.; Abirami, G.; Murugesan, B.; Durgadevi, R.; Swasthikka, R.P.; Cai, Y.; Ragupathi, T.; Ravi, A.V. Tocopherol-assisted magnetic Ag-Fe3O4-TiO2 nanocomposite for photocatalytic bacterial-inactivation with elucidation of mechanism and its hazardous level assessment with zebrafish model. J. Hazard. Mater. 2023, 442, 130044. [Google Scholar] [CrossRef]
- Li, N.; Gao, P.; Chen, H.; Li, F.; Wang, Z. Amidoxime modified Fe3O4@TiO2 particles for antibacterial and efficient uranium extraction from seawater. Chemosphere 2022, 287, 132137. [Google Scholar] [CrossRef]
- Shao, S.; Li, X.; Gong, Z.; Fan, B.; Hu, J.; Peng, J.; Lu, K.; Gao, S. A new insight into the mechanism in Fe3O4@CuO/PMS system with low oxidant dosage. Chem. Eng. J. 2022, 438, 135474. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Q.; Li, C.; Cui, M.; Chen, Y.; Liu, R.; Cui, K.; Wu, K.; Nie, X.; Wang, S. Synthesizing and characterizing Fe3O4 embedded in N-doped carbon nanotubes-bridged biochar as a persulfate activator for sulfamethoxazole degradation. J. Clean. Prod. 2022, 353, 131669. [Google Scholar] [CrossRef]
- Sharma, J.; Kumar, P.; Sillanpaa, M.; Kumar, D.; Nemiwal, M. Immobilized ionic liquids on Fe3O4 nanoparticles: A potential catalyst for organic synthesis. Inorg. Chem. Commun. 2022, 145, 110055. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, X.; Wang, Z.; Zhao, S. Tertiary amine ionic liquid incorporated Fe3O4 nanoparticles as a versatile catalyst for the Knoevenagel reaction. Synth. Commun. 2022, 52, 774–786. [Google Scholar] [CrossRef]
- Walenta, C.A.; Xu, F.; Tesvara, C.; O’Connor, C.R.; Sautet, P.; Friend, C.M. Facile decomposition of organophosphonates by dual Lewis sites on a Fe3O4(111) film. J. Phys. Chem. C 2020, 124, 12432–12441. [Google Scholar] [CrossRef]
- Li, F.; Jiang, S.; Huang, J.; Wang, Y.; Lu, S.; Li, C. Catalytic transfer hydrogenation of furfural to furfuryl alcohol over a magnetic Fe3O4@C catalyst. New J. Chem. 2020, 44, 478–486. [Google Scholar] [CrossRef]
- Long, X.-Y.; Li, J.-Y.; Sheng, D.; Lian, H.-Z. Low-cost iron oxide magnetic nanoclusters affinity probe for the enrichment of endogenous phosphopeptides in human saliva. RSC Adv. 2016, 6, 96210–96222. [Google Scholar] [CrossRef]
- Khalilzadeh, M.A.; Tajik, S.; Beitollahi, H.; Venditti, R.A. Green synthesis of magnetic nanocomposite with iron oxide deposited on cellulose nanocrystals with copper (Fe3O4@CNC/Cu): Investigation of catalytic activity for the development of a Venlafaxine electrochemical sensor. Ind. Eng. Chem. Res. 2020, 59, 4219–4228. [Google Scholar] [CrossRef]
- Cao, C.; Zou, H.; Yang, N.; Li, H.; Cai, Y.; Song, X.; Shao, J.; Chen, P.; Mou, X.; Wang, W. Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme for self-replenishing and sustainable cascaded nanocatalytic cancer therapy. Adv. Mater. 2021, 33, 2106996. [Google Scholar] [CrossRef]
- Wei, H.; Wang, E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008, 80, 2250–2254. [Google Scholar] [CrossRef]
- Yuan, B.; Chou, H.-L.; Peng, Y.-K. Disclosing the origin of transition metal oxides as peroxidase (and catalase) mimetics. ACS Appl. Mater. Interfaces 2021, 14, 22728–22736. [Google Scholar] [CrossRef]
- Jian, T.; Zhou, Y.; Wang, P.; Yang, W.; Mu, P.; Zhang, X.; Zhang, X.; Chen, C.-L. Highly stable and tunable peptoid/hemin enzymatic mimetics with natural peroxidase-like activities. Nat. Commun. 2022, 13, 3025. [Google Scholar] [CrossRef]
- Noll, N.; Krause, A.-M.; Beuerle, F.; Würthner, F. Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis. Nat. Catal. 2022, 5, 867–877. [Google Scholar] [CrossRef]
- Du, W.; Liu, T.; Xue, F.; Cai, X.; Chen, Q.; Zheng, Y.; Chen, H. Fe3O4 mesocrystals with distinctive magnetothermal and nanoenzyme activity enabling self-reinforcing synergistic cancer therapy. ACS Appl. Mater. Interfaces 2020, 12, 19285–19294. [Google Scholar] [CrossRef]
- Chaves, T.d.O.; Bini, R.D.; Oliveira Junior, V.A.d.; Polli, A.D.; Garcia, A.; Dias, G.S.; Santos, I.A.d.; Nunes de Oliveira, P.; Pamphile, J.A.; Cotica, L.F. Fungus-based magnetic nanobiocomposites for environmental remediation. Magnetochemistry 2022, 8, 139. [Google Scholar] [CrossRef]
- Krithiga, T.; Sathish, S.; Renita, A.A.; Prabu, D.; Lokesh, S.; Geetha, R.; Namasivayam, S.K.R.; Sillanpaa, M. Persistent organic pollutants in water resources: Fate, occurrence, characterization and risk analysis. Sci. Total Environ. 2022, 831, 154808. [Google Scholar]
- Herzig, R.; Lohmann, N.; Meier, R. Temporal change of the accumulation of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in lichens in Switzerland between 1995 and 2014. Environ. Sci. Pollut. R. 2019, 26, 10562–10575. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Hemavathy, R.; Jeevanantham, S.; Harikumar, P.; Priyanka, G.; Devakirubai, D.R.A. A comprehensive review on sources, analysis and toxicity of environmental pollutants and its removal methods from water environment. Sci. Total Environ. 2022, 812, 152456–152475. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Gao, S.; Lin, H.; Shi, J. Single-atom catalysts for nanocatalytic tumor therapy. Small 2021, 17, 2004467. [Google Scholar] [CrossRef]
- Ding, J.; Wang, L.; Ma, Y.-L.; Sun, Y.-G.; Zhu, Y.-B.; Wang, L.-Q.; Li, Y.-Y.; Ji, W.-X. Synergistically boosted non-radical catalytic oxidation by encapsulating Fe3O4 nanocluster into hollow multi-porous carbon octahedra with emphasise on interfacial engineering. Sep. Purif. Technol. 2023, 306, 122706. [Google Scholar] [CrossRef]
- Yang, Y.; Gu, Y.; Lin, H.; Jie, B.; Zheng, Z.; Zhang, X. Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol. J. Colloid Interface Sci. 2022, 608, 2884–2895. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Zhang, X.; Miao, X. 3D N-doped graphene/bismuth composite as an efficient catalyst for reduction of 4-nitrophenol. Colloids Surf. A 2022, 636, 128098. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Z.; Liu, K.; Dong, B. Direct evidence of plasmonic enhancement on catalytic reduction of 4-nitrophenol over silver nanoparticles supported on flexible fibrous networks. Appl. Catal. B 2016, 188, 245–252. [Google Scholar] [CrossRef]
- Grzeschik, R.; Schäfer, D.; Holtum, T.; Küpper, S.; Hoffmann, A.; Schlücker, S. On the overlooked critical role of the pH value on the kinetics of the 4-nitrophenol NaBH4-reduction catalyzed by noble-metal nanoparticles (Pt, Pd, and Au). J. Phys. Chem. C 2020, 124, 2939–2944. [Google Scholar] [CrossRef]
- Kurnaz Yetim, N.; Aslan, N.; Koç, M.M. Structural and catalytic properties of Fe3O4 doped Bi2S3 novel magnetic nanocomposites: P-nitrophenol case. J. Environ. Chem. Eng. 2020, 8, 104258. [Google Scholar] [CrossRef]
- Hasanoğlu Özkan, E.; Aslan, N.; Koç, M.M.; Kurnaz Yetim, N.; Sarı, N. Fe3O4 nanoparticle decorated novel magnetic metal oxide microcomposites for the catalytic degradation of 4-nitrophenol for wastewater cleaning applications. J. Mater. Sci. Mater. Electron. 2021, 33, 1039–1053. [Google Scholar] [CrossRef]
- Li, K.; Feng, J.; Hao, X.; Song, X.; Zhang, C.; Ning, P.; Li, K. Catalytic oxidation mechanism of AsH3 over CuO@SiO2 core-shell catalysts via experimental and theoretical studies. J. Hazard. Mater. 2023, 443, 130318. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, M.; Wang, X.; Wang, L.; Ning, P.; Ma, Y.; Lu, J.; Cao, R.; Xue, Y. Magnetic-field-assisted catalytic oxidation of arsine over Fe/HZSM-5 catalyst: Synergistic effect of Fe species and activated surface oxygen. J. Clean. Prod. 2022, 337, 130549. [Google Scholar] [CrossRef]
- Premalatha, N.; Miranda, L.R. A magnetic separable 3D hierarchical BiOI/rGO/Fe3O4 catalyst for degradation of Rhodamine B under visible light: Kinetic studies and mechanism of degradation. Mater. Sci. Eng. B 2022, 276, 115576. [Google Scholar] [CrossRef]
- Gao, P.; Song, Y.; Hao, M.; Zhu, A.; Yang, H.; Yang, S. An effective and magnetic Fe2O3-ZrO2 catalyst for phenol degradation under neutral pH in the heterogeneous Fenton-like reaction. Sep. Purif. Technol. 2018, 201, 238–243. [Google Scholar] [CrossRef]
- Xie, Z.-H.; He, C.-S.; Zhou, H.-Y.; Li, L.-L.; Liu, Y.; Du, Y.; Liu, W.; Mu, Y.; Lai, B. Effects of molecular structure on organic contaminants’ degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS. Environ. Sci. Technol. 2022, 56, 8784–8795. [Google Scholar] [CrossRef]
- Wang, W.; Chen, M.; Wang, D.; Yan, M.; Liu, Z. Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. Sci. Total Environ. 2021, 772, 145522. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Li, K.; Shang, M.-Y.; Zhang, Y.-Z.; Zhang, Y.; Li, B.-L.; Kan, Y.-J.; Cao, X.-Q.; Zhang, J. A novel partially carbonized Fe3O4@PANI-p catalyst for tetracycline degradation via peroxymonosulfate activation. Chem. Eng. J. 2023, 451, 138655. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, X.; Huang, X.; Yang, H. Adsorption and heterogeneous Fenton catalytic performance for magnetic Fe3O4/reduced graphene oxide aerogel. J. Mater. Sci. 2020, 55, 15695–15708. [Google Scholar] [CrossRef]
- Wen, Z.; Lu, J.; Zhang, Y.; Cheng, G.; Guo, S.; Wei, P.; Ming, Y.-A.; Wang, Y.; Chen, R. Simultaneous oxidation and immobilization of arsenite from water by nanosized magnetic mesoporous iron manganese bimetal oxides (nanosized-MMIM): Synergistic effect and interface catalysis. Chem. Eng. J. 2020, 391, 123578. [Google Scholar] [CrossRef]
- Li, X.; Cui, K.; Guo, Z.; Yang, T.; Cao, Y.; Xiang, Y.; Chen, H.; Xi, M. Heterogeneous Fenton-like degradation of tetracyclines using porous magnetic chitosan microspheres as an efficient catalyst compared with two preparation methods. Chem. Eng. J. 2020, 379, 122324. [Google Scholar] [CrossRef]
- Bao, T.; Damtie, M.M.; Wei, W.; Phong Vo, H.N.; Nguyen, K.H.; Hosseinzadeh, A.; Cho, K.; Yu, Z.M.; Jin, J.; Wei, X.L.; et al. Simultaneous adsorption and degradation of bisphenol A on magnetic illite clay composite: Eco-friendly preparation, characterizations, and catalytic mechanism. J. Clean. Prod. 2021, 287, 125068. [Google Scholar] [CrossRef]
- Ye, G.; Zhou, J.; Huang, R.; Ke, Y.; Peng, Y.; Zhou, Y.; Weng, Y.; Ling, C.; Pan, W. Magnetic sludge-based biochar derived from Fenton sludge as an efficient heterogeneous Fenton catalyst for degrading Methylene blue. J. Environ. Chem. Eng. 2022, 10, 107242. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, S.; Zhang, C.; Jiao, Y.; Lin, X.; Dong, W.; Qi, X. Mussel-inspired magnetic pullulan hydrogels for enhancing catalytic degradation of antibiotics from biomedical wastewater. Chem. Eng. J. 2021, 409, 128203. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Ma, J.; Li, M.; Ren, F.; Zhou, L. Metal-organic framework modified pine needle-derived N,O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline. J. Clean. Prod. 2021, 278, 123575. [Google Scholar] [CrossRef]
- Tian, D.; Zhou, H.; Zhang, H.; Zhou, P.; You, J.; Yao, G.; Pan, Z.; Liu, Y.; Lai, B. Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: From basic catalyst design principles to novel enhancement strategies. Chem. Eng. J. 2022, 428, 131166. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, Y.; Huang, D.; Lai, C.; Zeng, G.; Huang, J.; Liu, Z.; Zhang, C.; Zhou, C.; Qin, L.; et al. Prussian blue analogue derived magnetic Cu-Fe oxide as a recyclable photo-Fenton catalyst for the efficient removal of sulfamethazine at near neutral pH values. Chem. Eng. J. 2019, 362, 865–876. [Google Scholar] [CrossRef]
- Gong, Q.; Liu, Y.; Dang, Z. Core-shell structured Fe3O4@GO@MIL-100(Fe) magnetic nanoparticles as heterogeneous photo-Fenton catalyst for 2,4-dichlorophenol degradation under visible light. J. Hazard. Mater. 2019, 371, 677–686. [Google Scholar] [CrossRef]
- Kakavandi, B.; Bahari, N.; Rezaei Kalantary, R.; Dehghani Fard, E. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: A new hybrid system. Ultrason. Sonochem. 2019, 55, 75–85. [Google Scholar] [CrossRef]
- Gallo-Cordova, A.; Ovejero, J.G.; Pablo-Sainz-Ezquerra, A.M.; Cuya, J.; Jeyadevan, B.; Veintemillas-Verdaguer, S.; Tartaj, P.; Morales, M.D.P. Unravelling an amine-regulated crystallization crossover to prove single/multicore effects on the biomedical and environmental catalytic activity of magnetic iron oxide colloids. J. Colloid Interface Sci. 2022, 608, 1585–1597. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Zheng, H.; Zheng, Y.; Jing, T.; Ma, J.; Nan, J.; Leong, Y.K.; Chang, J.-S. Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate. Chemosphere 2022, 297, 134214. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Z.; Ye, C.; Deng, J.; Ma, X.; Xu, Y.; Wang, L.; Tang, Z.; Luo, H.; Li, X. Magnetic Co/Fe nanocomposites derived from ferric sludge as an efficient peroxymonosulfate catalyst for ciprofloxacin degradation. Chem. Eng. J. 2022, 432, 134180. [Google Scholar] [CrossRef]
- Xiao, K.; Liang, F.; Liang, J.; Xu, W.; Liu, Z.; Chen, B.; Jiang, X.; Wu, X.; Xu, J.; Beiyuan, J.; et al. Magnetic bimetallic Fe, Ce-embedded N-enriched porous biochar for peroxymonosulfate activation in metronidazole degradation: Applications, mechanism insight and toxicity evaluation. Chem. Eng. J. 2022, 433, 134387. [Google Scholar] [CrossRef]
- Liu, J.; Peng, C.; Shi, X. Preparation, characterization, and applications of Fe-based catalysts in advanced oxidation processes for organics removal: A review. Environ. Pollut. 2022, 293, 118565. [Google Scholar] [CrossRef]
- Ye, S.; Cheng, M.; Zeng, G.; Tan, X.; Wu, H.; Liang, J.; Shen, M.; Song, B.; Liu, J.; Yang, H.; et al. Insights into catalytic removal and separation of attached metals from natural-aged microplastics by magnetic biochar activating oxidation process. Water Res. 2020, 179, 115876. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, J.; Yang, E.; Li, H.; Wu, S.; Yang, W.; Wang, H. Magnetic Fe3O4-N-doped carbon sphere composite for tetracycline degradation by enhancing catalytic activity for peroxymonosulfate: A dominant non-radical mechanism. Chemosphere 2021, 263, 128011. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Guo, T.; Wang, K.; Li, Y.; Zhang, G. Efficient activation of persulfate by a magnetic recyclable rape straw biochar catalyst for the degradation of tetracycline hydrochloride in water. Sci. Total Environ. 2021, 758, 143957. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lu, Q.; Du, M.; Xu, Q.; Wang, D. Hormesis-like effects of tetrabromobisphenol A on anaerobic digestion: Responses of metabolic activity and microbial community. Environ. Sci. Technol. 2022, 56, 11277–11287. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Liu, S.; Yu, C.; Jiang, L.; Zhang, Y.; Liu, G.; Zhou, C.; Zhu, T.; Xin, Y.; Yan, Q. A novel magnetic CuFeAl-LDO catalyst for efficient degradation of tetrabromobisphenol a in water. Chem. Eng. J. 2022, 430, 133107. [Google Scholar] [CrossRef]
- Huang, R.; Yang, J.; Cao, Y.; Dionysiou, D.D.; Wang, C. Peroxymonosulfate catalytic degradation of persistent organic pollutants by engineered catalyst of self-doped iron/carbon nanocomposite derived from waste toner powder. Sep. Purif. Technol. 2022, 291, 120963. [Google Scholar] [CrossRef]
- Gao, M.; Wang, L.; Yang, Y.; Sun, Y.; Zhao, X.; Wan, Y. Metal and metal oxide supported on ordered mesoporous carbon as heterogeneous catalysts. ACS Catal. 2023, 13, 4060–4090. [Google Scholar] [CrossRef]
- Moussadik, A.; Halim, M.; Arsalane, S.; Tielens, F.; Kacimi, M.; El Hamidi, A. In situ synthesis of selfsupported Ag NPs on AgZr2(PO4)3 NASICON type phosphate: Application in catalytic reduction of 4-nitrophenol. Mater. Res. Bull. 2022, 150, 111764. [Google Scholar] [CrossRef]
- Jiang, S.-F.; Ling, L.-L.; Xu, Z.; Liu, W.-J.; Jiang, H. Enhancing the catalytic activity and stability of noble metal nanoparticles by the strong interaction of magnetic biochar support. Ind. Eng. Chem. Res. 2018, 57, 13055–13064. [Google Scholar] [CrossRef]
- Neamtu, M.; Nadejde, C.; Hodoroaba, V.D.; Schneider, R.J.; Verestiuc, L.; Panne, U. Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep. 2018, 8, 6278. [Google Scholar] [CrossRef] [PubMed]
- Mirzazadeh, H.; Lashanizadegan, M. Improving the catalytic activity of magnetic Fe3O4/ZnO-CdO/reduced graphene oxide for ultrasonic degradation of the organic pollutants and the green oxidation of olefins. Solid State Sci. 2018, 79, 48–57. [Google Scholar] [CrossRef]
- Baran, T. Biosynthesis of highly retrievable magnetic palladium nanoparticles stabilized on bio-composite for production of various biaryl compounds and catalytic reduction of 4-nitrophenol. Catal. Lett. 2019, 149, 1721–1729. [Google Scholar] [CrossRef]
- Esmaeili, N.; Mohammadi, P.; Abbaszadeh, M.; Sheibani, H. Au nanoparticles decorated on magnetic nanocomposite (GO-Fe3O4/Dop/Au) as a recoverable catalyst for degradation of methylene blue and methyl orange in water. Int. J. Hydrogen Energy 2019, 44, 23002–23009. [Google Scholar] [CrossRef]
- Sajjadi, M.; Nasrollahzadeh, M.; Tahsili, M.R. Catalytic and antimicrobial activities of magnetic nanoparticles supported N-heterocyclic palladium(II) complex: A magnetically recyclable catalyst for the treatment of environmental contaminants in aqueous media. Sep. Purif. Technol. 2019, 227, 115716. [Google Scholar] [CrossRef]
- Cao, H.L.; Liu, C.; Cai, F.Y.; Qiao, X.X.; Dichiara, A.B.; Tian, C.; Lu, J. In situ immobilization of ultra-fine Ag NPs onto magnetic Ag@RF@Fe3O4 core-satellite nanocomposites for the rapid catalytic reduction of nitrophenols. Water Res. 2020, 179, 115882. [Google Scholar] [CrossRef]
- He, H.; Meng, X.; Yue, Q.; Yin, W.; Gao, Y.; Fang, P.; Shen, L. Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg(II) capture and high catalytic activity of spent Hg(II) adsorbent. Chem. Eng. J. 2021, 405, 126743. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, J.; Yin, Z.; Zhang, M.; Zhang, Y.; Gao, Y.; Qi, C. Insights into the interaction between PANI and Au NPs of magnetic core-shell Fe3O4/PANI/Au catalysts with remarkable catalytic performance in 4-NP reduction. J. Appl. Polym. Sci. 2021, 139, 51635. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, P.; Wei, Y.; Jin, Y.; Sun, S.; Wang, Z.; Jiang, Y. Silver nanoparticles decorated magnetic polymer composites (Fe3O4@PS@Ag) as highly efficient reusable catalyst for the degradation of 4-nitrophenol and organic dyes. J. Environ. Manag. 2021, 278, 111473. [Google Scholar] [CrossRef]
- Isari, A.A.; Moradi, S.; Rezaei, S.S.; Ghanbari, F.; Dehghanifard, E.; Kakavandi, B. Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: Enhancing synergy, catalytic performance and mechanism. Sep. Purif. Technol. 2021, 275, 119163. [Google Scholar] [CrossRef]
- He, J.; Song, G.; Wang, X.; Zhou, L.; Li, J. Multifunctional magnetic Fe3O4/GO/Ag composite microspheres for SERS detection and catalytic degradation of methylene blue and ciprofloxacin. J. Alloys Compd. 2022, 893, 162226. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, R.; Song, W.; Liu, L.; Li, J. One-step method to prepare core-shell magnetic nanocomposite encapsulating silver nanoparticles with superior catalytic and antibacterial activity. J. Colloid Interface Sci. 2022, 607, 1730–1740. [Google Scholar] [CrossRef]
- Saxena, M.; Saxena, R. Fast and efficient single step synthesis of modified magnetic nanocatalyst for catalytic reduction of 4-nitrophenol. Mater. Chem. Phys. 2022, 276, 125437. [Google Scholar] [CrossRef]
- Mohami, R.; Shakeri, A.; Nasrollahzadeh, M. Mannich-mediated synthesis of a recyclable magnetic kraft lignin-coated copper nanostructure as an efficient catalyst for treatment of environmental contaminants in aqueous media. Sep. Purif. Technol. 2022, 285, 120373. [Google Scholar] [CrossRef]
- Faghihinezhad, M.; Baghdadi, M.; Shahin, M.S.; Torabian, A. Catalytic ozonation of real textile wastewater by magnetic oxidized g-C3N4 modified with Al2O3 nanoparticles as a novel catalyst. Sep. Purif. Technol. 2022, 283, 120208. [Google Scholar] [CrossRef]
- He, J.; Li, H.; Riisager, A.; Yang, S. Catalytic transfer hydrogenation of furfural to furfuryl alcohol with recyclable Al-Zr@Fe mixed oxides. ChemCatChem 2018, 10, 430–438. [Google Scholar] [CrossRef]
- Garcés-Pineda, F.A.; Blasco-Ahicart, M.; Nieto-Castro, D.; López, N.; Galán-Mascarós, J.R. Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 2019, 4, 519–525. [Google Scholar] [CrossRef]
- Torun, E.; Fang, C.; De Wijs, G.; De Groot, R. Role of magnetism in catalysis: RuO2(110) surface. J. Phys. Chem. C 2013, 117, 6353–6357. [Google Scholar] [CrossRef]
- Kiciński, W.; Sęk, J.P.; Kowalczyk, A.; Turczyniak-Surdacka, S.; Nowicka, A.M.; Dyjak, S.; Budner, B.; Donten, M. Fe-N-C catalysts for oxygen electroreduction under external magnetic fields: Reduction of magnetic O2 to nonmagnetic H2O. J. Energy Chem. 2022, 64, 296–308. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zhang, J.; Cheng, Y.; Lin, W.; Huang, R.; Peng, L. Direct epitaxial synthesis of magnetic biomass derived acid/base bifunctional zirconium-based hybrid for catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone. Renew. Energ. 2022, 197, 911–921. [Google Scholar] [CrossRef]
- Adamski, J.; Qadir, M.I.; Serna, J.P.; Bernardi, F.; Baptista, D.L.; Salles, B.R.; Novak, M.A.; Machado, G.; Dupont, J. Core-shell Fe-Pt nanoparticles in ionic liquids: Magnetic and catalytic properties. J. Phys. Chem. C 2018, 122, 4641–4650. [Google Scholar] [CrossRef]
- Betiha, M.A.; ElMetwally, A.E.; Al-Sabagh, A.M.; Mahmoud, T. Catalytic aquathermolysis for altering the rheology of asphaltic crude oil using ionic liquid modified magnetic MWCNT. Energy Fuels 2020, 34, 11353–11364. [Google Scholar] [CrossRef]
- Sadjadi, S.; Lazzara, G.; Heravi, M.M.; Cavallaro, G. Pd supported on magnetic carbon coated halloysite as hydrogenation catalyst: Study of the contribution of carbon layer and magnetization to the catalytic activity. Appl. Clay Sci. 2019, 182, 105299. [Google Scholar] [CrossRef]
- Soltani, M.; Zabihi, M. Hydrogen generation by catalytic hydrolysis of sodium borohydride using the nano-bimetallic catalysts supported on the core-shell magnetic nanocomposite of activated carbon. Int. J. Hydrogen Energy 2020, 45, 12331–12346. [Google Scholar] [CrossRef]
- Sadjadi, S.; Malmir, M.; Heravi, M.M. A novel magnetic heterogeneous catalyst based on decoration of halloysite with ionic liquid-containing dendrimer. Appl. Clay Sci. 2019, 168, 184–195. [Google Scholar] [CrossRef]
- Moeini, N.; Ghadermazi, M.; Molaei, S. Synthesis and characterization of magnetic Fe3O4@Creatinine@Zr nanoparticles as novel catalyst for the synthesis of 5-substituted 1H-tetrazoles in water and the selective oxidation of sulfides with classical and ultrasonic methods. J. Mol. Struct. 2022, 1251, 131982. [Google Scholar] [CrossRef]
- Bai, Y.-Y.; Su, S.; Wang, S.; Wang, B.; Sun, R.-C.; Song, G.; Xiao, L.-P. Catalytic conversion of carbohydrates into 5-ethoxymethylfurfural by a magnetic solid acid using γ-valerolactone as a co-solvent. Energy Technol. 2018, 6, 1951–1958. [Google Scholar] [CrossRef]
- Maleki, A.; Taheri-Ledari, R.; Ghalavand, R.; Firouzi-Haji, R. Palladium-decorated o-phenylenediamine-functionalized Fe3O4/SiO2 magnetic nanoparticles: A promising solid-state catalytic system used for Suzuki–Miyaura coupling reactions. J. Phys. Chem. Solids 2020, 136, 109200. [Google Scholar] [CrossRef]
- Niakan, M.; Masteri-Farahani, M. Pd-Ni bimetallic catalyst supported on dendrimer-functionalized magnetic graphene oxide for efficient catalytic Suzuki-Miyaura coupling reaction. Tetrahedron 2022, 108, 132655. [Google Scholar] [CrossRef]
- Hafizi, H.; Walker, G.; Collins, M.N. Efficient production of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and carbohydrates over lewis/brønsted hybrid magnetic dendritic fibrous silica core-shell catalyst. Renew. Energy 2022, 183, 459–471. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, L.; Wu, C.; Wang, X.; Zhang, X. Confined pyrolysis transformation of ZIF-8 to hierarchically ordered porous Zn-NC nanoreactor for efficient CO2 photoconversion under mild conditions. J. Catal. 2020, 390, 213–223. [Google Scholar] [CrossRef]
- Maleki, B.; Reiser, O.; Esmaeilnezhad, E.; Choi, H.J. SO3H-dendrimer functionalized magnetic nanoparticles (Fe3O4@DNH(CH2)4SO3H): Synthesis, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of polyfunctionalized pyrans and polyhydroquinolines. Polyhedron 2019, 162, 129–141. [Google Scholar] [CrossRef]
- Taheri-Ledari, R.; Esmaeili, M.S.; Varzi, Z.; Eivazzadeh-Keihan, R.; Maleki, A.; Shalan, A.E. Facile route to synthesize Fe3O4@acacia-SO3H nanocomposite as a heterogeneous magnetic system for catalytic applications. RSC Adv. 2020, 10, 40055–40067. [Google Scholar] [CrossRef]
- Tahmasbi, M.; Akbarzadeh, P.; Koukabi, N. Magnetic nitrogen-doped carbon derived from silk cocoon biomass: A promising and sustainable support for copper. Res. Chem. Intermed. 2021, 48, 1383–1401. [Google Scholar] [CrossRef]
- Su, T.; Zeng, J.; Gao, H.; Jiang, L.; Bai, X.; Zhou, H.; Xu, F. One-pot synthesis of a chemically functional magnetic carbonaceous acid catalyst for fermentable sugars production from sugarcane bagasse. Fuel 2020, 262, 116512. [Google Scholar] [CrossRef]
- Devaraj, A.; Vinoth Kanna, I.; Tamil Selvam, N.; Prabhu, A. Emission analysis of cashew nut biodiesel-pentanol blends in a diesel engine. Int. J. Ambient Energy 2022, 43, 1954–1958. [Google Scholar] [CrossRef]
- Khawaja, A.S.; Zaheer, M.A.; Ahmad, A.; Mirani, A.A.; Ali, Z. Advances in limitations and opportunities of clean biofuel production to promote decarbonization. Fuel 2023, 342, 127662. [Google Scholar] [CrossRef]
- Xie, W.; Han, Y.; Wang, H. Magnetic Fe3O4/MCM-41 composite-supported sodium silicate as heterogeneous catalysts for biodiesel production. Renew. Energy 2018, 125, 675–681. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Ma, X.; Wu, Z.; Cui, P.; Lu, W.; Liu, F.; Chu, H.; Wang, Y. A novel magnetic CaO-based catalyst synthesis and characterization: Enhancing the catalytic activity and stability of CaO for biodiesel production. Chem. Eng. J. 2020, 391, 123549. [Google Scholar] [CrossRef]
- Carrera, S.A.; Villarreal, J.S.; Acosta, P.I.; Noboa, J.F.; Gallo-Cordova, A.; Mora, J.R. Designing an efficient and recoverable magnetic nanocatalyst based on Ca, Fe and pectin for biodiesel production. Fuel 2022, 310, 122456. [Google Scholar] [CrossRef]
- Lani, N.S.; Ngadi, N. Highly efficient CaO-ZSM-5 zeolite/Fe3O4 as a magnetic acid–base catalyst upon biodiesel production from used cooking oil. Appl. Nanosci. 2022, 12, 3755–3769. [Google Scholar] [CrossRef]
- Xie, W.; Wang, H. Grafting copolymerization of dual acidic ionic liquid on core-shell structured magnetic silica: A magnetically recyclable Brönsted acid catalyst for biodiesel production by one-pot transformation of low-quality oils. Fuel 2021, 283, 118893. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, X.; Li, M.; Peng, X.; Wei, M.; Zhang, X.; Yang, L.; Li, J. Biodiesel preparation from Thlaspi arvense L. seed oil utilizing a novel ionic liquid core-shell magnetic catalyst. Ind. Crop. Prod. 2021, 162, 113316. [Google Scholar] [CrossRef]
- Almeida, F.L.; Prata, A.S.; Forte, M.B. Enzyme immobilization: What have we learned in the past five years? Biofuels Bioprod. Biorefining 2022, 16, 587–608. [Google Scholar] [CrossRef]
- Ren, S.; Chen, R.; Wu, Z.; Su, S.; Hou, J.; Yuan, Y. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion. Colloids Surf., B 2021, 204, 111779. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Li, Y.; Wang, J.; Li, L.; Xu, L.; Wu, Y.; Wang, Y.; Fei, X.; Tian, J. Synthesis of magnetic nanoflower immobilized lipase and its continuous catalytic application. New J. Chem. 2019, 43, 11082–11090. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Xu, J.; Xing, Y.; Liu, Y.; Liu, M.; Hou, X. Facile in situ microwave synthesis of Fe3O4@MIL-100(Fe) exhibiting enhanced dual enzyme mimetic activities for colorimetric glutathione sensing. Anal. Chim. Acta 2021, 1179, 338825. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, M.; Qiao, W.; Cong, S.; Zhang, Y.; Wang, L.; Hu, Z.; Liu, F.; Wang, D.; Wang, P.; et al. Multicolor colorimetric visual detection of Staphylococcus aureus based on Fe3O4-Ag-MnO2 composites nano-oxidative mimetic enzyme. Anal. Chim. Acta 2023, 1239, 340654. [Google Scholar] [CrossRef]
- Qiu, Y.; Yuan, B.; Mi, H.; Lee, J.H.; Chou, S.W.; Peng, Y.K. An atomic insight into the confusion on the activity of Fe3O4 nanoparticles as peroxidase mimetics and their comparison with horseradish peroxidase. J. Phys. Chem. Lett. 2022, 13, 8872–8878. [Google Scholar] [CrossRef]
- Dong, S.; Dong, Y.; Jia, T.; Zhang, F.; Wang, Z.; Feng, L.; Sun, Q.; Gai, S.; Yang, P. Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemodynamic therapy. Chem. Mater. 2020, 32, 9868–9881. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, K.; He, Y.; Li, Z.; Su, H.; Zhang, X.; Sun, Y.; Shi, W.; Ge, D. Fe3O4-based multifunctional nanospheres for amplified magnetic targeting photothermal therapy and fenton reaction. ACS Biomater. Sci. Eng. 2019, 5, 1045–1056. [Google Scholar] [CrossRef]
- Guillén, A.; Ardila, Y.; Noguera, M.J.; Campaña, A.L.; Bejarano, M.; Akle, V.; Osma, J.F. Toxicity of modified magnetite-based nanocomposites used for wastewater treatment and evaluated on zebrafish (danio rerio) model. Nanomaterials 2022, 12, 489. [Google Scholar] [CrossRef]
- Rosa, E.V.; Fascineli, M.L.; da Silva, I.C.; Rodrigues, M.O.; Chaker, J.A.; Grisolia, C.K.; Moya, S.E.; Campos, A.F.; Sousa, M.H. Carbon nitride nanosheets magnetically decorated with Fe3O4 nanoparticles by homogeneous precipitation: Adsorption-photocatalytic performance and acute toxicity assessment. Environ. Nanotech. Monitor. Manag. 2021, 16, 100549. [Google Scholar] [CrossRef]
- Kokina, I.; Plaksenkova, I.; Galek, R.; Jermaļonoka, M.; Kirilova, E.; Gerbreders, V.; Krasovska, M.; Sledevskis, E. Genotoxic evaluation of Fe3O4 nanoparticles in different three barley (Hordeum vulgare L.) genotypes to explore the stress-resistant molecules. Molecules 2021, 26, 6710. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, L.; Kahru, A.; Terekhova, V.; Dzhardimalieva, G.; Uchanov, P.; Kydralieva, K. Effects of humic acids on the ecotoxicity of Fe3O4 nanoparticles and Fe-ions: Impact of oxidation and aging. Nanomaterials 2020, 10, 2011. [Google Scholar] [CrossRef]
- Capsoni, D.; Lucini, P.; Conti, D.M.; Bianchi, M.; Maraschi, F.; De Felice, B.; Bruni, G.; Abdolrahimi, M.; Peddis, D.; Parolini, M. Fe3O4-Halloysite nanotube composites as sustainable adsorbents: Efficiency in ofloxacin removal from polluted waters and ecotoxicity. Nanomaterials 2022, 12, 4330. [Google Scholar] [CrossRef]
- Shemy, M.H.; Othman, S.I.; Alfassam, H.E.; Al-Waili, M.A.; Alqhtani, H.A.; Allam, A.A.; Abukhadra, M.R. Synthesis of green magnetite/carbonized coffee composite from natural pyrite for effective decontamination of congo red dye: Steric, synergetic, oxidation, and ecotoxicity studies. Catalysts 2023, 13, 264. [Google Scholar] [CrossRef]
- Croissant, J.G.; Butler, K.S.; Zink, J.I.; Brinker, C.J. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater. 2020, 5, 886–909. [Google Scholar] [CrossRef]
- Jogaiah, S.; Paidi, M.K.; Venugopal, K.; Geetha, N.; Mujtaba, M.; Udikeri, S.S.; Govarthanan, M. Phytotoxicological effects of engineered nanoparticles: An emerging nanotoxicology. Sci. Total Environ. 2021, 801, 149809. [Google Scholar] [CrossRef]
- Ansari, M.O.; Ahmad, M.; Parveen, N.; Ahmad, S.; Jameel, S.; Shadab, G. Iron oxide nanoparticles-synthesis, surface modification, applications and toxicity: A review. Mater. Focus 2017, 6, 269–279. [Google Scholar] [CrossRef]
- Nikitin, M.P.; Zelepukin, I.V.; Shipunova, V.O.; Sokolov, I.L.; Deyev, S.M.; Nikitin, P.I. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat. Biomed. Eng. 2020, 4, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Wu, L.; Chen, Y.; Qi, X.; Cao, J.; Zhang, X.; Ma, W.; Ge, Y.; Shen, S. Ultra-small Fe3O4 nanoparticles for nuclei targeting drug delivery and photothermal therapy. J. Drug Deliv. Sci. Technol. 2020, 58, 101782. [Google Scholar] [CrossRef]
- Klekotka, U.; Rogacz, D.; Szymanek, I.; Malejko, J.; Rychter, P.; Kalska-Szostko, B. Ecotoxicological assessment of magnetite and magnetite/Ag nanoparticles on terrestrial and aquatic biota from different trophic levels. Chemosphere 2022, 308, 136207. [Google Scholar] [CrossRef]
- Dunn, A.W.; Ehsan, S.M.; Mast, D.; Pauletti, G.M.; Xu, H.; Zhang, J.; Ewing, R.C.; Shi, D. Photothermal effects and toxicity of Fe3O4 nanoparticles via near infrared laser irradiation for cancer therapy. Mater. Sci. Eng. C 2015, 46, 97–102. [Google Scholar] [CrossRef]
- Wu, L.; Zong, L.; Ni, H.; Liu, X.; Wen, W.; Feng, L.; Cao, J.; Qi, X.; Ge, Y.; Shen, S. Magnetic thermosensitive micelles with upper critical solution temperature for NIR triggered drug release. Biomater. Sci. 2019, 7, 2134–2143. [Google Scholar] [CrossRef]
- Alkhayal, A.; Fathima, A.; Alhasan, A.H.; Alsharaeh, E.H. PEG coated Fe3O4/RGO nano-cube-like structures for cancer therapy via magnetic hyperthermia. Nanomaterials 2021, 11, 2398. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, N.; Sharma, P.K.; Sood, N.; Bhalla, N. Designing magnetic nanoparticles for in vivo applications and understanding their fate inside human body. Coord. Chem. Rev. 2021, 445, 214082. [Google Scholar] [CrossRef]
Characteristics | Bulk Fe3O4 | Fe3O4 NPs |
---|---|---|
Magnetism | Ferromagnetism | Superparamagnetism or ferrimagnetism |
Saturation magnetization (Ms, 300 K, emu/g) | ~(84–100) | Depend on size, shape, and coating: ~(0.5–92) |
Size-controllability | Un-achievable | Precisely controllable: ~(2–100) nm |
Shape-controllability (Spherical, cubic, rod, hollow, 2D nanoplate) | Un-achievable | Precisely controllable |
Specific surface area (m2/g) | 0.34 (38–62 μm) | Depend on size, shape, and coating: ~(20–300) |
Magnetothermal conversion (W/g) | Absent | ~(100–2500) |
Electrocatalytic activity | Achievable | Achievable |
Enzyme-mimetic activity of peroxidases and catalase | Un-achievable | Achievable |
Material | Synthesis Method | Contaminant | Method of Removal | Recycle Time | Residual Activity | Ref. |
---|---|---|---|---|---|---|
Pd@Fe3O4/biochar | Pyrolysis + reduction | 4-NP | Reduction | 10 | ~80% | [104] |
Fe3O4/PEG/FeO | Immobilization | BPA | Photo-Fenton catalysis | 3 | 78% | [105] |
Fe3O4/ZnO-CdO/rGO | Hydrothermal method | MB/RhB/MO | Ultrasonic degradation | 4 | 92% | [106] |
Pd@CMC/Fe3O4 | Solvothermal method + reduction | 4-NP | Reduction | 7 | -- | [107] |
GO-Fe3O4/Dop/Au | Hydrothermal method + reduction | MB/MO | Reduction | 7 | -- | [108] |
Fe3O4@SiO2- Thiotet-Pd(II) | Capsulation | 4-NP/Cr(VI)/Nigrosine | Reduction | 8 | ~100% | [109] |
Ag@RF@Fe3O4 | Solvothermal method + Photoreduction | 4-NP | Reduction | 5 | 93% | [110] |
Chiosan@SiO2@Fe3O4 | Thiol-ene click chemistry | Hg(II) | Adsorption | 6 | ~88% | [111] |
Fe3O4/PANI/Au | Solvothermal method + coating | 4-NP | Reduction | 15 | 99% | [112] |
Fe3O4@PS@Ag | Microemulsion polymerization | MB/RhB/ 4-NP | Reduction | 7 | ~90% | [113] |
ZnO@SiO2@Fe3O4 | Hydrothermal method | Malathion | Photocatalysis | 5 | 82% | [114] |
Fe3O4/GO/Ag | Solvothermal method | MB/Ciprofloxacin | Reduction | -- | -- | [115] |
h-Fe3O4@Ag/PDA | Hydrothermal method | MO/CR/MB | Reduction | 5 | >90% | [116] |
Asparagine chitosan modified Fe3O4 | Reduction-precipitation | 4-NP | Reduction | 4 | ~70% | [117] |
Fe3O4@LigA/Cu | Hydrothermal method | 4-NP/MB/CR | Reduction | 3 | ~90% | [118] |
g-C3N4/Al2O3@Fe3O4 | Hydrothermal method | Textile wastewater | Ozonation | 5 | ~92% | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Ye, Y.; Ye, J.; Gao, T.; Wang, D.; Chen, G.; Song, Z. Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications. Magnetochemistry 2023, 9, 110. https://doi.org/10.3390/magnetochemistry9040110
Liu M, Ye Y, Ye J, Gao T, Wang D, Chen G, Song Z. Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications. Magnetochemistry. 2023; 9(4):110. https://doi.org/10.3390/magnetochemistry9040110
Chicago/Turabian StyleLiu, Mingyue, Yuyuan Ye, Jiamin Ye, Ting Gao, Dehua Wang, Gang Chen, and Zhenjun Song. 2023. "Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications" Magnetochemistry 9, no. 4: 110. https://doi.org/10.3390/magnetochemistry9040110
APA StyleLiu, M., Ye, Y., Ye, J., Gao, T., Wang, D., Chen, G., & Song, Z. (2023). Recent Advances of Magnetite (Fe3O4)-Based Magnetic Materials in Catalytic Applications. Magnetochemistry, 9(4), 110. https://doi.org/10.3390/magnetochemistry9040110