Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3
Abstract
:1. Introduction
2. Experimental Part
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, K.K. (Ed.) Properties of Lithium Niobate. In EMIS Datareviews Series No 28; Institution of Engineering and Technology: Stevenage, UK, 2002. [Google Scholar]
- Adachi, M.; Akishige, Y.; Asahi, T.; Deguchi, K.; Gesi, K.; Hasebe, K.; Hikita, T.; Ikeda, T.; Iwata, Y.; Komukae, M.; et al. LiNbO3. In Landolt-Börnstein—Group III Condensed Matter; Shiozaki, Y., Nakamura, E., Mitsui, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 36A2. [Google Scholar] [CrossRef]
- Boes, A.; Chang, L.; Langrock, C.; Yu, M.; Zhang, M.; Lin, Q.; Lončar, M.; Fejer, M.; Bowers, J.; Mitchell, A. Lithium Niobate Photonics: Unlocking the Electromagnetic Spectrum. Science 2023, 379, eabj4396. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Dena, O.; Fierro-Ruiz, C.D.; Villalobos-Mendoza, S.D.; Carrillo Flores, D.M.; Elizalde-Galindo, J.T.; Farías, R. Lithium Niobate Single Crystals and Powders Reviewed—Part I. Crystals 2020, 10, 973. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Villalobos-Mendoza, S.D.; Farías, R.; Fierro-Ruiz, C.D. Lithium Niobate Single Crystals and Powders Reviewed—Part II. Crystals 2020, 10, 990. [Google Scholar] [CrossRef]
- Song, C.; Wang, C.; Liu, X.; Zeng, F.; Pan, F. Room Temperature Ferromagnetism in Cobalt-Doped LiNbO3 Single Crystalline Films. Cryst. Growth Des. 2009, 9, 1235–1239. [Google Scholar] [CrossRef]
- Ye, J.; Sun, X.; Wu, Z.; Liu, J.; An, Y. Evidence of the Oxygen Vacancies-Induced Room Temperature Ferromagnetism in Multiferroic Co-Doped LiNbO3 Films. J. Alloy. Compd. 2018, 768, 750–755. [Google Scholar] [CrossRef]
- Algueró, M.; Gregg, J.M.; Mitoseriu, L. (Eds.) Nanoscale Ferroelectrics and Multiferroics; Wiley: Chichester, UK, 2016. [Google Scholar] [CrossRef]
- Khomskii, D. Classifying Multiferroics: Mechanisms and Effects. Physics 2009, 2, 20. [Google Scholar] [CrossRef]
- Wang, J. (Ed.) Multiferroic Materials: Properties, Techniques, and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar] [CrossRef]
- Hill, N.A. Why Are There so Few Magnetic Ferroelectrics? J. Phys. Chem. B 2000, 104, 6694–6709. [Google Scholar] [CrossRef]
- Spaldin, N.A.; Ramesh, R. Advances in Magnetoelectric Multiferroics. Nat. Mater. 2019, 18, 203–212. [Google Scholar] [CrossRef]
- Pascual-Gonzalez, C.; Schileo, G.; Feteira, A. Single-Phase, Composite and Laminate Multiferroics. Magn. Ferroelectr. Multiferroic Met. Oxides 2018, 457–484. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Lin, Y.; Nan, C.-W. Multiferroic Magnetoelectric Composite Nanostructures. NPG Asia Mater. 2010, 2, 61–68. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Khaibullin, I.B. Fabrication of Metal Nanoparticles in Sapphire by Low-energy Ion Implantation. Rev. Adv. Mater. Sci. 2005, 9, 109–129. [Google Scholar]
- Ryssel, H.; Ruge, I. Ionenimplantation; Teubner: Stuttgart, Germany, 1978; 366p. [Google Scholar]
- Chen, F.; Amekura, H.; Jia, Y. Ion Irradiation of Dielectrics for Photonic Applications; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Khaibullin, R.I. Optics of Metal Nanoparticles Fabricated in Organic Matrix by Ion Implantation. Rev. Adv. Mater. Sci. 2004, 7, 108–125. [Google Scholar]
- Kazan, S.; Mikailzade, F.A.; Şale, A.G.; Maksutoğlu, M.; Acikgoz, M.; Khaibullin, R.I.; Khalitov, N.I.; Gatiiatova, J.I.; Valeev, V.F. Magnetic Properties of Co-implanted BaTiO3 Perovskite Crystal. Phys. Rev. B 2010, 82, 054402. [Google Scholar] [CrossRef]
- Thackery, P.A.; Nelson, R.S. The Formation of Precipitate Phases in Aluminium by Ion Implantation. Philos. Mag. 1969, 19, 169–180. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Zhang, X.; Shen, Y.; Liu, C. Synthesis, Thermal Evolution and Optical Properties of CuZn Alloy Nanoparticles in SiO2 Sequentially Implanted with Dual Ions. J. Alloy. Compd. 2013, 549, 231–237. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Y.; Wang, G.; Sun, Y.; Liu, C. Enhanced Nonlinear Optical Properties of LiNbO3 Crystal Embedded with CuZn Alloy Nanoparticles by Ion Implantation. J. Alloys Compd. 2019, 778, 691–698. [Google Scholar] [CrossRef]
- Song, C.; Zeng, F.; Shen, Y.X.; Geng, K.W.; Xie, Y.N.; Wu, Z.Y.; Pan, F. Local Co Structure and Ferromagnetism in Ion-Implanted Co-Doped LiNbO3. Phys. Rev. B 2006, 73, 172412. [Google Scholar] [CrossRef]
- Li, S.; Li, D.; Li, S.; Wang, G.; Sun, X.; Xu, L.; Yuan, H. Local Structure and Room Ferromagnetism of Fe-Doped LiNbO3 Films. J. Supercond. Nov. Magn. 2022, 35, 2897–2902. [Google Scholar] [CrossRef]
- Sheng, P.; Zeng, F.; Tang, G.S.; Pan, F.; Yan, W.S.; Hu, F.C. Structure and Ferromagnetism in Vanadium-Doped LiNbO3. J. Appl. Phys. 2012, 112, 033913. [Google Scholar] [CrossRef]
- White, C.W.; McHargue, C.J.; Sklad, P.S.; Boatner, L.A.; Farlow, G.C. Ion Implantation and Annealing of Crystalline Oxides. Mater. Sci. Rep. 1989, 4, 41–146. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, E.; Lao, X.; Wang, Y.; Yuan, H. Oxygen Vacancy Mediated Room Temperature Ferromagnetism in Cu-Doped LiNbO3 Thin Films. J. Magn. Magn. Mater. 2021, 527, 167775. [Google Scholar] [CrossRef]
- Zeng, F.; Sheng, P.; Tang, G.S.; Pan, F.; Yan, W.S.; Hu, F.C.; Zou, Y.; Huang, Y.Y.; Jiang, Z.; Guo, D. Electronic Structure and Magnetism of Fe-Doped LiNbO3. Mater. Chem. Phys. 2012, 136, 783–788. [Google Scholar] [CrossRef]
- Chen, C.; Zeng, F.; Li, J.H.; Sheng, P.; Luo, J.T.; Yang, Y.C.; Pan, F.; Zou, Y.; Huang, Y.Y.; Jiang, Z. Strong d–d Electron Interaction Inducing Ferromagnetism in Mn-Doped LiNbO3. Thin Solid Film. 2011, 520, 764–768. [Google Scholar] [CrossRef]
- Zinnatullin, A.L.; Gabbasov, B.F.; Lyadov, N.M.; Yusupov, R.V.; Khaibullin, R.I.; Vagizov, F.G. Endotaxial α-Fe Nanoparticles in the High-Fluence Iron-Implanted Single-Crystal MgO. Crystals 2022, 12, 1095. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Böttger, R.; Heinig, K.-H.; Bischoff, L.; Liedke, B.; Facsko, S. From holes to sponge at irradiated Ge surfaces with increasing ion energy—an effect of defect kinetics? Appl. Phys. A 2013, 113, 53–59. [Google Scholar] [CrossRef]
- Stepanov, A.L.; Farrakhov, B.F.; Fattakhov, Y.V.; Rogov, A.M.; Konovalov, D.A.; Nuzhdin, V.I.; Valeev, V.F. Incoherent-Light Pulse Annealing of Nanoporous Germanium Layers Formed by Ion Implantation. Vacuum 2021, 186, 110060. [Google Scholar] [CrossRef]
- Veis, M.; Beran, L.; Zahradnik, M.; Antos, R.; Straka, L.; Kopecek, J.; Fekete, L.; Heczko, O. Magneto-Optical Spectroscopy of Ferromagnetic Shape-Memory Ni-Mn-Ga Alloy. J. Appl. Phys. 2014, 115, 17A936. [Google Scholar] [CrossRef]
- Öztürk, M.; Demirci, E.; Gürbüz, O.; Güner, S.; Valeev, V.; Vagizov, F.; Khaibullin, R.; Akdoğan, N. Formation of Different Magnetic Phases and High Curie Temperature Ferromagnetism in Fe57-Implanted ZnO Film. J. Magn. Magn. Mater. 2015, 373, 83–85. [Google Scholar] [CrossRef]
- Read, D.A.; Hallam, G.C.; Sahota, M.S.; Mustaffa, A. The Magnetic Properties of Fe-Nb Alloys. Phys. B+C 1977, 86–88, 66–68. [Google Scholar] [CrossRef]
- Paduani, C.; Schaf, J.; Persiano, A.I.C.; Raposo, M.T.; Ardisson, J.D.; Takeuchi, A.Y. Observation of Weak Ferromagnetism in the C14 Laves Phase of the (Fe1−xNix)2Nb System. Phys. Status Solidi 2009, 246, 1362–1365. [Google Scholar] [CrossRef]
- Crook, M.R.; Cywinski, R. Magnetic Transition in Nb1−yFe2+y. J. Magn. Magn. Mater. 1995, 140–144, 71–72. [Google Scholar] [CrossRef]
- Massalski, T.B.; Murray, J.L.; Bennett, L.H.; Baker, H. Binary Alloy Phase Diagrams, 1st ed.; American Society for Metals: Metals Park, OH, USA, 1986; Volume 1, 1100p. [Google Scholar]
- Raposo, M.T.; Ardisson, J.D.; Persiano, A.I.C.; Mansur, R.A. Characterization of Phases in the Fe-Nb System. Hyperfine Interact. 1994, 83, 235–238. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Keune, W.; Date, S.K.; Dézsi, I.; Gonser, U. Mössbauer-effect Study of Co57 and Fe57 Impurities in Ferroelectric LiNbO3. J. Appl. Phys. 1975, 46, 3914–3924. [Google Scholar] [CrossRef]
- Błachowski, A.; Ruebenbauer, K.; Żukrowski, J. Influence of Niobium Impurity on Spin Density in Metallic Iron. Phys. Status Solidi 2005, 242, 3201–3208. [Google Scholar] [CrossRef]
- Drittler, B.; Stefanou, N.; Blügel, S.; Zeller, R.; Dederichs, P.H. Electronic Structure and Magnetic Properties of Dilute Fe Alloys with Transition-Metal Impurities. Phys. Rev. B 1989, 40, 8203–8212. [Google Scholar] [CrossRef] [PubMed]
- Balogh, J.; Bujdosó, L.; Horváth, Z.E.; Kaptás, D.; Kiss, L.F.; Nakanishi, A.; Sajti, S.; Szilágyi, E. Alloy Formation at the Fe-on-Nb and Nb-on-Fe Interfaces. Vacuum 2020, 171, 109048. [Google Scholar] [CrossRef]
- Ovchinnikov, V.V. Mössbauer Analysis of the Atom and Magnetic Structure of Alloys; Cambridge International Science Publishing: Cambridge, UK, 2006; 248p. [Google Scholar]
- Matsnev, M.E.; Rusakov, V.S. SpectrRelax: An Application for Mössbauer Spectra Modeling and Fitting. AIP Conf. Proc. 2012, 1489, 178–185. [Google Scholar] [CrossRef]
- Wertheim, G.K. Mössbauer Effect: Principles and Applications; Academic Press: New York, NY, USA, 1964. [Google Scholar]
- Ouyang, G.; Tan, X.; Wang, C.X.; Yang, G.W. Solid Solubility Limit in Alloying Nanoparticles. Nanotechnology 2006, 17, 4257–4262. [Google Scholar] [CrossRef]
- Lee, J.-G.; Mori, H. Solid Solubility in Isolated Nanometer-Sized Alloy Particles in the Sn-Pb System. Eur. Phys. J. D 2005, 34, 227–230. [Google Scholar] [CrossRef]
- Tiwari, K.; Manolata Devi, M.; Biswas, K.; Chattopadhyay, K. Phase Transformation Behavior in Nanoalloys. Prog. Mater. Sci. 2021, 121, 100794. [Google Scholar] [CrossRef]
- Plaksin, O.A.; Takeda, Y.; Amekura, H.; Umeda, N.; Kono, K.; Okubo, N.; Kishimoto, N. Optical Monitoring of Nanoparticle Formation during Negative 60keV Cu Ion Implantation into LiNbO3. Appl. Surf. Sci. 2005, 241, 213–217. [Google Scholar] [CrossRef]
- Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles. Chem. Rev. 2008, 108, 845–910. [Google Scholar] [CrossRef]
- Dorofeev, G.A.; Elsukov, E.P. Thermodynamic Modeling of Mechanical Alloying in the Fe–Sn System. Inorg. Mater. 2000, 36, 1228–1234. [Google Scholar] [CrossRef]
- Dirba, I.; Komissinskiy, P.; Gutfleisch, O.; Alff, L. Increased Magnetic Moment Induced by Lattice Expansion from α-Fe to α′-Fe8N. J. Appl. Phys. 2015, 117, 173911. [Google Scholar] [CrossRef]
- Morrish, A.H. The Physical Principles of Magnetism; John Wiley & Sons: Nashville, TN, USA, 2001. [Google Scholar]
- Kuz’min, M.D.; Skokov, K.P.; Jian, H.; Radulov, I.; Gutfleisch, O. Towards High-Performance Permanent Magnets without Rare Earths. J. Phys. Condens. Matter 2014, 26, 064205. [Google Scholar] [CrossRef] [PubMed]
Components | Hyperfine Parameters 1 | Linewidth, mm/s | Relative Area, % | Valence State | ||
---|---|---|---|---|---|---|
δ, mm/s | 2ε, mm/s | <HF>, kOe | ||||
Doublet-I | 0.96(1) | 2.28(2) | - | 0.62(2) | 16(1) | Fe2+ |
Doublet-II | 0.42(1) | 0.81(2) | - | 0.62(3) | 17(1) | Fe3+ |
Magnetically ordered component | 0.03(1) | 0.01(1) | 303(1) | 0.49(1) 2 | 67(1) | Fe0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinnatullin, A.L.; Petrov, A.V.; Yusupov, R.V.; Valeev, V.F.; Khaibullin, R.I.; Vagizov, F.G. Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3. Magnetochemistry 2023, 9, 121. https://doi.org/10.3390/magnetochemistry9050121
Zinnatullin AL, Petrov AV, Yusupov RV, Valeev VF, Khaibullin RI, Vagizov FG. Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3. Magnetochemistry. 2023; 9(5):121. https://doi.org/10.3390/magnetochemistry9050121
Chicago/Turabian StyleZinnatullin, Almaz L., Andrei V. Petrov, Roman V. Yusupov, Valerii F. Valeev, Rustam I. Khaibullin, and Farit G. Vagizov. 2023. "Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3" Magnetochemistry 9, no. 5: 121. https://doi.org/10.3390/magnetochemistry9050121
APA StyleZinnatullin, A. L., Petrov, A. V., Yusupov, R. V., Valeev, V. F., Khaibullin, R. I., & Vagizov, F. G. (2023). Unusual Compositions of Fe-Nb Alloy Precipitates in Iron-Implanted LiNbO3. Magnetochemistry, 9(5), 121. https://doi.org/10.3390/magnetochemistry9050121