Thermal Conductivity for p–(Bi, Sb)2Te3 Films of Topological Insulators
Abstract
:1. Introduction
2. Film Deposition Technique and Structure
3. Atomic Force Microscopy Study of Interlayer Surface (0001) in the Films
4. Thermal Conductivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nolas, G.S.; Sharp, J.; Goldsmid, H.J. Thermoelectrics: Basic Principles and New Materials Developments; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2001. [Google Scholar]
- Rowe, D.M. Modules, Systems, and Applications in Thermoelectrics, 1st ed.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Gilbert, M.J. Topological electronics. Commun. Phys. 2021, 4, 70. [Google Scholar] [CrossRef]
- Heremans, J.P.; Cava, R.J.; Samarth, N. Tetradymites as thermoelectrics and topological insulators. Nat. Rev. Mater. 2017, 2, 17049. [Google Scholar] [CrossRef]
- Ngabonziza, P. Quantum transport and potential of topological states for thermoelectricity in Bi2Te3 thin films. Nanotechnology 2022, 33, 192001. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067. [Google Scholar] [CrossRef]
- Chen, Y.L.; Analytis, J.G.; Chu, J.-H.; Liu, Z.K.; Mo, S.-K.; Qi, X.L.; Zhang, H.J.; Lu, D.H.; Dai, X.; Fang, Z.; et al. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2 Te3. Science 2009, 325, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Xu, Y.; Zhu, J. Topological insulators for thermoelectrics. npj Quantum Mater. 2017, 2, 51. [Google Scholar] [CrossRef]
- Lee, J.; Koo, J.; Jhon, Y.M.; Lee, J.H. A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi2Te3 topological insulator. Opt. Express 2014, 22, 6165–6173. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, X.; Sun, X.; Zhu, C.; Huang, W.; Zhang, X.; Zheng, B.; Zou, Z.; Luo, Z.; Wang, X.; et al. Self-Powered Broad-band Photodetectors Based on Vertically Stacked WSe2/Bi2Te3 p–n Heterojunctions. ACS Nano 2019, 13, 13573–13580. [Google Scholar] [CrossRef]
- Sun, R.; Yang, S.; Yang, X.; Vetter, E.; Sun, D.; Li, N.; Su, L.; Li, Y.; Gong, Z.-Z.; Xie, Z.-K.; et al. Large Tunable Spin-to-Charge Conversion Induced by Hybrid Rashba and Dirac Surface States in Topological Insulator Heterostructures. Nano Lett. 2019, 19, 4420–4426. [Google Scholar] [CrossRef]
- Jiang, Z.; Chang, C.-Z.; Masir, M.R.; Tang, C.; Xu, Y.; Moodera, J.S.; MacDonald, A.H.; Shi, J. Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states. Nat. Commun. 2016, 7, 11458. [Google Scholar] [CrossRef]
- Liu, T.-H.; Zhou, J.; Li, M.; Ding, Z.; Song, Q.; Liao, B.; Fu, L.; Chen, G. Electron mean-free-path filtering in Dirac material for improved thermoelectric performance. Proc. Natl. Acad. Sci. USA 2018, 115, 879–884. [Google Scholar] [CrossRef] [PubMed]
- Zebarjadi, M.; Esfarjani, K.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Perspectives on thermoelectrics: From fundamentals to device applications. Energy Environ. Sci. 2012, 5, 5147–5162. [Google Scholar] [CrossRef]
- Matsushita, S.Y.; Ichimura, K.; Huynh, K.K.; Tanigaki, K. Large thermopower in topological surface state of Sn-BSTS topological insulators: Thermoelectrics and energy-dependent relaxation times. Phys. Rev. Mater. 2021, 5, 014205. [Google Scholar] [CrossRef]
- Puneet, P.; Podila, R.; Karakaya, M.; Zhu, S.; He, J.; Tritt, T.M.; Dresselhaus, M.S.; Rao, A.M. Preferential Scattering by Interfacial Charged Defects for Enhanced Thermoelectric Performance in Few-layered n-type Bi2Te3. Sci. Rep. 2013, 3, 3212. [Google Scholar] [CrossRef] [PubMed]
- Szczech, J.R.; Higgins, J.M.; Jin, S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 2011, 21, 4037–4055. [Google Scholar] [CrossRef]
- Zheng, J.; Kodera, Y.; Xu, X.; Shin, S.; Chung, K.M.; Imai, T.; Ihnfeldt, R.V.; Garay, J.E.; Chen, R. Suppressing thermal conductivity of nano-grained thermoelectric material using acoustically hard nanoparticles. J. Appl. Phys. 2021, 130, 235106. [Google Scholar] [CrossRef]
- Nam, H.; Xu, Y.; Miotkowski, I.; Tian, J.; Chen, Y.P.; Liu, C.; Hasan, M.Z.; Zhu, W.; Fiete, G.A.; Shih, C.-K. Microscopic investigation of Bi2−xSbxTe3−ySey systems: On the origin of a robust intrinsic topological insulator. J. Phys. Chem. Solids 2019, 128, 251–257. [Google Scholar] [CrossRef]
- Bessas, D.; Sergueev, I.; Wille, H.-C.; Perßon, J.; Ebling, D.; Hermann, R.P. Lattice dynamics in Bi2Te3 and Sb2Te3: Te and Sb density of phonon states. Phys. Rev. B 2012, 86, 224301. [Google Scholar] [CrossRef]
- Park, K.H.; Mohamed, M.; Aksamija, Z.; Ravaioli, U. Phonon scattering due to van der Waals forces in the lattice thermal conductivity of Bi2Te3 thin films. J. Appl. Phys. 2015, 117, 015103. [Google Scholar] [CrossRef]
- Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y.; Minnich, A.; Yu, B.; Yan, X.; Wang, D.; Muto, A.; Vashaee, D.; et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science 2008, 320, 634–638. [Google Scholar] [CrossRef]
- Zhu, T.; Hu, L.; Zhao, X.; He, J. New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials. Adv. Sci. 2016, 3, 1600004. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Yang, J.; Guo, L.; Wang, S.; Wu, L.; Xu, X.; Zhao, W.; Zhang, Q.; Zhang, W.; Dresselhaus, M.S.; et al. Minimum Thermal Conductivity in Weak Topological Insulators with Bismuth-Based Stack Structure. Adv. Funct. Mater. 2016, 26, 5360–5367. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, C.-Z.; Zhang, Z.; Wen, J.; Feng, X.; Li, K.; Liu, M.; He, K.; Wang, L.; Chen, X.; et al. Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat. Commun. 2011, 2, 574. [Google Scholar] [CrossRef] [PubMed]
- Knispel, T.; Jolie, W.; Borgwardt, N.; Lux, J.; Wang, Z.; Ando, Y.; Rosch, A.; Michely, T.; Grüninger, M. Charge puddles in the bulk and on the surface of the topological insulator BiSbTeSe2 studied by scanning tunneling microscopy and optical spectroscopy. Phys. Rev. B 2017, 96, 195135. [Google Scholar] [CrossRef]
- Ren, Z.; Taskin, A.A.; Sasaki, S.; Segawa, K.; Ando, Y. Optimizing Bi2−xSbxTe3−ySeysolid solutions to approach the intrinsic topological insulator regime. Phys. Rev. B 2011, 84, 165311. [Google Scholar] [CrossRef]
- Ramachandran, B.; Wu, K.K.; Kuo, Y.K.; Guo, L.S.; Wang, L.M. Compositional effects on the low-temperature transport properties of non-stoichiometric Bi2TexSey-based crystals. J. Phys. D Appl. Phys. 2015, 50, 025302. [Google Scholar] [CrossRef]
- Chiatti, O.; Riha, C.; Lawrenz, D.; Busch, M.; Dusari, S.; Sánchez-Barriga, J.; Mogilatenko, A.; Yashina, L.V.; Valencia, S.; Ünal, A.A.; et al. 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Sci. Rep. 2016, 6, 27483. [Google Scholar] [CrossRef]
- Yar, A.; Naeem, M.; Khan, S.U.; Sabeeh, K. Hybridization effects on wave packet dynamics in topological insulator thin films. J. Phys. Condens. Matter 2017, 29, 465002. [Google Scholar] [CrossRef]
- Francombe, M.H. Structure-cell data and expansion coefficients of bismuth telluride. Br. J. Appl. Phys. 1958, 9, 415–417. [Google Scholar] [CrossRef]
- Medlin, D.L.; Ramasse, Q.M.; Spataru, C.D.; Yang, N.Y.C. Structure of the (0001) basal twin boundary in Bi2Te3. J. Appl. Phys. 2010, 108, 043517. [Google Scholar] [CrossRef]
- Virk, N.; Yazyev, O.V. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures. Sci. Rep. 2016, 6, 20220. [Google Scholar] [CrossRef] [PubMed]
- Lukyanova, L.N.; Usov, O.A.; Volkov, M.P.; Makarenko, I.V. Topological Thermoelectric Materials Based on Bismuth Telluride. Nanobiotechnol. Rep. 2021, 16, 282–293. [Google Scholar] [CrossRef]
- He, X.; Li, H.; Chen, L.; Wu, K. Substitution-induced spin-splitted surface states in topological insulator (Bi1−xSbx)2Te3. Sci. Rep. 2015, 5, 8830. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.; Jeon, I.; Kim, H.W.; Kwon, H.; Kahng, S.-J.; Park, J.; Kim, J.S.; Hwang, S.W.; Suh, H. Atomic and electronic structure of an alloyed topological insulator, Bi1.5Sb0.5Te1.7Se1.3. Sci. Rep. 2013, 3, 2656. [Google Scholar] [CrossRef] [PubMed]
- Sessi, P.; Otrokov, M.M.; Bathon, T.; Vergniory, M.G.; Tsirkin, S.S.; Kokh, K.A.; Tereshchenko, O.E.; Chulkov, E.V.; Bode, M. Visualizing spin-dependent bulk scattering and breakdown of the linear dispersion relation in Bi2Te3. Phys. Rev. B 2013, 88, 161407. [Google Scholar] [CrossRef]
- Lukyanova, L.N.; Makarenko, I.V.; Usov, O.A.; Dementev, P.A. Scanning tunneling spectroscopy of the surface states of Dirac fermions in thermoelectrics based on bismuth telluride. Semicond. Sci. Technol. 2018, 33, 055001. [Google Scholar] [CrossRef]
- Goyal, V.; Teweldebrhan, D.; Balandin, A.A. Mechanically-exfoliated stacks of thin films of Bi2Te3 topological insulators with enhanced thermoelectric performance. Appl. Phys. Lett. 2010, 97, 133117. [Google Scholar] [CrossRef]
- Lukyanova, L.N.; Boikov, Y.A.; Danilov, V.A.; Usov, O.A.; Volkov, M.P.; Kutasov, V.A. Thermoelectric and galvanomagnetic properties of bismuth chalcogenide nanostructured heteroepitaxial films. Semicond. Sci. Technol. 2015, 30, 015011. [Google Scholar] [CrossRef]
- Nomura, K.; MacDonald, A.H. Quantum Transport of Massless Dirac Fermions. Phys. Rev. Lett. 2007, 98, 076602. [Google Scholar] [CrossRef]
- Nomura, K.; Koshino, M.; Ryu, S. Topological Delocalization of Two-Dimensional Massless Dirac Fermions. Phys. Rev. Lett. 2007, 99, 146806. [Google Scholar] [CrossRef]
- Chiba, T.; Takahashi, S. Transport properties on an ionically disordered surface of topological insulators: Toward high-performance thermoelectrics. J. Appl. Phys. 2019, 126, 245704. [Google Scholar] [CrossRef]
- Kim, H.-S.; Gibbs, Z.M.; Tang, Y.; Wang, H.; Snyder, G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3, 041506. [Google Scholar] [CrossRef]
- Toberer, E.S.; Baranowski, L.L.; Dames, C. Advances in Thermal Conductivity. Annu. Rev. Mater. Res. 2012, 42, 179–209. [Google Scholar] [CrossRef]
- Cao, H.; Tian, J.; Miotkowski, I.; Shen, T.; Hu, J.; Qiao, S.; Chen, Y.P. Quantized Hall Effect and Shubnikov–de Haas Oscillations in Highly Doped Bi2Se3: Evidence for Layered Transport of Bulk Carriers. Phys. Rev. Lett. 2012, 108, 216803. [Google Scholar] [CrossRef] [PubMed]
- Shahil, K.M.F.; Hossain, M.Z.; Teweldebrhan, D.; Balandin, A.A. Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Appl. Phys. Lett. 2010, 96, 153103. [Google Scholar] [CrossRef]
- Chen, Y.L.; Chu, J.-H.; Analytis, J.G.; Liu, Z.K.; Igarashi, K.; Kuo, H.-H.; Qi, X.L.; Mo, S.K.; Moore, R.G.; Lu, D.H.; et al. Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator. Science 2010, 329, 659–662. [Google Scholar] [CrossRef]
- Klemens, P.G. Thermal conductivity and lattice vibrational modes. Solid State Phys. 1958, 7, 1–98. [Google Scholar] [CrossRef]
- Goncalves, L.; Couto, C.; Alpuim, P.; Rolo, A.; Völklein, F.; Correia, J. Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation. Thin Solid Films 2010, 518, 2816–2821. [Google Scholar] [CrossRef]
- Luk’yanova, L.N.; Bibik, A.Y.; Aseev, V.A.; Usov, O.A.; Makarenko, I.V.; Petrov, V.N.; Nikonorov, N.V.; Kutasov, V.A. Surface morphology and Raman spectroscopy of thin layers of antimony and bismuth chalcogenides. Phys. Solid State 2016, 58, 1440–1447. [Google Scholar] [CrossRef]
- Teweldebrhan, D.; Goyal, V.; Balandin, A.A. Exfoliation and Characterization of Bismuth Telluride Atomic Quintuples and Quasi-Two-Dimensional Crystals. Nano Lett. 2010, 10, 1209–1218. [Google Scholar] [CrossRef]
- Plucinski, L.; Herdt, A.; Fahrendorf, S.; Bihlmayer, G.; Mussler, G.; Döring, S.; Kampmeier, J.; Matthes, F.; Bürgler, D.E.; Grützmacher, D.; et al. Electronic structure, surface morphology, and topologically protected surface states of Sb2Te3 thin films grown on Si(111). J. Appl. Phys. 2013, 113, 053706. [Google Scholar] [CrossRef]
- Ovsyannikov, S.V.; Morozova, N.V.; Korobeinikov, I.V.; Lukyanova, L.N.; Manakov, A.Y.; Likhacheva, A.Y.; Ancharov, A.I.; Vokhmyanin, A.P.; Berger, I.F.; Usov, O.A.; et al. Enhanced power factor and high-pressure effects in (Bi,Sb)2(Te,Se)3 thermoelectrics. Appl. Phys. Lett. 2015, 106, 143901. [Google Scholar] [CrossRef]
- Korobeinikov, I.V.; Morozova, N.V.; Lukyanova, L.N.; Usov, O.A.; Ovsyannikov, S.V. On the Power Factor of Bismuth-Telluride-Based Alloys near Topological Phase Transitions at High Pressures. Semiconductors 2019, 53, 732–736. [Google Scholar] [CrossRef]
- Xu, Y.; Miotkowski, I.; Liu, C.; Tian, J.; Nam, H.; Alidoust, N.; Hu, J.; Shih, C.-K.; Hasan, M.Z.; Chen, Y.P. Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nat. Phys. 2014, 10, 956–963. [Google Scholar] [CrossRef]
- Parashchuk, T.; Kostyuk, O.; Nykyruy, L.; Dashevsky, Z. High thermoelectric performance of p-type Bi0.5Sb1.5Te3 films on flexible substrate. Mater. Chem. Phys. 2020, 253, 123427. [Google Scholar] [CrossRef]
- Liao, C.-N.; Su, X.-W.; Liou, K.-M.; Chu, H.-S. Electrical and thermal transport properties of electrically stressed Bi–Sb–Te nanocrystalline thin films. Thin Solid Films 2011, 519, 4394–4399. [Google Scholar] [CrossRef]
- Park, N.-W.; Lee, W.-Y.; Yoon, Y.-S.; Kim, G.-S.; Yoon, Y.-G.; Lee, S.-K. Achieving Out-of-Plane Thermoelectric Figure of Merit ZT = 1.44 in a p-Type Bi2Te3/Bi0.5Sb1.5Te3 Superlattice Film with Low Interfacial Resistance. ACS Appl. Mater. Interfaces 2019, 11, 38247–38254. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Yi, Y.; He, H.; Wang, J. Shubnikov–de Haas oscillations in n and p type Bi2Se3 flakes. 2D Mater. 2015, 2, 045002. [Google Scholar] [CrossRef]
- Bao, L.; He, L.; Meyer, N.; Kou, X.; Zhang, P.; Chen, Z.-G.; Fedorov, A.V.; Zou, J.; Riedemann, T.M.; Lograsso, T.A.; et al. Weak Anti-localization and Quantum Oscillations of Surface States in Topological Insulator Bi2Se2Te. Sci. Rep. 2012, 2, 726. [Google Scholar] [CrossRef]
- Tu, N.H.; Tanabe, Y.; Satake, Y.; Huynh, K.K.; Le, P.H.; Matsushita, S.Y.; Tanigaki, K. Large-area and transferred high-quality three-dimensional topological insulator Bi2−xSbxTe3−ySey ultrathin film by catalyst-free physical vapor deposition. Nano Lett. 2017, 17, 2354–2360. [Google Scholar] [CrossRef]
- Sumida, K.; Ishida, Y.; Zhu, S.; Ye, M.; Pertsova, A.; Triola, C.; Kokh, K.A.; Tereshchenko, O.E.; Balatsky, A.V.; Shin, S.; et al. Prolonged duration of nonequilibrated Dirac fermions in neutral topological insulators. Sci. Rep. 2017, 7, 14080. [Google Scholar] [CrossRef] [PubMed]
- Alpichshev, Z.; Analytis, J.G.; Chu, J.-H.; Fisher, I.R.; Chen, Y.L.; Shen, Z.X.; Fang, A.; Kapitulnik, A. STM Imaging of Electronic Waves on the Surface of Bi2Te3: Topologically Protected Surface States and Hexagonal Warping Effects. Phys. Rev. Lett. 2010, 104, 016401. [Google Scholar] [CrossRef] [PubMed]
- Beidenkopf, H.; Roushan, P.; Seo, J.; Gorman, L.; Drozdov, I.; Hor, Y.S.; Cava, R.J.; Yazdani, A. Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat. Phys. 2011, 7, 939–943. [Google Scholar] [CrossRef]
- Ko, W.; Park, J.; Jeon, I.; Kim, H.W.; Kwon, H.; Oh, Y.; Kim, J.S.; Suh, H.; Hwang, S.W.; Chung, C. Local potential fluctuation of topological surface states in Bi1.5Sb0.5Te1.7Se1.3 observed by Landau level spectroscopy. Appl. Phys. Lett. 2016, 108, 083109. [Google Scholar] [CrossRef]
- Jacobsen, M.; Sinogeikin, S.; Kumar, R.; Cornelius, A. High pressure transport characteristics of Bi2Te3, Sb2Te3, and BiSbTe3. J. Phys. Chem. Solids 2012, 73, 1154–1158. [Google Scholar] [CrossRef]
- Korobeinikov, I.V.; Morozova, N.V.; Lukyanova, L.N.; Usov, O.A.; Kulbachinskii, V.A.; Shchennikov, V.V.; Ovsyannikov, S.V. Stress-controlled thermoelectric module for energy harvesting and its application for the significant enhancement of the power factor of Bi2Te3-based thermoelectrics. J. Phys. D Appl. Phys. 2018, 51, 025501. [Google Scholar] [CrossRef]
- Morozova, N.V.; Korobeinikov, I.V.; Ovsyannikov, S.V. Strategies and challenges of high-pressure methods applied to thermoelectric materials. J. Appl. Phys. 2019, 125, 220901. [Google Scholar] [CrossRef]
No. | Formation Technique | Substrate | Heat Treatment | Thermoelectric Power Coefficient α, μV K−1 |
---|---|---|---|---|
p–Bi0.5Sb1.5Te3 | ||||
1 | discrete evaporation | polyimide | unannealed | 242 |
2 | discrete evaporation | polyimide | annealed | 215 |
3 | thermal evaporation | polyimide | unannealed | 200 |
4 | discrete evaporation | muscovite | annealed | 223 |
p–Bi2Te3 | ||||
5 | discrete evaporation | polyimide | unannealed | 234 |
6 | thermal evaporation | muscovite | unannealed | 203 |
No. in Table 1 | <S>, µm2 | S1, µm2, % | S2 µm2, % | S3 µm2, % | S4 µm2, % |
---|---|---|---|---|---|
1 | 0.135 | 0.001 45% | 0.002–0.008 43% | 0.01–0.05 10% | 2.6–8.7 2% |
4 | 1.625 | 0.002–0.077 72% | 0.15–0.92 18% | (9.5–41.25) 10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukyanova, L.N.; Boikov, Y.A.; Usov, O.A.; Danilov, V.A.; Makarenko, I.V.; Petrov, V.N. Thermal Conductivity for p–(Bi, Sb)2Te3 Films of Topological Insulators. Magnetochemistry 2023, 9, 141. https://doi.org/10.3390/magnetochemistry9060141
Lukyanova LN, Boikov YA, Usov OA, Danilov VA, Makarenko IV, Petrov VN. Thermal Conductivity for p–(Bi, Sb)2Te3 Films of Topological Insulators. Magnetochemistry. 2023; 9(6):141. https://doi.org/10.3390/magnetochemistry9060141
Chicago/Turabian StyleLukyanova, Lidia N., Yuri A. Boikov, Oleg A. Usov, Viacheslav A. Danilov, Igor V. Makarenko, and Vasilii N. Petrov. 2023. "Thermal Conductivity for p–(Bi, Sb)2Te3 Films of Topological Insulators" Magnetochemistry 9, no. 6: 141. https://doi.org/10.3390/magnetochemistry9060141
APA StyleLukyanova, L. N., Boikov, Y. A., Usov, O. A., Danilov, V. A., Makarenko, I. V., & Petrov, V. N. (2023). Thermal Conductivity for p–(Bi, Sb)2Te3 Films of Topological Insulators. Magnetochemistry, 9(6), 141. https://doi.org/10.3390/magnetochemistry9060141