Solution NMR Backbone Assignment of the C-Terminal Region of Human Dynein Light Intermediate Chain 2 (LIC2-C) Unveils Structural Resemblance with Its Homologue LIC1-C
Abstract
:1. Biological Context
2. Methods and Experiments
2.1. Protein Expression and Purification
- (A)
- Construction Design and Cloning:
- (B)
- Media Preparation and Induction:
- (C)
- Cell Harvesting and Lysis:
- (D)
- Protein Purification:
2.2. NMR Spectroscopy
3. Assignment and Data Deposition
4. Chemical Shift Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cianfrocco, M.A.; Desantis, M.E.; Leschziner, A.E.; Reck-Peterson, S.L. Mechanism and Regulation of Cytoplasmic Dynein. Annu. Rev. Cell Dev. Biol. 2015, 31, 83. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.J.; Kon, T.; Knight, P.J.; Sutoh, K.; Burgess, S.A. Functions and Mechanics of Dynein Motor Proteins. Nat Rev Mol Cell Biol 2013, 14, 713. [Google Scholar] [CrossRef] [Green Version]
- Olenick, M.A.; Holzbaur, E.L.F. Dynein Activators and Adaptors at a Glance. J. Cell Sci. 2019, 132, jcs227132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reck-Peterson, S.L.; Redwine, W.B.; Vale, R.D.; Carter, A.P. The Cytoplasmic Dynein Transport Machinery and Its Many Cargoes. Nat. Rev. Mol. Cell Biol. 2018, 19, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, A.P.; Diamant, A.G.; Urnavicius, L. How Dynein and Dynactin Transport Cargos: A Structural Perspective. Curr. Opin. Struct. Biol. 2016, 37, 62–70. [Google Scholar] [CrossRef] [PubMed]
- King, S.M. Organization and Regulation of the Dynein Microtubule Motor. Cell Biol. Int. 2003, 27, 213–215. [Google Scholar] [CrossRef]
- Mahale, S.P.; Sharma, A.; Mylavarapu, S.V.S. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint. PLoS ONE 2016, 11, e0159646. [Google Scholar] [CrossRef] [Green Version]
- Horgan, C.P.; Hanscom, S.R.; McCaffrey, M.W. Dynein LIC1 Localizes to the Mitotic Spindle and Midbody and LIC2 Localizes to Spindle Poles during Cell Division. Cell Biol. Int. 2011, 35, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Palmer, K.J.; Hughes, H.; Stephens, D.J. An InCytes from MBC Selection: Specificity of Cytoplasmic Dynein Subunits in Discrete Membrane-Trafficking Steps. Mol. Biol. Cell 2009, 20, 2885. [Google Scholar] [CrossRef] [Green Version]
- Tynan, S.H.; Purohit, A.; Doxsey, S.J.; Vallee, R.B. Light Intermediate Chain 1 Defines a Functional Subfraction of Cytoplasmic Dynein Which Binds to Pericentrin. J. Biol. Chem. 2000, 275, 32763–32768. [Google Scholar] [CrossRef] [Green Version]
- Mahale, S.; Kumar, M.; Sharma, A.; Babu, A.; Ranjan, S.; Sachidanandan, C.; Mylavarapu, S.V.S. The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation. Sci. Rep. 2016, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celestino, R.; Henen, M.A.; Gama, J.B.; Carvalho, C.; McCabe, M.; Barbosa, D.J.; Born, A.; Nichols, P.J.; Carvalho, A.X.; Gassmann, R.; et al. A Transient Helix in the Disordered Region of Dynein Light Intermediate Chain Links the Motor to Structurally Diverse Adaptors for Cargo Transport. PLoS Biol. 2019, 17, e3000100. [Google Scholar] [CrossRef] [Green Version]
- Even, I.; Reidenbach, S.; Schlechter, T.; Berns, N.; Herold, R.; Roth, W.; Krunic, D.; Riechmann, V.; Hofmann, I. DLIC1, but Not DLIC2, Is Upregulated in Colon Cancer and This Contributes to Proliferative Overgrowth and Migratory Characteristics of Cancer Cells. FEBS J. 2019, 286, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höing, S.; Yeh, T.Y.; Baumann, M.; Martinez, N.E.; Habenberger, P.; Kremer, L.; Drexler, H.C.A.; Küchler, P.; Reinhardt, P.; Choidas, A.; et al. Dynarrestin, a Novel Inhibitor of Cytoplasmic Dynein. Cell Chem. Biol. 2018, 25, 357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikura, M.; Marion, D.; Kay, L.E.; Shih, H.; Krinks, M.; Klee, C.B.; Bax, A. Heteronuclear 3d NMR and Isotopic Labeling of Calmodulin: Towards the Complete Assignment of the 1H NMR Spectrum. Biochem. Pharmacol. 1990, 40, 153–160. [Google Scholar]
- Cavanagh, J. Protein NMR Spectroscopy: Principles and Practice; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Weisemann, R.; Ruterjans, H.; Bermel, W. 3D Triple-Resonance NMR Techniques for the Sequential Assignment of NH and 15N Resonances in 15N- and 13C-Labelled Proteins. J. Biomol. NMR 1993, 3, 113–120. [Google Scholar] [CrossRef]
- Hyberts, S.G.; Milbradt, A.G.; Wagner, A.B.; Arthanari, H.; Wagner, G. Application of Iterative Soft Thresholding for Fast Reconstruction of NMR Data Non-Uniformly Sampled with Multidimensional Poisson Gap Scheduling. J. Biomol. NMR 2012, 52, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Delaglio, F.; Grzesiek, S.; Vuister, G.W.; Zhu, G.; Pfeifer, J.; Bax, A. NMRPipe: A Multidimensional Spectral Processing System Based on UNIX Pipes. J. Biomol. NMR 1995, 6, 277–293. [Google Scholar] [CrossRef]
- Lee, W.; Tonelli, M.; Markley, J.L. NMRFAM-SPARKY: Enhanced Software for Biomolecular NMR Spectroscopy. Bioinformatics 2015, 31, 1325–1327. [Google Scholar] [CrossRef] [Green Version]
- Vranken, W.F.; Boucher, W.; Stevens, T.J.; Fogh, R.H.; Pajon, A.; Llinas, M.; Ulrich, E.L.; Markley, J.L.; Ionides, J.; Laue, E.D. The CCPN Data Model for NMR Spectroscopy: Development of a Software Pipeline. Proteins Struct. Funct. Genet. 2005, 59, 687–696. [Google Scholar] [CrossRef]
- Marsh, J.A.; Singh, V.K.; Jia, Z.; Forman-Kay, J.D. Sensitivity of Secondary Structure Propensities to Sequence Differences between α- and γ-Synuclein: Implications for Fibrillation. Protein Sci. 2006, 15, 2795–2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.G.; Olenick, M.A.; Boczkowska, M.; Franzini-Armstrong, C.; Holzbaur, E.L.F.; Dominguez, R. A Conserved Interaction of the Dynein Light Intermediate Chain with Dynein-Dynactin Effectors Necessary for Processivity. Nat. Commun. 2018, 9, 986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaaban, S.; Carter, A.P. Structure of Dynein–Dynactin on Microtubules Shows Tandem Adaptor Binding. Nature 2022, 610, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Kumari, A.; Kumar, C.; Wasnik, N.; Mylavarapu, S.V.S. Dynein Light Intermediate Chains as Pivotal Determinants of Dynein Multifunctionality. J. Cell Sci. 2021, 134, jcs254870. [Google Scholar] [CrossRef]
- Kumari, A.; Kumar, C.; Pergu, R.; Kumar, M.; Mahale, S.P.; Wasnik, N.; Mylavarapu, S.V.S. Phosphorylation and Pin1 Binding to the Lic1 Subunit Selectively Regulate Mitotic Dynein Functions. J. Cell Biol. 2021, 220, e202005184. [Google Scholar] [CrossRef]
Construct | Total Number of Relevant Residues * | Total Number of Relevant Non-Proline Residues | % Backbone Resonances Assigned (Number of Assigned Backbone Atoms) |
---|---|---|---|
LIC2-C (LIC residues 375–492) | 118 | 106 | 93.3% (99 15N, 99 13Cα, 87 13Cβ) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henen, M.A.; Paukovich, N.; Prekeris, R.; Vögeli, B. Solution NMR Backbone Assignment of the C-Terminal Region of Human Dynein Light Intermediate Chain 2 (LIC2-C) Unveils Structural Resemblance with Its Homologue LIC1-C. Magnetochemistry 2023, 9, 166. https://doi.org/10.3390/magnetochemistry9070166
Henen MA, Paukovich N, Prekeris R, Vögeli B. Solution NMR Backbone Assignment of the C-Terminal Region of Human Dynein Light Intermediate Chain 2 (LIC2-C) Unveils Structural Resemblance with Its Homologue LIC1-C. Magnetochemistry. 2023; 9(7):166. https://doi.org/10.3390/magnetochemistry9070166
Chicago/Turabian StyleHenen, Morkos A., Natasia Paukovich, Rytis Prekeris, and Beat Vögeli. 2023. "Solution NMR Backbone Assignment of the C-Terminal Region of Human Dynein Light Intermediate Chain 2 (LIC2-C) Unveils Structural Resemblance with Its Homologue LIC1-C" Magnetochemistry 9, no. 7: 166. https://doi.org/10.3390/magnetochemistry9070166
APA StyleHenen, M. A., Paukovich, N., Prekeris, R., & Vögeli, B. (2023). Solution NMR Backbone Assignment of the C-Terminal Region of Human Dynein Light Intermediate Chain 2 (LIC2-C) Unveils Structural Resemblance with Its Homologue LIC1-C. Magnetochemistry, 9(7), 166. https://doi.org/10.3390/magnetochemistry9070166