Enhanced Magnetic Cooling through Tailoring the Size-Dependent Magnetocaloric Effect of Iron Nanoparticles Embedded in Titanium Nitride Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phan, M.-H.; Yu, S.-C. Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 2007, 308, 325–340. [Google Scholar] [CrossRef]
- De Oliveira, N.A.; von Ranke, P.J. Theoretical aspects of the magnetocaloric effect. Phys. Rep. 2010, 489, 89–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, J.; Hao, Z.; Hao, W.; Mo, Z.; Li, L. Tunable magnetic phase transition and magnetocaloric effect in the rare-earth-free Al-Mn-Fe-Co-Cr high-entropy alloys. Mater. Des. 2023, 229, 111894. [Google Scholar] [CrossRef]
- Shaji, S.; Mucha, N.R.; Giri, P.; Binek, C.; Kumar, D. Magnetic and magnetocaloric properties of Fe2Ta thin films. AIP Adv. 2020, 10, 025222. [Google Scholar] [CrossRef] [Green Version]
- Law, J.Y.; Moreno-Ramírez, L.M.; Díaz-García, Á.; Franco, V. Current perspective in magnetocaloric materials research. J. Appl. Phys. 2023, 133, 040903. [Google Scholar] [CrossRef]
- Mukherjee, T.; Sahoo, S.; Skomski, R.; Sellmyer, D.J.; Binek, C. Magnetocaloric properties of Co/Cr superlattices. Phys. Rev. B 2009, 79, 144406. [Google Scholar] [CrossRef] [Green Version]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494. [Google Scholar] [CrossRef]
- Lyubina, J. Magnetocaloric materials for energy efficient cooling. J. Phys. D Appl. Phys. 2017, 50, 053002. [Google Scholar] [CrossRef]
- Han, K.; Li, M.; Gao, M.; Wang, X.; Huo, J.; Wang, J.-Q. Improved magnetocaloric effects in AlFe2B2 intermetallics through the enhancement of magnetoelastic coupling. J. Alloy. Compd. 2022, 908, 164663. [Google Scholar] [CrossRef]
- Repaka, D.M.; Sharma, V.; Ramanujan, R.V. Near room temperature magnetocaloric properties and critical behavior of binary FexCu100−x Nanoparticles. J. Alloys Compd. 2017, 690, 575–582. [Google Scholar] [CrossRef]
- Saqat, R.S.; Forbes, A.W.; Bhattarai, N.; Pegg, I.L.; Philip, J. Magnetic properties and magnetocaloric effect of (Fe70Ni30)96Mo4 thin films grown by molecular beam epitaxy. J. Vac. Sci. Tech. A 2023, 41, 013404. [Google Scholar] [CrossRef]
- Kumar, D.; Narayan, J.; Kvit, A.; Sharma, A.; Sankar, J. High coercivity and superparamagnetic behavior of nanocrystalline iron particles in alumina matrix. J. Magn. Magn. Mater. 2001, 232, 161–167. [Google Scholar]
- Kumar, D.; Pennycook, S.J.; Lupini, A.; Duscher, G.; Tiwari, A.; Narayan, J. Synthesis and atomic-level characterization of Ni nanoparticles in Al2O3 matrix. Appl. Phys. Lett. 2002, 81, 4204–4206. [Google Scholar] [CrossRef]
- Mitchell, E.; De Souza, F.; Gupta, R.; Kahol, P.; Kumar, D.; Dong, L.; Gupta, B.K. Probing on the hydrothermally synthesized iron oxide nanoparticles for ultra-capacitor applications. Powder Technol. 2014, 272, 295–299. [Google Scholar] [CrossRef]
- Tozri, A.; Alhalafi, S.; Alrowaili, Z.A.; Horchani, M.; Omri, A.; Skini, R.; Ghorai, S.; Benali, A.; Costa, B.F.; Ildiz, G.O. Investigation of the magnetocaloric effect and the critical behavior of the interacting superparamagnetic nanoparticles of La0.8Sr0.15Na0.05MnO3. J. Alloys Compd. 2022, 890, 161739. [Google Scholar] [CrossRef]
- Zeleňáková, A.; Hrubovčák, P.; Berkutova, A.; Šofranko, O.; Kučerka, N.; Ivankov, O.; Kuklin, A.; Girman, V.; Zeleňák, V. Gadolinium-oxide nanoparticles for cryogenic magnetocaloric applications. Sci. Rep. 2022, 12, 2282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Taake, C.; Huang, B.; You, X.; Ojiyed, H.; Shen, Q.; Dugulan, I.; Caron, L.; van Dijk, N.; Brück, E. Magnetocaloric effect in the (Mn, Fe)2(P, Si) system: From bulk to nano. Acta Mater. 2022, 224, 117532. [Google Scholar] [CrossRef]
- Liedienov, N.A.; Wei, Z.; Kalita, V.M.; Pashchenko, A.V.; Li, Q.; Fesych, I.V.; Turchenko, V.A.; Hou, C.; Wei, X.; Liu, B.; et al. Spin-dependent magnetism and superparamagnetic contribution to the magnetocaloric effect of non-stoichiometric manganite nanoparticles. Appl. Mater. Today 2022, 26, 101340. [Google Scholar] [CrossRef]
- Phan, M.H.; Morales, M.B.; Chinnasamy, C.N.; Latha, B.; Harris, V.G.; Srikanth, H. Magnetocaloric effect in bulk and nanostructured Gd3Fe5O12 materials. J. Phys. D Appl. Phys. 2009, 42, 115007. [Google Scholar] [CrossRef]
- Liu, J.J.; Zhang, Y.; Zhang, J.; Xia, W.X.; Du, J.; Yan, A.R. Systematic study of the microstructure and magnetocaloric effect of bulk and melt-spun ribbons of La–Pr–Fe–Si compounds. J. Magn. Magn. Mater. 2014, 350, 94–99. [Google Scholar] [CrossRef]
- Zhukov, A.; Rodionova, V.; Ilyn, M.; Aliev, A.; Varga, R.; Michalik, S.; Aronin, A.; Abrosimova, G.; Kiselev, A.; Ipatov, M.; et al. Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires. J. Alloy. Compd. 2013, 575, 73–79. [Google Scholar]
- Chaudhary, V.; Chen, X.; Ramanujan, R. Iron and manganese based magnetocaloric materials for near room temperature thermal management. Prog. Mater. Sci. 2018, 100, 64–98. [Google Scholar] [CrossRef]
- Serantes, D.; Baldomir, D.; Pereiro, M.; Rivas, J.; Vázquez-Vázquez, C.; Buján-Núñez, M.C.; Arias, J.E. Magnetic field-dependence study of the magnetocaloric properties of a superparamagnetic nanoparticle system: A Monte Carlo simulation. Phys. Status Solidi 2008, 205, 1349–1353. [Google Scholar] [CrossRef]
- McMichael, R.; Shull, R.; Swartzendruber, L.; Bennett, L.; Watson, R. Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 1992, 111, 29–33. [Google Scholar] [CrossRef]
- Ruan, M.Y.; Yang, C.Q.; Wang, L.; Jin, P.B.; Guo, Z.L.; Wei, X.L.; Wu, W.X. Size-dependent magnetocaloric effect in GdVO4 nanoparticles. J. Alloys Compd. 2022, 894, 162351. [Google Scholar] [CrossRef]
- Andrade, V.; Vivas, R.C.; Pedro, S.; Tedesco, J.; Rossi, A.; Coelho, A.; Rocco, D.; Reis, M. Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality. Acta Mater. 2016, 102, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Samani, M.K.; Ding, X.Z.; Khosravian, N.; Amin-Ahmadi, B.; Yi, Y.; Chen, G.; Neyts, E.C.; Bogaerts, A.; Tay, B.K. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc. Thin Solid Films 2015, 578, 133–138. [Google Scholar] [CrossRef]
- Roy, M.; Sarkar, K.; Som, J.; Pfeifer, M.A.; Craciun, V.; Schall, J.D.; Aravamudhan, S.; Wise, F.W.; Kumar, D. Modulation of Structural, Electronic, and Optical Properties of Titanium Nitride Thin Films by Regulated In Situ Oxidation. ACS Appl. Mater. Interfaces 2023, 15, 4733–4742. [Google Scholar] [CrossRef]
- Sarkar, K.; Jaipan, P.; Choi, J.; Haywood, T.; Tran, D.; Mucha, N.R.; Yarmolenko, S.; Scott-Emuakpor, O.; Sundaresan, M.; Gupta, R.K.; et al. Enhancement in corrosion resistance and vibration damping performance in titanium by titanium nitride coating. SN Appl. Sci. 2020, 2, 949. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Fu, Z.; Liu, Z.; Yue, W.; Kang, J.; Zhu, L.; Wang, C.; Lin, S. Improvement of microstructure and tribological properties of titanium nitride films by optimization of substrate bias current. Thin Solid Films 2022, 749, 139181. [Google Scholar] [CrossRef]
- Kelgenbaeva, Z.; Omurzak, E.; Takebe, S.; Sulaimankulova, S.; Abdullaeva, Z.; Iwamoto, C.; Mashimo, T. Synthesis of pure iron nanoparticles at liquid–liquid interface using pulsed plasma. J. Nanoparticle Res. 2014, 16, 2603. [Google Scholar]
- Zhang, H.; Zeng, D.; Liu, Z. The law of approach to saturation in ferromagnets originating from the magnetocrystalline anisotropy. J. Magn. Magn. Mater. 2010, 322, 2375–2380. [Google Scholar]
- Nemati, Z.; Alonso, J.; Rodrigo, I.; Das, R.; Garaio, E.; García, J.A.; Orue, I.; Phan, M.-H.; Srikanth, H. Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size. J. Phys. Chem. C 2018, 122, 2367–2381. [Google Scholar]
- Kumar, D.; Yarmolenko, S.; Sankar, J.; Narayan, J.; Zhou, H.; Tiwari, A. Pulsed laser deposition assisted novel synthesis of self-assembled magnetic nanoparticles. Compos. Part B Eng. 2003, 35, 149–155. [Google Scholar]
- Katiyar, P.; Kumar, D.; Nath, T.K.; Kvit, A.V.; Narayan, J.; Chattopadhyay, S.; Gilmore, W.M.; Coleman, S.; Lee, C.B.; Sankar, J. Magnetic properties of self-assembled nanoscale La2/3Ca1/3 MnO3 particles in an alumina matrix. Appl. Phys. Lett. 2001, 79, 1327–1329. [Google Scholar]
- Gutfleisch, O.; Gottschall, T.; Fries, M.; Benke, D.; Radulov, I.; Skokov, K.P.; Wende, H.; Gruner, M.; Acet, M.; Entel, P.; et al. Mastering hysteresis in magnetocaloric materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150308. [Google Scholar]
- Scheibel, F.; Gottschall, T.; Taubel, A.; Fries, M.; Skokov, K.P.; Terwey, A.; Keune, W.; Ollefs, K.; Wende, H.; Farle, M.; et al. Hysteresis Design of Magnetocaloric Materials-From Basic Mechanisms to Applications. Energy Technol. 2018, 6, 1397–1428. [Google Scholar]
- Díaz-García, Á.; Moreno-Ramírez, L.; Law, J.; Albertini, F.; Fabbrici, S.; Franco, V. Characterization of thermal hysteresis in magnetocaloric NiMnIn Heusler alloys by Temperature First Order Reversal Curves (TFORC). J. Alloy. Compd. 2021, 867, 159184. [Google Scholar]
- Belo, J.H.; Pires, A.L.; Araújo, J.P.; Pereira, A.M. Magnetocaloric materials: From micro- to nanoscale. J. Mater. Res. 2018, 34, 134–157. [Google Scholar]
- Zeleňáková, A.; Hrubovčák, P.; Kapusta, O.; Zeleňák, V.; Franco, V. Large magnetocaloric effect in fine Gd2O3 nanoparticles embedded in porous silica matrix. Appl. Phys. Lett. 2016, 109, 122412. [Google Scholar]
- Hu, F.X.; Shen, B.G.; Sun, J.R.; Cheng, Z.H.; Rao, G.H.; Zhang, X.X. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 2001, 78, 3675–3677. [Google Scholar] [CrossRef]
- Chaudhary, V.; Ramanujan, R. Magnetocaloric Properties of Fe-Ni-Cr Nanoparticles for Active Cooling. Sci. Rep. 2016, 6, 35156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Gottschall, T.; Skokov, K.P.; Moore, J.D.; Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 2012, 11, 620–626. [Google Scholar] [CrossRef]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2010, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Franco, V.; Blázquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramírez, L.M.; Conde, A. Magnetocaloric effect: From materials research to refrigeration devices. Prog. Mater. Sci. 2018, 93, 112–232. [Google Scholar] [CrossRef]
- Kitanovski, A. Energy Applications of Magnetocaloric Materials. Adv. Energy Mater. 2020, 10, 1903741. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Stefanoski, S.; Phan, M.-H.; Nolas, G.S.; Srikanth, H. Table-like magnetocaloric effect and enhanced refrigerant capacity in Eu8Ga16Ge30-EuO composite materials. Appl. Phys. Lett. 2011, 99, 162513. [Google Scholar] [CrossRef] [Green Version]
- Lampen, P.; Puri, A.; Phan, M.-H.; Srikanth, H. Structure, magnetic, and magnetocaloric properties of amorphous and crystalline La0.4Ca0.6MnO3+δ nanoparticles. J. Alloy. Compd. 2012, 512, 94–99. [Google Scholar] [CrossRef]
- Biswas, A.; Chandra, S.; Phan, M.; Srikanth, H. Magnetocaloric properties of nanocrystalline LaMnO3: Enhancement of refrigerant capacity and relative cooling power. J. Alloys Compd. 2012, 545, 157–161. [Google Scholar] [CrossRef]
- Poddar, P.; Gass, J.; Rebar, D.J.; Srinath Srikanth, H.; Morrison, S.A.; Carpenter, E.E. Magnetocaloric effect in ferrite nanoparticles. J. Magn. Magn. Mater. 2006, 307, 227–231. [Google Scholar] [CrossRef]
- Prasad, R. Classical and Quantum Thermal Physics; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Ma, S.; Li, W.F.; Li, D.; Xiong, D.K.; Sun, N.K.; Geng, D.Y.; Liu, W.; Zhang, Z.D. Large cryogenic magnetocaloric effect in the blocking state of Gd Al2 /Al2O3 nanocapsules. Phys. Rev. B 2007, 76, 144404. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, T.; Michalski, S.; Skomski, R.; Sellmyer, D.J.; Binek, C. Overcoming the spin-multiplicity limit of entropy by means of lattice degrees of freedom: A minimal model. Phys. Rev. B 2011, 83, 214413. [Google Scholar] [CrossRef] [Green Version]
- Bennett, L.; McMichael, R.; Swartzendruber, L.; Shull, R.; Watson, R. Monte Carlo and mean-field calculations of the magnetocaloric effect of ferromagnetically interacting clusters. J. Magn. Magn. Mater. 1992, 104-107, 1094–1095. [Google Scholar] [CrossRef]
- McMichael, R.D.; Ritter, J.J.; Shull, R.D. Enhanced magnetocaloric effect in Gd3Ga5−xFexO12. J. Appl. Phys. 1993, 73, 6946–6948. [Google Scholar] [CrossRef]
- Shull, R.D. Magnetocaloric effect of ferromagnetic particles. IEEE Trans. Magn. 1993, 29, 2614–2615. [Google Scholar] [CrossRef]
- Sarkar, K.; Shaji, S.; Sarin, S.; Shield, J.E.; Binek, C.; Kumar, D. Large refrigerant capacity in superparamagnetic iron nanoparticles embedded in a thin film matrix. J. Appl. Phys. 2022, 132, 193906. [Google Scholar] [CrossRef]
- Ucar, H.; Ipus, J.J.; Franco, V.; McHenry, M.E.; Laughlin, D.E. Overview of Amorphous and Nanocrystalline Magnetocaloric Materials Operating Near Room Temperature. JOM 2012, 64, 782–788. [Google Scholar] [CrossRef]
Sample | Laser Pulses Fe/TiN | Particle Size (nm) | Fe Volume (10−8 cm3) | Fe Volume Percentage | Saturation Magnetization (106A/m) | Coercivity (Oe) at 10 K | Coercivity (Oe) at 300 K | |
---|---|---|---|---|---|---|---|---|
S1 | 200 pulses Fe/800 pulses TiN | 7 | 2.0 | 2.25 | 2.03 | 1.60 ± 0.01 | 493 ± 4 | 50 ± 2 |
S2 | 300 pulses Fe/800 pulses TiN | 9 | 2.2 | 2.50 | 2.09 | 1.63 ± 0.01 | 550 ± 5 | 126 ± 2 |
S3 | 450 pulses Fe/800 pulses TiN | 15 | 10.0 | 10.00 | 2.13 | 1.67 ± 0.01 | 581 ± 5 | 321 ± 3 |
S4 | 900 pulses Fe/800 pulses TiN | Thickness = 12 | 19.0 | 20.00 | 2.17 | 1.70 ± 0.01 | 380 ± 3 | 379 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, K.; Jordan, M.; Kebede, A.; Kriske, S.; Wise, F.; Kumar, D. Enhanced Magnetic Cooling through Tailoring the Size-Dependent Magnetocaloric Effect of Iron Nanoparticles Embedded in Titanium Nitride Thin Films. Magnetochemistry 2023, 9, 188. https://doi.org/10.3390/magnetochemistry9070188
Sarkar K, Jordan M, Kebede A, Kriske S, Wise F, Kumar D. Enhanced Magnetic Cooling through Tailoring the Size-Dependent Magnetocaloric Effect of Iron Nanoparticles Embedded in Titanium Nitride Thin Films. Magnetochemistry. 2023; 9(7):188. https://doi.org/10.3390/magnetochemistry9070188
Chicago/Turabian StyleSarkar, Kaushik, Madison Jordan, Abebe Kebede, Steve Kriske, Frank Wise, and Dhananjay Kumar. 2023. "Enhanced Magnetic Cooling through Tailoring the Size-Dependent Magnetocaloric Effect of Iron Nanoparticles Embedded in Titanium Nitride Thin Films" Magnetochemistry 9, no. 7: 188. https://doi.org/10.3390/magnetochemistry9070188
APA StyleSarkar, K., Jordan, M., Kebede, A., Kriske, S., Wise, F., & Kumar, D. (2023). Enhanced Magnetic Cooling through Tailoring the Size-Dependent Magnetocaloric Effect of Iron Nanoparticles Embedded in Titanium Nitride Thin Films. Magnetochemistry, 9(7), 188. https://doi.org/10.3390/magnetochemistry9070188