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Abstract: This paper presents three approaches to estimating the battery parameters of the electrical
equivalent circuit model (ECM) based on electrochemical impedance spectroscopy (EIS); these
approaches are referred to as (a) least squares (LS), (b) exhaustive search (ES), and (c) nonlinear least
squares (NLS). The ES approach is assisted by the LS method for the rough determination of the
lower and upper bound of the ECM parameters, and the NLS approach is incorporated with the
Monte Carlo run such that different initial guesses can be assigned to improve the goodness of EIS
fitting. The proposed approaches are validated using both simulated and real EIS data. Compared
to the LS approach, the ES and NLS approaches show better fitting accuracy at various noise levels,
whereas in both the validation using simulated EIS data and actual EIS data collected from LG 18650
and Molicel 21700 batteries, the NLS approach shows better fitting accuracy than that of LS and
ES approaches. In all cases, compared with the ES approach, the computational time of the NLS
approach is significantly faster, and compared with the LS approach, the NLS approach shows a
minimal difference in computational time and considerably better fitting performance.

Keywords: Li-ion battery (LIB); battery parameter estimation; battery management system;
electrochemical impedance spectroscopy (EIS); electrical equivalent circuit models (ECMs); exhaustive
search (ES); least squares (LS); Monte Carlo run; nonlinear least squares (NLS)

1. Introduction

EIS has been used to study the ion transport properties and electrode/electrolyte
interfacial behavior of Li-ion batteries, providing insights into their performance and
potential avenues for improvement [1]. In a typical EIS experiment, a small-amplitude
sinusoidal current/voltage signal is applied to the battery, and the resulting voltage/current
response is measured over a range of frequencies [2]. The resulting impedance data can be
analyzed using equivalent electrical circuit models to extract information on the underlying
electrochemical behavior [3]. EIS can provide detailed information on the electrochemical
processes occurring within the battery, including the charge transfer kinetics, ion transport
properties, and electrode/electrolyte interfacial behavior [4]. Pastor-Fernández et al. [5]
conducted battery aging identification and quantification research by analyzing the EIS of
four parallel Li-ion cells.

The EIS can be characterized using an equivalent circuit model (ECM), which repre-
sents the battery as a combination of resistive, inductive, and capacitive components; then,
the ECM parameters can be identified by fitting the ECM to the measured EIS data [6].
There are different ECM models relevant to different types of batteries. This requires
prior knowledge of battery chemistry [7]; furthermore, by iteratively adjusting the ECM
parameters, the best fit can be obtained.

There are various approaches to fit the ECM model to the measured EIS data. For in-
stance, the nonlinear least squares (NLS) approach can be used to estimate the parameters
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of a nonlinear model; this aims to optimize the nonlinear function such that the differ-
ence between experimental data and the estimations based on the ECM model can be
minimized [8]. Boukamp [9] applied a Nonlinear Least Squares Fit (NLLSF) approach to
analyze the electrochemical impedance data with the ECM model; in this research, it also
mentioned that the selection of starting point is critical for the fit procedure.

Furthermore, Genetic Algorithm (GA) is a population-based optimization approach
that can also be used in fitting the ECM to EIS data; however, the computational complexity
of this approach will increase significantly with the number of ECM parameters, which
means that a large number of iterations are needed. Furthermore, the selection of population
size, mutation rate, and crossover rate requires continuous tuning to reach the optimal
estimation [10].

The complex nonlinear least squares (CNLS) approach is widely used to fit the ECM
model to EIS data. Pastor-Fernández et al. [5] applied the CNLS algorithm to fit ECM
to the EIS data measured from four Li-ion batteries. Feng et al. [11] applied the CNLS
approach to estimate ECM parameters using the EIS data collected from a battery cell at
different SOC levels and temperatures. The drawback of this approach is that the fitting
accuracy can easily be affected by the initial guess of the ECM parameters; for instance,
the optimization algorithm may converge to a local minimum instead of converging to a
global minimum if the initial guess is selected inappropriately; this will lead to inaccurate
ECM parameter estimation. Also, the CNLS approach requires the specification of ECM
models, such as the number of components and the arrangement of RC circuits, which
leads to extra work being carried out before the fitting process. Furthermore, CNLS is a
computationally expensive approach, and it also requires an appropriate selection of initial
conditions to obtain accurate fitting [12].

Ghadi [13] applied the least squares (LS) approach to fit the EIS data to identify ECM
parameters by assuming the solid electrolyte interphase (SEI) arc and charge transfer (CT)
arc to be semicircles, and that the solid electrolyte interphase resistance RSEI and charge
transfer resistance RCT are the diameters of the SEI arc and the CT arc, respectively. The
merit of this approach is that the estimation of the parameters can be expressed in closed
form; however, the main drawback is that the accuracy of this approach is not sufficient.
One improvement is to apply the exhaustive search (ES) approach to identify more accurate
estimations of ECM parameters with the assistance of the LS approach; in this paper, the ES
approach will be explained in detail.

Furthermore, we proposed a novel NLS approach which only needs to define the
objective function; then, it randomly chooses the initial guess in each Monte Carlo Run and
the estimated parameters that can reach the lowest fitting error are selected. While the ES
approach can somewhat reach a better fitting accuracy compared with the LS approach,
the computational time is still very slow. Furthermore, the computational time of the NLS
approach is much faster than that of the ES approach; in addition, compared to the LS and
ES approaches, NLS shows higher fitting accuracy.

The contributions of this paper can be summarized as follows:

1. This paper compares the performance of the LS, ES, and Monte Carlo-based NLS
approaches to identify battery ECM parameters.

2. Compared to the LS approach presented in [13], the ES and the NLS approaches can
significantly boost the fitting accuracy of EIS measurements.

3. This paper presents a novel approach to implementing NLS through Monte Carlo
runs. At each Monte Carlo run, the initial parameters required for the NLS approach
are selected randomly. This approach results in better accuracy and a much faster
computation time than the ES approach.

4. All the methods are validated using both simulated EIS data with different noise
levels and real EIS data collected from two different types of Li-ion batteries; the
fitting performance of the NLS approach outweighs other approaches in all cases.
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The remainder of the paper is organized as follows: Section 2 describes the analysis
of battery ECM parameters via EIS in the frequency domain. Section 3 describes the algo-
rithms to estimate ECM parameters using the least squares approach. Section 4 describes
algorithms of exhaustive search and the Monte Carlo-based nonlinear least squares ap-
proach is explained in Section 5. The implementation procedure is explained in Section 6.
Results are discussed in Section 7. Section 8 concludes the paper.

2. Analysis of ECM Parameters in Frequency Domain

EIS is a widely used technique to investigate the impedance response of the battery.
To measure the EIS, a small perturbation current with a wide range of frequencies (0.01 Hz
to 10 kHz) is injected into the battery; then, by using the discrete Fourier transform (DFT),
the measured voltage and current in the time domain can be converted to the frequency
domain. Thus, the impedance in the frequency domain can be analyzed [14,15]. The battery
EIS can then be represented by the real and imaginary part of the impedance on the complex
plane to form the Nyquist plot [16,17]. This plot represents the impedance spectrum of the
battery at a range of frequencies; the ECM parameters can be estimated by fitting the EIS
data with suitable fitting algorithms [13,18].

As shown in Figure 1, the 2-RC Adaptive Randles (AR) ECM is selected to fit the EIS
that shows a diffusion arc in low frequencies and SEI/CT arc in medium frequencies; in
this model, the Warburg element is placed in series with RCT instead of being placed as
an independent element. This is due to the consideration of mass transport phenomenon
in battery cells’ electrochemical reactions [19]. The AR-ECM consists of the following
components [15]:

• Voltage source, EMF;
• Stray inductance, L;
• Ohmic resistance, RΩ;
• Solid electrolytic interface (SEI) resistance, RSEI ;
• SEI capacitance, CSEI ;
• Charge transfer (CT) resistance, RCT ;
• Double-layer (DL) capacitance, CDL;
• Warburg impedance, ZW.

Figure 2 shows the Nyquist plot relevant to the AR-ECM. According to this figure,
the AC impedance Z(w) corresponding to the AR-ECM can be written as [13]

Z(ω) ≜ Z(jω)

= jωL + RΩ +
1

1
RSEI

+ jωCSEI

+
1

1
RCT+Zw(jω)

+ jωCDL

= jωL + RΩ︸ ︷︷ ︸
ZRL

+
RSEI

1 + jωRSEICSEI︸ ︷︷ ︸
ZSEI

+
RCT + Zw(jω)

1 + jω(RCT + Zw(jω))CDL︸ ︷︷ ︸
ZCT&DF

(1)

where ZRL denotes the impedance in the RL arc, ZSEI denotes the impedance in the SEI arc,
and ZCT&DF denotes the impedance in the CT arc and DF arc.
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Figure 1. Adaptive Randles equivalent circuit model (AR-ECM) of a battery.

Figure 2. The theoretical Nyquist plot corresponding to the AR-ECM.

3. Least Squares Approach

To solve the problem of ECM parameter estimation, Ghadi [13] applied the LS algo-
rithm to fit the EIS measurements; furthermore, this approach can express the estimation
of ECM parameters in closed form. In this section, an improved LS approach to AR-ECM
parameter estimation is presented.

Figure 2 shows the impedance spectrum/Nyquist plot corresponding to the AR-ECM
shown in Figure 1. Each data point in the Nyquist plot is obtained through the procedure as
shown in Figure 3, where zv(t) and zc(t) are the measured voltage and current in the time
domain while injecting sinusoidal current to the battery at different frequencies; Zv(ω) and
Zc(ω) are the Fourier transform of the corresponding voltage and current measurements;
and the real part and imaginary part of the measured impedance can be defined as follows:

zr(k) = Re(Z(ωk)), zi(k) = −Im(Z(ωk)) (2)

where ωkDF1 ≤ ωk ≤ ωkRL2 .
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Figure 3. The procedure to obtain battery EIS [20].

It can be observed that the Nyquist plot needs to be divided into four parts to see how
it is directly related to the AR-ECM. The feature points of the Nyquist plot are indicated by
index kDF1 and kDF2 in the DF arc; are indicated by kCT1 and kCT2 in the CT arc; are indicated
by kSEI1 and kSEI2 in the SEI arc; and are indicated by kRL1 and kRL2 in the RL arc. Different
parts of the Nyquist plot represent the battery’s impedance at different frequencies [18].
In this paper, to keep the consistency of nomenclature, we define the following:

• kDF1 is the index of the first data point in the DF arc; in this paper, we define kDF1 = 1.
• kDF2 is selected such that the data points from kDF1 to kDF2 follow the linear line.
• kCT1 is selected at the beginning of the CT arc such that the data points start to follow

the arc.
• kCT2 is selected at the end of the CT arc such that data points between kCT1 and kCT2

follow the CT arc.
• Similarly, kSEI1 is selected at the beginning of the SEI arc.
• kSEI2 is selected at the end of the SEI arc such that data points between kSEI1 and kSEI2

follow the SEI arc.
• kRL1 is selected at the beginning of the RL arc.
• kRL2 is selected at the end of the RL arc.

3.1. Estimation of Ohmic Resistance and Stray Inductance

As shown in Figure 2, based on the impedance measurements in the RL arc, the esti-
mation of ohmic resistance RΩ can be estimated as follows [13,18]:

R̂Ω =
1

kRL2 − kRL1 + 1

kRL2

∑
k=kRL1

zr(k) (3)

and stray inductance L can be estimated using the improved method:

L̂ =
zi(kRL2)

ωkRL2

(4)

3.2. Estimation of Diffusion Arc’s Gradient m

Considering the imaginary part of the measured impedance zi(k) and the real part
of the measured impedance zr(k) in the Diffusion arc, it can be represented with a linear
model [21]:

zi(k) = mzr(k) + a (5)

Assuming the measurements are from kDF1 to kDF2, as shown in Figure 2, the following
can be written as follows [13,18]:

zi(kDF1) = mzr(kDF1) + a

zi(kDF1+1) = mzr(kDF1+1) + a
...

zi(kDF2) = mzr(kDF2) + a

(6)

Equation (6) can be written in the matrix form:
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
zi(kDF1)

zi(kDF1 + 1)
...

zi(kDF2)


︸ ︷︷ ︸

y

=


zr(kDF1) 1

zr(kDF1 + 1) 1
...

zr(kDF2) 1


︸ ︷︷ ︸

A

[
m
a

]
︸︷︷︸

k

(7)

m and a can be estimated using the LS approach:

k̂ = (ATA)−1(ATy) (8)

m̂ = k̂(1), â = k̂(2) (9)

Algorithm 1 estimates quantities (list) based on the following impedance values:

zr = [zr(1), zr(2), . . . , zr(n)] (10)

zi = [zi(1), zi(2), . . . , zi(n)] (11)

In this paper, the uppermost bound of the DF arc is denoted as kH
DF, the lowest bound

of the CT arc is denoted as kL
CT , and the lowest bound of the SEI arc is denoted as kL

SEI ;
these boundaries can be identified by applying a moving average filter (MAF) to process
the measured impedance data via Algorithm 1, where every 10 data points are selected
for calculating the smoothed value. The filtered EIS data are shown in Figure 4a. The
algorithms presented in this paper are written utilizing MATLAB 2020a syntax. Algorithm 1
uses the following MATLAB commands: smooth , length, find, min, break, continue.

Algorithm 1 Boundary identification.

Input: zr, zi.
Output: kL

SEI , kL
CT , kH

DF

1: kSEI2 ← length(find(zi ≥ 0))
2: szr ← smooth(zr, 10)
3: szi ← smooth(zi, 10)
4: iter = 0
5: while true do
6: iter = iter + 1
7: if (szi(iter + 1) ≥ min(szi(1 : iter)) | (iter ≥ kSEI2) then
8: kL

SEI ← iter + 10 ▷ set the buffer such that first 10 measurements from
the right-side of CT arc can be neglected due to high noise level in this measurement
cluster

9: kL
CT ← iter + 10 ▷ set the buffer such that first 10 measurements from

the right-side of SEI arc can be neglected due to high noise level in this measurement
cluster

10: kH
DF ← iter

11: break
12: else
13: continue
14: end if
15: end while

The gradient m of the diffusion arc can be estimated by fitting the diffusion arc with the
linear model mentioned in (5) and searching for the best fit using Algorithm 2. The fitting
process is also demonstrated in Figure 4b,c. Algorithm 2 uses the following MATLAB
commands: mean, find, max.
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Algorithm 2 Diffusion arc fitting.

Input: zr, zi, kH
DF

Output: m̂, kDF2

1: for i = 1 : kH
DF − 1 do

2: zr(k), k = 1, 2, . . . , i + 1← zr(1 : i + 1)
3: zi(k), k = 1, 2, . . . , i + 1← zi(1 : i + 1)
4: m(i)← Estimate gradient in ith iteration via Equations (5)–(9)
5: ŷ← Estimate imaginary part of the impedance based on the fitted linear model.
6: Sr = ∑i+1

k=1(zi(k)− ŷ(k))2 ▷ the sum of error squares
7: St = ∑i+1

k=1(zi(k)−mean(ŷ))2 ▷ the total sum of squares around the mean

8: r(i) =
√

St−Sr
St

▷ correlation coefficient
9: end for

10: kDF2 ← find(r == max(r(5 : end))) ▷ written in MATLAB syntax; the first four data
points are avoided due to possible anomalies.

11: m̂← m(kDF2)
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Figure 4. DF arc fitting process. (a) Smooth the EIS using MAF. (b) Find the highest correlation
coefficient r when fitting the DF arc. (c) Fitted DF arc.
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3.3. First Estimation of Warburg Coefficient σ

From the observation of EIS measurements in [18], it was found that the gradient of
the diffusion arc varies with the SOC level; in addition, gradients may be different even at
the same SOC level of batteries from two different manufacturers. Therefore, an improved
method to represent Warburg impedance is defined mathematically as

Zw(jω) = (1− jm)
σ√
ω

(12)

where σ is the Warburg coefficient, m is the gradient of the fitted DF arc, and j is
√
−1.

It must be emphasized here that, in [13], the gradient was assumed to be m = 1. In this
paper, we propose estimating the gradient m to achieve better EIS fitting.

It can be shown, based on (1), that the Warburg impedance is significant only at
lower frequencies. In Figure 2, impedance measurements from kDF1 to kDF2 are selected to
estimate the Warburg coefficient (we define kDF1 = 1, and kDF2 is obtained via Algorithm 2).
Considering the real part of the impedance zr in the diffusion arc [13,18]

zr(kDF1)− zr(kDF2) = σ

(
1

√
ωkDF1

− 1
√

ωkDF2

)

zr(2)− zr(kDF2 − 1) = σ

(
1√
ω2
− 1
√

ω(kDF2−1)

)
...

zr(n)− zr(kDF2 − n + 1) = σ

(
1√
ωn

− 1
√

ω(kDF2−n+1)

)
(13)

where n = ⌊ kDF2−kDF1+1
2 ⌋.

The observation model corresponding to (13) is

z̃ = bσ (14)

where

z̃ =


zr(1)− zr(kDF2)

zr(2)− zr(kDF2 − 1)
...

zr(n)− zr(kDF2 − n + 1)

,

b =



(
1√
ω1
− 1√

ωkDF2

)
(

1√
ω2
− 1√

ω(kDF2−1)

)
...(

1√
ωn
− 1√

ω(kDF2−n+1)

)


and the LS estimate of σ is

σ̂LS = (bTb)−1(bT z̃) (15)
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3.4. Estimation of R SEI and CSEI

As shown in Figure 2, to fit the SEI arc precisely, we select feature points that lie
between kSEI1 and kSEI2. Let us denote the impedance measurements in the SEI arc as

sr(k) ≜ zr(k) s.t. kSEI1 ≤ k ≤ kSEI2

si(k) ≜ zi(k) s.t. kSEI2 ≤ k ≤ kSEI2
(16)

The estimation of RSEI is to fit the SEI arc using a semicircle with its centre lying on
the real axis; the coordinate of this semicircle’s centre can be denoted as (xs, 0); the radius
of the semicircle can be denoted as rs; and, thus, the measurements in (16) should satisfy
the equation of the semicircle [18]:

(sr(k)− xs)
2 + (si(k)− 0)2 = rs

2 (17)

sr(k)
2 − 2xssr(k) + x2

s + si(k)
2 = rs

2 (18)

Let c = −2xs and d = x2
s − rs

2, thus

rs
2 =

c2

4
− d (19)

rs =

√
c2

4
− d (20)

And (18) can be rewritten as

sr(k)
2 + si(k)

2 + csr(k) + d = 0 (21)

In the matrix form, (21) can be written as
−
(
sr(kSEI1)

2 + si(kSEI1)
2)

−
(
sr(kSEI1 + 1)2 + si(kSEI1 + 1)2)

−
(
sr(kSEI1 + 2)2 + si(kSEI1 + 2)2)

...
−
(
sr(kSEI2)

2 + si(kSEI2)
2)


︸ ︷︷ ︸

z

=


sr(kSEI1) 1

sr(kSEI1 + 1) 1
sr(kSEI1 + 2) 1

...
sr(kSEI2) 1


︸ ︷︷ ︸

B

[
c
d

]
︸︷︷︸
xSEI

+


nv(1)
nv(2)

...
nv(n)


︸ ︷︷ ︸

n

(22)

Using the LS algorithm, the estimate of x̂SEI will be given by

x̂SEI = (BTB)−1(BTz) (23)

The estimates of c and d are as follows:

ĉ = x̂SEI(1), d̂ = x̂SEI(2) (24)

From Figure 2, RSEI is the diameter of the SEI arc; thus, by substituting the values of c
and d in (20), the estimate of RSEI is

R̂SEI = 2r̂s = 2

√
ĉ2

4
− d̂ (25)
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The estimated centre of the semicircle can then be expressed as

(x̂s, 0) = (− ĉ
2

, 0) (26)

The fitting accuracy of the SEI arc can be evaluated as [22]

RMSESEI =

√√√√ ∑kSEI2
k=kSEI1

dk
2

kSEI2 − kSEI1 + 1
(27)

where dk is the geometrical distance between the actual EIS data point and predicted EIS
data point, which is defined as

dk =

√
[sr(k)− x̂s]

2 + [si(k)− 0]2 − r̂s (28)

It can be shown in (1) that when the frequency is very high, the impedance in the CT
arc and diffusion arc will be minimal so that it is negligible; thus, we assume the ZCT&DF
term will be zero, that is

Z = ZRL + ZSEI + 0 (29)

Therefore, the impedance in the SEI arc can be expressed as follows [18]:

ZSEI = Z− ZRL (30)
RSEI

1 + jωRSEICSEI
= Z(ω)− jωL− RΩ (31)

1 + jωRSEICSEI =
RSEI

Z(ω)− jωL− RΩ
(32)

jωRSEICSEI =
RSEI

Z(ω)− jωL− RΩ
− 1 (33)

jωCSEI =
1

Z(ω)− jωL− RΩ
− 1

RSEI
(34)

Take the imaginary part on both sides of the above equation,

CSEI =

(
1
ω

)
Im
(

1
Z(ω)− jωL− RΩ

− 1
RSEI

)
(35)

CSEI =

(
1
ω

)
Im
(

1
Z(ω)− jωL− RΩ

)
(36)

Substitute the expression for RΩ and L from (3) and (4), respectively, in (36) at ω = ωk
(kSEI1 ≤ k ≤ kSEI2)

C̃SEI(k) =
(

1
ωk

)
Im
(

1
Z(ωk)− jωk L̂− R̂Ω

)
(37)

Finally, average all the estimates C̃SEI(k) to obtain the final estimate:

ĈSEI =
1

kSEI2 − kSEI1 + 1

kSEI2

∑
k=kSEI1

C̃SEI(k) (38)

The use of the LS approach to identify RSEI and CSEI via the automatic selection of
feature points is fully described in Algorithm 3. In addition, Figure 5a shows the RMSE of
the fitted SEI arc in each iteration and Figure 5b shows the SEI arc, which is selected since
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it can reach the best fit. Algorithm 3 uses the following MATLAB commands: floor, find,
length.

Algorithm 3 Estimate RSEI and CSEI via automatic feature detection.

Input: zr, zi, kL
SEI , R̂Ω, L̂

Output: R̂SEI, ĈSEI.

1: n = 0
2: range_SEI ← f loor(length(zr)/4)
3: kSEI2 ← length( f ind(−zi ≥ 0))
4: for kSEI1 = kL

SEI : kSEI2 − range_SEI do
5: n = n + 1
6: z f it

r ← zr(kSEI1 : kSEI2)

7: z f it
i ← zi(kSEI1 : kSEI2)

8: kID(n, :)← [kSEI1, kSEI2]

9: RSEI(n)← Use z f it
r and z f it

i to compute RSEI via Equations (16)–(25)
10: RMSE(n)← Compute RMSE via Equations (26)–(28)
11: end for
12: idx ← Find the index points to the lowest value in RMSE
13: R̂SEI ← RSEI(idx)
14: kSEI_index← kID(idx, :) ▷ Identify the range of data points that can reach the best fit
15: ĈSEI ←Use the kSEI_index to estimate CSEI via Equations (37) and (38)
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Figure 5. Fitted SEI arc using LS approach. (a) RMSE of the fitted SEI arc. (b) Best fitting of SEI arc.

3.5. Estimation of R CT and CDL

It can be observed in Figure 2 that to fit the CT arc using a semicircle precisely,
we need to select feature points that lie between kCT1 to kCT2; therefore, the impedance
measurements in the CT arc can be denoted as follows:

cr(k) ≜ zr(k) s.t. kCT1 ≤ k ≤ kCT2

ci(k) ≜ zi(k) s.t. kCT1 ≤ k ≤ kCT2
(39)

Assuming that the centre of the semicircle lies on the real axis, which is noted as (xc, 0),
the radius of the semicircle can be noted as rc; thus, the measurements in (39) should satisfy
the equation of the semicircle [18]:

(cr(k)− xc)
2 + (ci(k)− 0)2 = rc

2 (40)

cr(k)
2 − 2xccr(k) + x2

c + ci(k)
2 = rc

2 (41)
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Let g = −2xc and h = x2
c − rc

2, thus

rc
2 =

g2

4
− h (42)

rc =

√
g2

4
− h (43)

And (41) can be rewritten as

cr(k)
2 + ci(k)

2 + gcr(k) + h = 0 (44)

In the matrix form, (44) can be written as
−
(
cr(kCT1)

2 + ci(kCT1)
2)

−
(
cr(kCT1 + 1)2 + ci(kCT1 + 1)2)

−
(
cr(kCT1 + 2)2 + ci(kCT1 + 2)2)

...
−
(
cr(kCT2)

2 + ci(kCT2)
2)


︸ ︷︷ ︸

p

=


cr(kCT1) 1

cr(kCT1 + 1) 1
cr(kCT1 + 2) 1

...
cr(kCT2) 1


︸ ︷︷ ︸

C

[
g
h

]
︸︷︷︸
xCT

+


nv(1)
nv(2)

...
nv(n)


︸ ︷︷ ︸

n

(45)

From (45), xCT can be estimated using the LS algorithm

x̂CT = (CTC)−1(CTp) (46)

Thus, the estimates of a and b are as follows:

ĝ = x̂CT(1), ĥ = x̂CT(2) (47)

As shown in Figure 2, RCT is the diameter of the CT arc; thus, by substituting the
values of a and b in (43), the estimate of RCT is

R̂CT = 2r̂c = 2

√
ĝ2

4
− ĥ (48)

The estimated centre of the semicircle can then be expressed as

(x̂c, 0) = (− ĝ
2

, 0) (49)

The fitting accuracy of the CT arc can be evaluated as [22]

RMSECT =

√√√√ ∑kCT2
k=kCT1

dk
2

kCT2 − kCT1 + 1
(50)

where dk is the geometrical distance between the actual EIS data point and predicted EIS
data point, which is defined as [22]

dk =

√
[cr(k)− x̂c]

2 + [ci(k)− 0]2 − r̂c (51)



Batteries 2024, 10, 400 13 of 25

Based on (1),

Z = ZRL + ZSEI + ZCT&DF (52)

Therefore, the impedance in the CT arc and DF arc can be expressed as follows:

ZCT&DF = Z− ZRL − ZSEI (53)

RCT + Zw(jω)

1 + jω(RCT + Zw(jω))CDL

= Z(ω)− jωL− RΩ −
RSEI

1 + jωRSEICSEI

(54)

jω(RCT + Zw(jω))CDL

=
RCT + Zw(jω)

Z(ω)− jωL− RΩ − RSEI
1+jωRSEICSEI

− 1 (55)

jωCDL =
1

Z(ω)− jωL− RΩ − RSEI
1+jωRSEICSEI

− 1
RCT + Zw(jω)

(56)

Taking the imaginary part on both sides of (56), and substituting Zw(jw) with the
expression given in (13), we obtain

CDL

=

(
1
ω

)
Im

 1

Z(ω)− jωL− RΩ − RSEI
1+jωRSEICSEI

− 1
RCT + (1− jm) σ√

ω

) (57)

Substituting L, RΩ, RSEI, CSEI, RCT and σ with the estimations given in (4), (3), (25),
(38), (48) and (15), respectively, in the above equation at ω = ωk (kCT1 ≤ k ≤ kCT2)

C̃DL(k)

=

(
1

ωk

)
Im

 1

Z(ωk)− jωk L̂− R̂Ω − R̂SEI
1+jωk R̂SEIĈSEI

− 1
R̂CT + (1− jm̂) σ̂√

ωk


(58)

Finally, average all the estimates C̃DL(k) to obtain the final estimate:

ĈDL =
1

kCT2 − kCT1 + 1

kCT2

∑
k=kCT1

C̃DL(k) (59)

The use of the LS approach to identify RCT and CDL via the automatic selection of
feature points is shown in Algorithm 4. Furthermore, Figure 6a shows the RMSE of the
fitted CT arc in each iteration, and Figure 6b shows the CT arc selected since it can reach
the best fit. Algorithm 4 uses the following MATLAB commands: floor, round.
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Algorithm 4 Estimate RCT and CDL via automatic feature detection.

Input: zr, zi, kL
CT , kSEI2, R̂Ω, L̂, R̂SEI, ĈSEI, σ̂LS, m̂

Output: R̂CT, ĈDL,

1: n = 0
2: kU

CT ← kSEI2 − f loor((kSEI2 − kL
CT)/2) ▷ the uppermost bound of the CT arc

3: rangeCT ← round((kU
CT − kL

CT)/2)
4: for kCT1 = kL

CT : (kU
CT − rangeCT) do

5: for kCT2 = (kL
CT + rangeCT) : kU

CT do
6: n = n + 1
7: z f it

r ← zr(kCT1 : kCT2)

8: z f it
i ← zi(kCT1 : kCT2)

9: kID(n, :) = [kCT1, kCT2]

10: RCT(n)← Use z f it
r and z f it

i to compute RCT via Equations (39)–(48)
11: RMSE(n)← Compute RMSE via Equations (49)–(51)
12: end for
13: end for
14: idx ← Find the index points to the lowest value in RMSE
15: R̂CT ← RCT(idx)
16: kCT_index = kID(idx, :) ▷ the range of data points that can reach the best fit
17: ĈDL ←Use the kCT_index to estimate CDL via Equations (58) and (59)
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Figure 6. Fitted CT arc using LS approach. (a) RMSE of the fitted CT arc. (b) Best fitting of CT arc.

3.6. Evaluation of the General Fitting Accuracy

In the complex plane, the absolute value of the error between the measured EIS and
estimated EIS is actually the distance between measured EIS data points and estimated
EIS data points, as shown in Figure 7, d1, where d2, . . . dn are the distances between the
measured EIS data point (zr(k), zi(k)) and estimated EIS data point (ẑr(k), ẑi(k)), which
can be used to evaluate the fitting accuracy. The distance dk is represented as follows:

dk =
√
[zr(k)− ẑr(k)]2 + [zi(k)− ẑi(k)]2 (60)

where n is the number of measurements, k ∈ 1, 2, . . . , n.
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Figure 7. Geometrical distance between measured EIS data point and predicted EIS data point.

Therefore, the evaluation of EIS fitting can be expressed as

MAE =
1
N

N

∑
k=1

dk =
1
N

N

∑
k=1

∣∣Z(ωk)− Ẑ(ωk)
∣∣ (61)

where Z(ωk) is the measured impedance at ωk; Ẑ(ωk) is the impedance estimation at ωk,
which is computed based on (1) with the estimated ECM parameters; N is the total number
of measurements; and | · | denotes the absolute value of the complex number.

The goal is to fit the EIS measurements such that the fitted EIS can achieve the low-
est MAE.

The percentage error of the estimated parameters can be expressed as follows:

Percentage Error (%)

=

∣∣∣∣True Value− Predicted Value
True Value

∣∣∣∣× 100%
(62)

4. Exhaustive Search Approach

The Exhaustive Search (ES) approach aims to improve the goodness of fitting by
searching the optimal value of each parameter based on the initial estimations of two
RC components and gradient m identified via the LS approach; this process is shown in
Figure 8.

Figure 8. The principle of the ES approach.
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4.1. Second Estimation of Warburg Coefficient σ

Assume RΩ, L, RSEI , CSEI , RCT , CDL and m are given, based on (54),

1
1

RCT+Zw(jω)
+ jωCDL

= Z(ω)− jωL− RΩ −
RSEI

1 + jωRSEICSEI
(63)

1
RCT + Zw(jω)

+ jωCDL =
1

Z(ω)− jωL− RΩ − RSEI
1+jωRSEICSEI

(64)

thus,
1

RCT + Zw(jω)
=

1

Z(ω)− jωL− RΩ − RSEI
1+jωRSEICSEI

− jωCDL (65)

then,

RCT + Zw(jω) =
1

1
Z(ω)−jωL−RΩ−

RSEI
1+jωRSEICSEI

− jωCDL (66)

then, the Warburg impedance can also be expressed as:

Zw(jω) =
1

1
Z(ω)−jωL−RΩ−

RSEI
1+jωRSEICSEI

− jωCDL
− RCT (67)

Take the real part on both sides of the above equation, at ω = ωk (kDF1 ≤ k ≤ kDF2),

Re(Zw(jωk)) = Re

(
1

1
Z(ωk)−jωk L−RΩ−

RSEI
1+jωk RSEICSEI

− jωkCDL
− RCT

)
(68)

The real part of the Warburg impedance can be noted as follows:

Wr(k) ≜ Re(Zw(jωk)) s.t. kDF1 ≤ k ≤ kDF2 (69)

Taking the real part on both sides of (12), we obtain

Wr(k) =
σ√
ωk

(70)

Thus,

σ̃ES
k = Wr(k)

√
ωk (71)

Finally, average all the estimates σ̃ES
k to obtain the final estimate:

σ̂ES =
1

kDF2 − kDF1 + 1

kDF2

∑
k=kDF1

σ̃ES
k (72)

4.2. Specify the Range of Parameters for Exhaustive Search

As presented in Section 3, the rough estimations of ECM parameters are given; there-
fore, we can assign the lower and upper bound for each parameter such that the exhaustive
search approach can identify the most suitable parameter between the boundary. As shown
in Algorithm 5, the range of each ECM parameter is assigned based on the empirical
coefficient. In this paper, the size of possible values in each ECM parameter is restricted to
20, such that the computational time is within the acceptable range. Algorithm 5 uses the
MATLAB command: linspace.
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Algorithm 5 Set the range of ECM parameters estimated by the LS approach.

Input: R̂SEI, ĈSEI, R̂CT, ĈDL, m̂
Output: {Rmin

SEI , . . . , Rmax
SEI }, {Cmin

SEI , . . . , Cmax
SEI }, {Rmin

CT , . . . , Rmax
CT }, {Cmin

DL , . . . , Cmax
DL },

{mmin, . . . , mmax}

1: {Rmin
SEI , . . . , Rmax

SEI } ← linspace(0.2R̂SEI, 2R̂SEI, 20)
2: {Cmin

SEI , . . . , Cmax
SEI } ← linspace(ĈSEI, 2.5ĈSEI, 20)

3: {Rmin
CT , . . . , Rmax

CT } ← linspace(0.5R̂CT, 1.5R̂CT, 20)
4: {Cmin

DL , . . . , Cmax
DL } ← linspace(ĈDL, 3ĈDL, 20)

5: {mmin, . . . , mmax} ← linspace(0.8m̂, 1.2m̂, 20)

4.3. Implement Exhaustive Search

Algorithm 6 describes the ES approach that can be applied to precisely identify the
ECM parameters, where the input R̂Ω is estimated via (3) and L̂ is estimated via (4). Figure 9
shows the MAE evaluated from the initial iteration throughout the end of the exhaustive
search process; by finding the lowest MAE in this figure, one can identify the best estimation
of ECM parameters via the ES approach.

Algorithm 6 Exhaustive search approach.

Input: {Rmin
SEI , . . . , Rmax

SEI }, {Cmin
SEI , . . . , Cmax

SEI }, {Rmin
CT , . . . , Rmax

CT }, {Cmin
DL , . . . , Cmax

DL },
{mmin, . . . , mmax}, R̂Ω, L̂
Output: MAEES

min, PES

1: n = 0
2: for RSEI ∈ {Rmin

SEI , . . . , Rmax
SEI } do

3: for CSEI ∈ {Cmin
SEI , . . . , Cmax

SEI } do
4: for RCT ∈ {Rmin

CT , . . . , Rmax
CT } do

5: for CDL ∈ {Cmin
DL , . . . , Cmax

DL } do
6: for m ∈ {mmin, . . . , mmax} do
7: n← n + 1
8: σ̂ES ← Second Estimation of σ via Equations (68)–(72)
9: Use the estimated ECM parameters in each iteration to generate simu-

lated EIS data
10: Compute MAE(n) using Equation (61)
11: end for
12: end for
13: end for
14: end for
15: end for
16: MAEES

min ← Find the lowest value of MAE
17: idx← Find the index of MAEmin in MAE
18: PES ← Identify the ECM parameters using the index idx that points to the lowest MAE
19: Compute percentage error (In EIS simulation test procedure)



Batteries 2024, 10, 400 18 of 25

0.5 1 1.5 2 2.5 3

10
6

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

9.6 9.8 10 10.2 10.4

10
5

3

4

5

10
-4

Figure 9. Find the lowest MAE of the ES approach .

5. Nonlinear Least Squares Approach

The concept of implementing the NLS approach based on the Monte Carlo run is
shown in Figure 10. This approach randomly selects initial guesses of the ECM parameters
in each Monte Carlo run to fit the EIS data in different cases.

Figure 10. Monte Carlo-based nonlinear least squares approach.

5.1. Objective Function

The goal is to find the optimized ECM parameters to minimize the following function:

x̂ = arg min
x

N

∑
k=1
|Ẑ(ωk)− Z(ωk)| (73)

where,
x = [RΩ, L, RSEI , CSEI , RCT , CDL, σ, m] (74)



Batteries 2024, 10, 400 19 of 25

Ẑ(ωk) = x̂(1) + jωk x̂(2) +
1

1
x̂(3) + jωk x̂(4)

+
1

1
x̂(5)+(1−jx̂(8)) x̂(7)√

ωk

+ jωx̂(6)

(75)

and Z(ωk) is the measured impedance at ωk, N is total number of measurements, and | · |
denotes the absolute value of the complex number.

The nonlinear least squares approach is implemented in MATLAB using the built-in
function lsqnonlin to fit the EIS data.

5.2. Initial Guess

Instead of setting the lower bound and upper bound for the NLS approach, in this
paper, we randomly select an initial guess in each Monte Carlo run to try different NLS
fittings based on different initial guesses. In this way, one can find the best fit among all
cases. In MATLAB the initial guess is defined as follows:

x0 = [abs(randn(1, 7)), 1] (76)

5.3. Algorithm Switch

To reach the best fit, the NLS approach will apply a ‘trust-region-reflective’
algorithm [23,24] and the ‘Levenberg–Marquardt’ algorithm [25–27] to fit the EIS data
with different initial guesses. After that, the algorithm that can achieve the lowest mean ab-
solute error (MAE) will be selected as the approach that can reach the best fit. The detailed
approach is shown in Algorithm 7. This algorithm uses the following MATLAB commands:
‘abs’ and ‘randn’.

Algorithm 7 NLS approach.

Input: measured impedance Z
Output: MAENLS

min , PNLS

1: Define objective function
2: n = 0
3: while n ≤ 100 do
4: x0 = [abs(randn(1, 7)), 1] ▷ Randomly set initial guess
5: Solver switches to ‘trust-region-reflected’ algorithm
6: Solver switches to ‘levenberg-marquardt’ algorithm
7: Compute MAE
8: n = n + 1
9: end while

10: Find the lowest MAE computed by ‘trust-region-reflective’ algorithm, denote as MAEtrf
min

11: Find the lowest MAE computed by ‘levenberg-marquardt’ algorithm, denote as MAElvbm
min

12: if MAEtrf
min ≤ MAElvbm

min then
13: MAENLS

min = MAEtrf
min

14: else
15: MAENLS

min = MAElvbm
min

16: end if
17: PNLS ← Identify the ECM parameters using the index points to the lowest MAE
18: Compute Percentage Error (In EIS simulation data validation procedure)

6. Implementation

This paper implements three ECM parameter estimation approaches in MATLAB
R2020a with a 3 GHz Processor and 16 GB RAM.
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6.1. Simulate EIS Data

The simulated EIS data were generated using Algorithm 8, where the frequency
ranges from 0.01 Hz to 10 kHz, and the number of EIS measurements is 121; this is to
keep conformity with the sampling size we set in the EIS experiment [18]. In addition,
Table 1 shows the true ECM parameters for simulating EIS data. To generate various noise
levels for the simulated EIS measurements, we implement Gaussian noise with zero-mean,
standard deviation σnoise, and independent outcome.

Algorithm 8 uses the MATLAB commands: ‘linspace’, ‘real’, ‘imag’, and ‘randn’.

Algorithm 8 EIS simulation.

Input: fL, fH , n
P: True ECM paramters, 8× 1 vector
Output: zr, zi, f: Frequencies ranges from the lowest to the highest

1: q = linspace(log10 fL, log10 fH , n)
2: fi = 10q(i), i ∈ 1, 2, . . . , n
3: f = [ f1, f2, . . . , fn]T

4: ! = 2πf ▷ Angular frequency, n× 1 vector
5: Z← Compute impedance via Equation (1) based on the given ECM parameters P ▷

Where, P = [RΩ, L, RSEI , CSEI , RCT , CDL, σ, m]T

6: zr ← real(Z) + σnoise*randn(n, 1)
7: zi ←−imag(Z)+ σnoise*randn(n, 1)

Table 1. True ECM parameters used for EIS simulation

RΩ (mΩ) L (nH) RSEI (mΩ) CSEI (F) RCT(mΩ) CDL (F) σ (×10−3) m

34 95 6 1 18 8 5 1

6.2. Collect Real EIS Data

The impedance data are measured from two Li-ion batteries: LG 18650 and Molicel
21700. In addition, the specifications of LG and Molicel batteries are shown in ([18], Table 1).
The data were collected using the Arbin battery cycler (Model: LBT21084UC), which has
16 channels that can operate in parallel. In this experiment, eight channels were used to
collect data simultaneously at room temperature (23 ◦C).

The EIS data were measured by the EIS device (Gamry Interface 5000P, Gamry Instru-
ments, Inc., Warminster, PA, USA). We operated the Gamry EIS device and Arbin battery
cycler using the software MITS Pro 8.0 provided by Arbin Instruments (College Station,
TX, USA). The voltage measurement error of the Gamry EIS device is 0.2 mV, as specified
from [28]. In this paper, we validated LS, ES, and NLS approaches on EIS data collected
from one LG and one Molicel battery when the SOC was at 90%, 50% and 10%, while
discharging from a fully charged state.

7. Results

In this section, fitting results obtained from the simulated and real EIS data are shown
and discussed.

7.1. Estimation Results of ECM Parameters Using Simulated EIS Data

The comparisons of simulated EIS data fitted by the LS, ES, and NLS approaches
are shown in Figure 11a–d. It can be observed that the LS approach shows insufficient
goodness of fitting, whereas the ES and NLS approaches generally reach considerable
fitting accuracy. Table 2 shows that at any noise level, the computational time of the LS
approach is the fastest; however, the fitting accuracy MAE is the lowest. On the contrary,
the ES approach has the slowest computational time, but the fitting accuracy is significantly
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improved compared with the LS approach. The NLS approach reaches the lowest MAE and
is considerably faster than the ES approach. Furthermore, with the noise level decreasing,
the MAE decreases.
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Figure 11. Fitting simulated EIS measurements via LS, ES, and NLS approaches at different noise
levels. (a) σnoise = 0.6046 mΩ. (b) σnoise = 0.3400 mΩ. (c) σnoise = 0.1912 mΩ. (d) σnoise = 0.1075 mΩ.

Table 2. Esitmated ECM parameters, computational time, and accuracy of using LS, ES and NLS
approaches to fit simulated EIS data.

σnoise
(mΩ)

Approach RΩ

(mΩ)
L

(nH)
RSEI
(mΩ)

CSEI
(F)

RCT
(mΩ)

CDL
(F)

σ
(×10−3)

m Runtime
(s)

MAE
(×10−4)

LS 34.1732 90.0059 6.5913 0.7001 20.2695 3.7199 5.9541 0.7955 0.8179 36
0.6046 ES 34.1732 90.0059 5.6893 1.0318 17.6020 7.6356 5.1542 0.9546 132.5195 7.7635

NLS 34.1513 94.9926 5.8394 0.9940 17.9632 7.9505 4.9704 1.0083 2.4578 7.5761

LS 33.9115 89.3443 7.9729 0.8487 21.0450 4.4013 5.6291 0.8273 1.3832 37
0.3400 ES 33.9115 89.3443 6.1266 0.9827 17.7220 8.1076 5.1341 0.9754 150.6105 4.3921

NLS 33.9639 91.2816 5.9986 0.9877 18.0590 7.9177 4.9947 1.0035 2.4566 4.2861

LS 34.0076 93.6538 7.6838 0.8704 21.0861 4.7606 5.0606 1.0132 0.8481 31
0.1912 ES 34.0076 93.6538 5.9044 1.0078 18.3116 7.7674 4.9456 1.0025 133.6487 2.5021

NLS 34.0100 96.2899 5.8936 1.0074 17.9556 7.8518 5.0690 0.9891 2.0977 2.2978

LS 33.9983 93.1031 7.6353 0.9300 20.8236 4.6782 5.4055 0.8688 0.7761 32
0.1075 ES 33.9983 93.1031 5.8671 1.0034 18.0840 7.6328 4.9885 1.0060 134.4532 1.6276

NLS 33.9979 93.9546 5.9664 1.0366 17.9481 7.9246 5.0128 0.9960 2.0583 1.3904

As shown in Figure 12a–d, it is clear that at any noise level, the percentage error of the
estimated RC components reaches the highest when using the LS approach and reaches the
lowest when using NLS approach, except for that the percentage error of CSEI estimated
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via NLS is higher than that estimated via ES when σnoise = 0.1075 mΩ. In addition, at any
noise level, the percentage errors of estimated ECM parameters using the NLS approach
are well below 5%; this shows significantly higher estimation accuracy compared with the
ES and LS approaches.
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Figure 12. Percentage difference between true and estimated ECM parameters at different noise
levels. (a) σnoise = 0.6046 mΩ. (b) σnoise = 0.3400 mΩ. (c) σnoise = 0.1912 mΩ. (d) σnoise = 0.1075 mΩ.

7.2. Estimation Results of ECM Parameters Using Real EIS Data

LG 18650 and Molicel 21700 Li-ion batteries were selected to validate whether the LS,
ES, and NLS approaches show consistency in fitting real EIS data that are collected at 90%,
50%, and 10% SOC.

Figure 13a–c show the fitted EIS of LG 18650 battery using LS, ES, and NLS approaches;
Figure 13d–f show the fitted EIS of Molicel battery using the same approaches. Compared
to the LS approach, both the ES and NLS approaches show higher fitting accuracy.

In Table 3, it can be observed that when fitting the LG battery’s EIS data at any SOC
level, the EIS approach outperforms the ES and LS approaches; furthermore, in terms of
the computational time, the ES approach is considerably slower than the NLS approach.
Though the LS approach is the fastest, the MAE is the highest among all SOC levels.
Additionally, in Table 4, the validation on the Molicel battery shows consistent results.

Table 3. Estimated ECM parameters, computational time, and accuracy of using LS, ES and NLS
approaches to fit real EIS data collected from LG 18650 battery while discharging.

SOC
(%)

Approach RΩ

(mΩ)
L

(nH)
RSEI
(mΩ)

CSEI
(F)

RCT
(mΩ)

CDL
(F)

σ
(×10−3)

m Runtime
(s)

MAE
(×10−4)

LS 33.3308 555.2298 4.8670 0.3253 4.1876 0.7179 1.9801 1.0186 0.729 16
90 ES 33.3308 555.2298 3.7399 0.3253 3.6366 2.1536 2.1423 0.9221 133.9269 4.8733

NLS 32.8162 544.9949 3.9102 0.1691 4.0532 1.9840 2.1418 0.8933 1.8634 3.9978

LS 33.3500 550.4295 3.9987 0.2971 3.0794 0.4795 1.5624 1.4540 0.7036 16
50 ES 33.3500 550.4295 2.6938 0.2971 2.6742 1.2366 1.6223 1.1632 131.8468 4.1756

NLS 33.1436 529.4929 2.8149 0.1890 2.8303 1.2932 1.5826 1.1364 1.7841 4.012

LS 33.7480 548.8295 6.3127 0.2972 14.3045 1.7628 2.8718 2.4868 0.7296 31
10 ES 33.7480 548.8295 6.6449 0.2972 18.4450 5.1029 2.6614 1.9894 133.3339 12

NLS 33.7766 593.9607 6.6475 0.2611 16.1871 5.2409 3.5550 1.3235 2.1813 9.3198
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Table 4. Estimated ECM parameters, computational time, and accuracy of using LS, ES and NLS
approaches to fit real EIS data collected from Molicel 21700 battery while discharging.

SOC
(%)

Approach RΩ

(mΩ)
L

(nH)
RSEI
(mΩ)

CSEI
(F)

RCT
(mΩ)

CDL
(F)

σ
(×10−3)

m Runtime
(s)

MAE
(×10−4)

LS 12.3167 128.0069 3.4751 0.1814 2.5873 0.3466 1.6716 0.3333 0.763 12
90 ES 12.3167 128.0069 2.3411 0.1814 2.9278 1.0399 1.8852 0.4000 137.6328 5.8928

NLS 12.1632 124.6571 2.5830 0.1318 2.9435 0.9523 1.7920 0.7169 1.8859 3.2337

LS 12.3167 128.0069 3.2931 0.1772 2.7962 0.3224 1.6401 0.5792 0.7237 15
50 ES 12.3167 128.0069 2.2185 0.1772 2.1339 0.8994 1.6279 0.6950 135.3571 2.7111

NLS 12.2259 126.3043 2.0331 0.1294 2.4749 0.7420 1.5924 0.8763 1.891 1.3862

LS 12.4444 129.6070 3.8936 0.1900 3.0673 0.3903 1.9573 1.5757 0.7366 12
10 ES 12.4444 129.6070 2.6230 0.1900 3.7937 1.1708 1.7966 1.3269 134.0528 3.3286

NLS 12.4349 126.2317 3.1777 0.1418 3.3352 1.9094 1.7361 1.3533 1.9071 2.7548
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Figure 13. Fitting real EIS measurements of LG and Molicel batteries at different SOC levels via LS,
ES, and NLS approaches. (a) LG battery at 90% SOC. (b) LG battery at 50% SOC. (c) LG battery at 10%
SOC. (d) Molicel battery at 90% SOC. (e) Molicel battery at 50% SOC. (f) Molicel battery at 10% SOC.

8. Conclusions and Discussions

This paper presented the LS, ES, and NLS approaches to extract ECM parameters
through battery impedance measurements. Compared to the LS approach, the ES and NLS
approach can extract ECM parameters more accurately. Though the LS approach shows
insufficient goodness of fitting at various noise levels, it can boost the fitting accuracy
of the ES approach by offering initial estimations; however, it is worth mentioning that
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while the ECM contains more than two RC components, the computation time will increase
significantly such that this approach will be infeasible.

When fitting the simulated EIS data, both the ES and NLS approaches show consid-
erably high accuracy at each noise level, and the fitting accuracy increases as the noise
decreases. When fitting the battery EIS measurements, the NLS approach still shows faster
and more accurate fitting performance than the ES approach; this result is validated in
simulated EIS data.

In future works, we will investigate deploying the NLS approach to the BMS board
combined with the rapid EIS measurement hardware to improve the accuracy and com-
putational time for ECM parameters estimation; the BMS can then adopt these precisely
estimated ECM parameters for more accurate online SOC/SOH estimation.
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