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Abstract: Operation above acceptable limits in terms of current, voltage, and temperature can lead
to lithium batteries overheating, increasing the risk of thermal runaway, which can also degrade
battery materials more quickly, reducing overall lifespan. Estimating the state of power (SOP) of a
battery is necessary for battery safety control and preventing operation above acceptable limits.
However, the SOP is influenced by coupled multiple parameters including the state of charge, state
of health, and core temperature, which make it challenging to estimate comprehensively. Based on
the electro-thermal model, this study proposes a multi-parameter coupled method for
comprehensively estimating the SOP considering the core temperature. This method provides a
robust approach to accurately assessing the SOP across varying core temperatures, states of charge
(SoC), and voltage levels. The combination of maximum likelihood estimation, adaptive genetic
algorithms for parameter identification, and the unscented Kalman filter for state estimation was
found to enhance the accuracy and robustness of battery models. The results show that the battery
core temperature and terminal voltage are important and the main limitation on the SOP,
respectively. This study lays a strong foundation for effective energy management and life extension
of lithium batteries, particularly in high-temperature environments.

Keywords: lithium-ion battery; SOP estimation; electro-thermal model; core temperature; parameter
coupling; high-temperature safety

1. Introduction

The mitigation of CO:z emissions is the key environmental challenge of the coming
years. To face this challenge, fossil fuel consumption must be reduced in the transport
medium by developing new technologies. Electrification is one of the main current actions
to achieve this reduction in road transport [1]. However, for general public acceptance,
electrified vehicles require better performance. Lithium-ion battery (LIB) technology is the
energy storage method of choice for these vehicles [2,3]. In practical applications, using
lithium batteries above acceptable limits seriously reduces their life and may even trigger
thermal runaway [4]. Therefore, battery management systems (BMS) need to monitor and
control the state of the battery to ensure that it is operating in safe conditions [5,6]. State
of power (SOP), defined as the maximum power that can be applied to the battery by
charging or discharging in a certain short time horizon, is one of the most important bases
for BMS to control the battery operation [7-9]. However, SOP cannot be measured directly
by BMS and is related to the battery parameters of state of charge (SOC), terminal voltage,
and temperature [10-12]. Moreover, these parameters are coupled with each other, which
makes accurate estimation of SOP very difficult [13-15].

The three methods for SOP estimation—characteristic maps, electrochemical model-
based methods, and equivalent circuit model (ECM)-based methods—each have distinct
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advantages and applications [16-19]. ECM-based methods have the advantages of
robustness, adaptability, and computation with satisfactory accuracy, and are the most
widely used technology nowadays [20,21]. Ruo et al. [22] developed a multi-constraint
SOP estimation algorithm based on ECM with a regression-based algorithm. Their
algorithm is superior in a lengthy prediction window. Sun et al. [23] proposed an ECM-
based dynamic multi-parameter method for estimating SOP in lithium-ion batteries with
the constraints of cell voltage, cell current, and cell SOC. This method calculates the
reliable available SOP in real time. Li et al. [24] predicted SOP based on ECM with
electrochemical impedance spectroscopy, which can quickly the forecast SOP under the
constant load current assumption. Li et al. [25] established a continuous discharge state of
power analysis model for lithium-ion batteries with voltage and charge state constraints.
Their model shows that the peak discharge power error is less than 80 W over the
prediction window of 10 s. While ECM-based methods for state of power (SOP) estimation
provide valuable insights, they often overlook the significant impact of temperature on
battery performance.

Temperature seriously affects the estimation of SOP in lithium batteries [26]. Ref. [27]
developed an electrochemical model-based online state of power prediction algorithm
under different time horizons for safer and more reliable operation of lithium-ion
batteries, which indicated that inaccurate estimates of SOPs at extreme temperatures can
also cause safety issues. Lei et al. [28] constructed a temperature-hysteresis fully coupled
model, and analyzed the model parameters under different ambient temperatures, and
achieved multi-state joint estimation of SOC and SOP. Wang et al. [29] proposed an
adaptive forgetting factor recursive least squares method based on improved bias
compensation to achieve SOP estimation with the fusion model considered parameter
correction of temperature influence. Their method further improves the accuracy of SOP
estimation. Nevertheless, although the effect of temperature on SOP estimation was
considered in these studies, they do not present a comprehensive temperature model in
conjunction with ECM. This leads to an increase in estimation error with the SOP at
different temperatures [8]. Moreover, the core temperature of a battery often exceeds its
surface temperature, sometimes by as much as 10 °C or more. This discrepancy can
significantly affect SOP estimation and overall battery performance. Addressing the
influence of core temperature on SOP estimation is essential for improving battery
management systems. By focusing on core temperature in future research, we can enhance
the accuracy of SOP predictions.

A thermal-electrical coupling model, which is a powerful tool for understanding the
complex interactions between temperature and battery performance, is constructed in this
study. The parameters of the electrical model and thermal model are identified by
maximum likelihood method (MLM) and adaptive genetic algorithm (AGA), respectively.
Then, the SOC, terminal voltage, and core temperature of the battery are estimated by
unscented Kalman filter (UKF) based on the thermal-electrical coupling model. Finally,
we propose a multi-parameter coupled SOP estimation method including core
temperature, SOC, and terminal voltage, which can provide an accurate reference for the
BMS to control the battery under high temperature. This improves battery safety at high
temperatures. The contributions of this study can be summarized as follows:

(1) A battery electro-thermal model is developed which accounts for battery core
temperature. The parameters of this electrical and thermal model are coupled with each
other to accurately characterize the electro-thermal properties of the battery, which are
identified by MLM and AGA, respectively. The thermal model also contains the core and
surface temperatures of the battery. UKF is used to estimate model results, which ensures
that the model is highly accurate.

(2) Multi-constrained SOP estimation with core temperature is included. A multi-
parameter coupled method for estimating SOP is proposed based on the above electro-
thermal model. This method is capable of accurately estimating the SOP under multiple
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constraints throughout the battery charging and discharging process. Constraining core
temperature improves battery safety at high temperatures.

The layout of this paper is as follows: in Section 2, the battery electro-thermal model
is proposed, and battery charging and discharging data are obtained experimentally to
identify the parameters. In Section 3, the battery SOC and state of temperature (SOT),
including core and surface temperature (SOTc, SOTs), are jointly estimated by UKF based
on the model. Then, multi-constrained SOP estimation including core temperature
constraint is performed in Section 4. Finally, conclusions are presented in Section 5.

2. Battery Electro-Thermal Model

In order to describe the electrical and thermal characteristics of the battery, the
electro-thermal coupling model is integrated and developed in this study, and is the basis
for estimating the SOP. The structure of the model consists of two main parts: electronic
and thermotic. The electronic and thermotic parameters are coupled with each other by
physical formula. Then, the parameters of the electrical and thermal model are identified
by MLM and AGA, respectively. The elaborated development of the model is as follows.

2.1. Model Structure

In order to describe the electrical characteristics of the battery, a typical second-order
RC equivalent circuit is employed, as shown in Figure 1. The input parameter of SOC for
the second-order RC equivalent circuit is provided by the ampere-hour integration
method (i.e., Equation (1)).

J'lldt
SOC =S0C, - —, M)

max

where Cuar indicates maximum available battery capacity. According to Kirchhoff’s law,
the relationship between battery terminal voltage and current of the second-order RC
equivalent circuit can be expressed as follows:

Ut = Uocv _Ul _UZ _]RO
@ by , @)
dt R
2&4_&:[
dt R,

where Uow and U: represent the open circuit voltage (OCV) and the terminal voltage of the
battery, respectively; Ro represents the ohmic internal resistance; R1 and Rz represent the
polarization internal resistance; and Ci and Cz represent the polarization capacitance.
Moreover, the two-state lumped parameter thermal model is applied to describe the
thermal characteristics of the battery, and incorporates the core and surface temperatures
(i.e., Tc and Ts) of the battery. According to the Bernardi model, the total heat output Q of
the battery can be equivalent to a direct current source and calculated by Equation (3) [30].

dUOCV
dT

where T represents the average temperature of the battery in Kelvin (K), and I (Uow — Ur)
and I1dU.w/dT represent irreversible and reversible heat, respectively. dUo/dT represents
the entropy heat coefficient of the battery. As shown in Figure 1 for the thermal model, Rc
and Cc represent the thermal resistance and capacity between the core and the surface of

Qgen = I(Uocv o Ut) o IT 4 (3)
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the battery, respectively. Rs and Cs represent the thermal resistance and capacity between
the battery surface and the air, respectively. Tc, Ts, and To represent the temperatures of
the battery core, surface, and the environment, respectively, which can be considered as
the voltages in the thermal model. Therefore, the battery heat transfer process can be
expressed as follows:

¢ dT-T) _, T,
dt R,
. 4
o dT-T) T-T T-T, Y
todt R, R,

Since the electrical and thermal characteristics of a battery interact with each other,
we coupled the parameters of the electrical and thermal models, as shown in Figure 1. The
U: and Uow of the electrical model are passed to the thermal model to calculate the Q, and
the Tc and Ts of the thermal model in turn affect the values of the resistance and
capacitance of the electrical model. This parameter passes between both models to form a
closed-loop coupling which accurately characterizes the electro-thermal properties of the
cell.

- E:>[ Battery current }
(" N

Ampere-hour
Integration Method

Battery electro-thermal
coupling model

L N
[

soc F ocvs
777777777777777777777777 i

Two-state Lumped Parameter
Thcrmi?l Model X

T T3

\iﬁ/
DS I

Figure 1. The battery electro-thermal coupling model is supported by a second-order RC equivalent
circuit and two-state lumped parameter thermal model.

2.2. Experiment

The OCV-50C curve under different battery temperatures is the basis for identifying
the model parameters. Therefore, Hybrid Pulse Power Characteristic (HPPC) discharge
tests were carried out at the different temperatures [31]. The object of this experiment was
a Panasonic NCR18650BD Li-ion battery (Panasonic, Osaka, Japan), and its information is
provided in Table 1. In order to obtain the core temperature of the battery precisely, a 1.5
mm hole was drilled in the negative electrode, into which a temperature sensor was
inserted. Discharging the battery to the cut-off voltage before drilling is an important
safety measure. The hole was then sealed with temperature-rising glue and a catalyst.

The test platform is shown in Figure 2. The thermostat was a JUFU MEF1510-003
(Jufu, China), and the battery charging and discharging equipment was an Arbin BT-5HC-
5V60A (Arbin, College Station, America), . The discharge rate of the HPPC test was 1 C,
and the pulse tests were performed at 5% SOC intervals, as shown in Figure 3. Moreover,
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the ambient temperature test condition ranged from 0 °C to 40 °C with intervals of 1 °C.
Therefore, there were 41 OCV-SOV curves under different battery temperatures.

Table 1. Information of Panasonic NCR18650BD Li-ion battery (Panasonic, Osaka, Japan).

Parameters Value
Nominal capacity 2.5 Ah
Anode Graphite
Cathode Li(NiCoMn)O:
Nominal voltage 3.6V
Max. charge voltage 42+0.05V
Min. discharge voltage 3.0V

=8 Charge &
discharge |

3
'
'
|

T

|
Thermostat Tc

Control
recordin signal

Figure 2. Platform with MEF1510-003 and Arbin BT-5HC-5V60A for HPPC test of lithium-ion
battery.

2.3. Parameter Identification

By using MLM for the electrical model and AGA for the thermal model, we effectively
leverage the strengths of both methods. MLM enhances the accuracy of parameter
identification through data-driven insights, while AGA provides a robust optimization
framework for complex parameter spaces. This dual approach not only improves the
precision of a model but also simplifies the identification process, ensuring a more efficient
and reliable electro-thermal coupling model. The detailed identification processes are as
follows.

2.3.1. Parameter Identification of Electrical Model

The parameters of the electrical model were identified by MLM. The data basis for
identification was a total of 200 units of sampling data at different temperatures around
each 5% SOC point, and the obtained results were used as the model parameter values at
the current temperature and SOC. The identified results of the model parameters at
different ambient temperatures and SOC could then be obtained, as shown in Figure 3.
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Figure 3. Identified results of the model parameters at different ambient temperatures and SOC: (a)
Ro, (b) Ry, (c) Rz, (d) C1, and (e) Ca.

In order to validate the accuracy of the model, the U: of pulse discharge obtained by
both model and experiment at 25 °C were compared, as shown in Figure 4a. The errors in
U: obtained by the model compared to the experiment are shown in Figure 4a. This

demonstrates that the U: obtained by the model was high-accuracy, and that its errors
were less than 40mV.

Experimental Measurement

Maodel Outpat Valise

Terminal Voltage(V)
[
in

0 5 I.(I 15
t(s) =<10*
(a)
‘o.
14.02, 25.96) ()
n 20 ( ) <
N
=
=4
g
L™
=
(14.02,-38.72) (1)
0 s 10 15
tis) =1
(b)

Figure 4. Comparison of the terminal voltages obtained from the model with those obtained from
the experiment. (a) The terminal voltages obtained from the model and the experiment at 25 °C. (b)
The errors in terminal voltage between model and experiment.
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2.3.2. Parameter Identification of Thermal Model

As mentioned earlier, as shown in Figure 1, the thermal model contains the entropy
coefficient (i.e., dUow/dT). Therefore, identifying the entropy coefficient is essential for the
parameter identification of the thermal model. The entropy heat coefficient was identified
by the presented measurement method [32], and the results are shown in Figure 5.

4
010

|
Lo

Entropy Coefficient(V/K)
|
IS

Figure 5. Identified results of the entropy heat coefficient of the battery thermal model.

The other parameters (i.e., R¢, Rs, Cc, and Cs) of the thermal model were then identified
by AGA. The specific identification process was as follows. Let Towo=Tc = To, Tso="Ts — To,
then the state-space equation of the thermal model can be expressed as follows:

dT T,-T
C c0 — _Tc0 s0
< dt Q R,
5
T o
Y odt R, R,

According to Equation (5), with Q as input and T« as output, the discrete differential
equation can be obtained as shown in Equation (6).

T.o(k) = aT, (k ~1)+ BT, (k ~2)+ cQ(k ~1) + dO(k ~2) ©

The specific expressions 4, b, ¢, and d in Equation (6) are shown as follows:

L, AT AT AT
CS‘ RC CS RS CC RC
2
po(- AT AT AT o, AT
CC RC CS' RC CS RS‘ CC CS RC
' @)
AT
c=—o
CC
g=ALAL AT
CL‘ CSRC CYRS

where AT represents the sampling time, and its value is 1 s. Let Equation (6) be the
objective function of AGA and use the voltage, current, and temperature data as inputs to
AGA. Then R, Rs, C., and Cs can be identified, and their results are listed in Table 2.
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Table 2. Identification results of parameters of the thermal model.

R(K /W) R(K /W) C.U/IK) C(J/K)
2.85 9.74 41.75 12.87

The parameter identified results of the thermal model were verified by the test data
of 1 C discharge at 25 °C, as shown in Figure 6; the temperature curves obtained from the
model and experiment are in general agreement, and the errors in the temperature curves
of the model are less than 1 °C.

—_
O 30 T T T T
-~ =T, Measurement Value

2 - T, Model Value POl

5 ]

~N—

«

5 /%rement Value

g 26[ 7. Model Value ]

%)

= 0 500 1000 1500 2000 2500 3000

t(s)
1 (a)

—_ =T, Error
8 by T.Error W,J)W ]

= 0 ) ‘r_‘,.w..w,«

.

ot

=

1 ! ! | | .
0 500 1000 1500 2000 2500 3000
t(s)
(b)

Figure 6. Verification of the battery core and surface temperature curves under 1 C discharge at the
ambient temperature of 25 °C. (a) Battery core and surface temperature curves obtained from the
model and experiment. (b) The errors in the temperature curve of the model compared to that of
experiment.

3. Joint Estimate of SOC and SOT

Estimating the SOC and SOT of a battery is essential for predicting the SOP.
However, the parameters within the battery are intricately coupled, which increases the
uncertainty associated with estimating SOC and SOT, particularly the SOTc. To address
these challenges, we jointly estimated the SOC and SOT using the UKF based on the
electro-thermal model outlined above. This approach leveraged the model’s insights to
enhance the accuracy and reliability of our estimations.

3.1. Joint Estimation Algorithm Based on UKF

The UKF algorithm is widely used in the state estimation of lithium-ion batteries due
to its advantage of dealing with nonlinear systems with high accuracy [33,34]. The basic
theory of UKEF is to approach the real results using the sigma point method. The UKF
estimation process for the SOC and SOT of the battery is shown in Figure 7.
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L State variable and noise
/-P System state initialization | . .
( covariance setting
L Prediction of system state
Prediction of system state . 4 .
. . variables and observation
variables and observations .
covariance
. Adaptive covariance Q and R .
Information update > P . Q ¢ Kalman gain update
calculation
\ State variable estimation Update of state variable
update estimation covariance

Estimation finished ?

Figure 7. UKF estimation process for the SOC and SOT of the battery.

In order to use the UKF algorithm to estimate the state of a lithium-ion battery, it is
necessary to derive the discrete state-space equations of the electrical and thermal models.
For the electrical model, its state variables were SOC, electrochemical polarization voltage,
and concentration polarization voltage; its inputs were battery charging and discharging
current; and its output was battery terminal voltage. Therefore, the state-space equations

of the electrical model can be expressed as follows (the sampling time is 1 s):

+BxI(k)+w,

SOC(k+1) SOC (k)
U (k+1) |=4x| U,(k)
U, (k+1) U, (k)
1
U,(k)=Cx| U,(k) |+ D, xI(k)+v,
U, (k)
where
10 0 |
azlo % o |,
0 0 eRa|

()

©)
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=17t/ C
B=|R (1—efﬁ) , (10)
R,(1- ;7 )
c=[U,.(T,50C) -1 -], (11)
D=-R,. (12)

For the thermal model, its state variables were Tw and Ts, its input was Q, and its
observed variable was Tsw. Consequently, the state-space equations of the thermal model
can be expressed as follows:

{T“’(kﬂ)} = Ax {Tco(k)} +BxQ(k)+w,

T (k+1) T, (k)
(13)
T, (k)=Cx Lo (®) +DxQ(k)+v,
' T, (k)
where
1Lt _t
C.R C.R.
A= / (14)
t _ t _ t
C R CYRC CS‘RS
i
B=|C, |, (15)
0
c=[o 1], (16)
D=0. (17)

3.2. Results of Estimation for SOC and SOTc

In order to verify the accuracy of the above joint estimation algorithm and its
applicability for multiple working conditions, the model results were compared to the
battery data for the urban dynamometer driving schedule (UDDS) at different
temperatures, as shown in Figure 8. It illustrates that the SOTc and SOC curves obtained
by the model at different discharge rates are essentially coincident with those of
experiment and their errors are less than 1 °C and 0.15, respectively.

The RMSE and MAE of the battery SOTc and SOC under different ambient
temperatures are listed in Table 3. It shows that the RMSE and MAE of the SOTc and SOC
are very small, so the developed electro-thermal model in this study is high-accuracy
under the UDDS operating conditions.
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Figure 8. The estimated results of SOTc and SOC from model and experiment with UDDS. (a) The
estimated results of SOT from model and experiment with UDDS at a discharge rate of (al): 1 C,
(a2): 2 C, and (a3): 3 C. (b) The estimated results of SOC from model and experiment with UDDS at
a discharge rate of (b1): 1 C, (b2): 2 C, and (b3): 3 C. (c) The errors of SOT curves obtained by the
model at different discharge rates compared to the experiment with UDDS at a discharge rate of
(c1): 1 C, (c2): 2 C, and (c3): 3 C. (d) The errors of SOC curves obtained by the model at different
discharge rates compared to the experiment with UDDS at a discharge rate of (d1): 1 C, (d2):2C,

and (d3): 3 C.

Table 3. Co-estimation error of UDDS working condition.

Estimate Type Thermal Sensor Accuracy Temperature/°C RMSE MAE
+0.2°C 0 0.42°C 0.25°C
SOTc 25 0.52°C 0.23°C
45 0.62 °C 0.41°C

/ 0 2.06% 1.19%

SOC 25 1.15% 0.64%

45 0.88% 0.51%

4. SOP Estimation with Multi-State Constraints

Based on the above joint estimation results of SOC and SOT, this section proposes the
estimation of the SOP with multi-state constraints, as shown in Figure 9. These constraints
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Joint estimation module for SOC and | | Multi-state constraints for SOP estimation
SOT of lithium-ion battery

for SOP include U: SOC, T, and production design value. The derivations of these
constraints for SOP are as follows.
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Figure 9. Multi-state constraints for battery SOP estimation.

4.1. SOC Constraint

Considering the upper and lower limits of SOC combined with Equation (1), the
minimum charging current and the maximum discharging current of the battery can be
expressed as follows:

Icha,soc _ SOCk B SOCmax
i nNAT/C,,,
Idis,soc — SOCk B SOCmin
™ T UNATIC

(18)

where SOCk represents the SOC value at different time points, which is provided by the
estimated SOC value based on the model, and SOCuaxr and SOCwmin represent the SOC upper
limit and lower limit, respectively.

4.2. Terminal Voltage Constraint

The formula of U: can be discretized according to the battery circuit model. Its result
is shown as follows:

U,(k+N)=U,(SOC,,\)~U,(k+ N)~U,(k+ N)~I ,R,  (19)

The Uow cannot be directly measured when the battery is working, but it can be
regarded as a variable related to SOC. Then it can be decoupled by Taylor series expansion
as follows:

; INAT 38U, (SOC))
. .

U (SOC _)=U (SOC, )-
ocv ( k+N ) ocv ( k ) Cmax 8SOCk

(20)

Moreover, the polarization voltages Ui(k + N) and Uzx(k + N) at time k + N are as
follows:

_NAT _AT Ny AT
Ui(k+N)=U,(k)e *“ + LR (1~e ")) (e ")
i=0
_NAT AT AT (21)
Uy(k+ N)=Us(k)e * + LR, (1= ) (e )
i=0

Let
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AT B AT
/1_1‘ :(l_e R;C; )Z(e chj)i, ]-21,2, 22)
i=0
then
_AT AT
Uk +N)=U,,(b)~Uy(k)e "9)* ~U, (ke )"
23)
nNAT 8U, (SOC,) (
_] . ocy + R + R +R
k( Cmax GSOCk 11 1 12 2 0)

Consequently, the constraints of charge and discharge current can be obtained by
setting the charging cut-off voltage U., and the discharge cut-off voltage U, as the
upper and lower limits of the terminal voltage, respectively, as shown in Equation (24).

AT AT
oo _ Voo, (SOC) ~ U, (k)(e BN U, (k) (e )Y -um™
INAT 0U,.(S0C) ; p ) p g
c.. asoC,
AT _ar @)
Jassr _ U (SOC) =, (k)e ") ~U, (ke **)" —uy™
INAT 0U,.(S0C) ;) p g
c. asoC,

4.3. Core Temperature Constraints

According to the state-space equation of the thermal model, Tcwo can be expressed as
follows:

T (k+1)=a,T,(k)+a,T,,(k)+bQ(k) (25)

Then the core temperature of the battery at the time k + N can be calculated as follows:
v N-l N-1
T;o(k + N) =4q; 'Téo(k) +Za111 "y 'T;o(k) + Zail 'bl Q(k) (26)
i=0 i=0

In addition, Q can be approximated as Equation (27).

dUu dU
ﬁzlz(Ro+Rl+R2)—IT¢ (27)
T dT
Assuming that the battery core temperature is maximum Twuxo at moment k + N, then
the peak charge and discharge current of battery under the constraint of the core
temperature can be expressed as follows:

0=1(U,,-U,)-IT

Icha,temp — -B - B2 —-44C
min 2A
; @9
Ly _—B+\B*-24C
max 24

where
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A=R,+R +R,
dU,

B=——>.T (29)
dT

™ —a) T (k)=&-a, T,y (k) S
C=- 1 Of-b - 5 ‘fzzall
! é

According to the above analysis, there are different limits for battery
discharge/charge current under the SOC, U, and T. constraint. In order to obtain the SOP,
the combined limitations for battery discharge/charge current need to be derived, which
is shown in Equation (30).

dis __ . dis,soc dis,volt dis ,temp dis,rat
Imax - mln([ I Imax ]max )

max > 7 max

cha __ cha,soc cha,volt cha ,temp cha,rat
I =max(/ I I )

min >~ min > % min

(30)

where the battery current is a vector: the discharge current is positive and the charge
current is negative. Then the battery SOP can be estimated as follows:

Pdl's :min(ldis ’Ut(k‘l‘N) Prat)

max max max

P =max(13¢-U,(k+ N), Pit)

min min min

@1

where Piis e and Pea min represent the maximum discharge power and minimum charge
power of the battery, respectively, and Prut wx and P win represent the maximum discharge
power and minimum charge power, respectively, as specified by the manufacturer.

4.4. Results and Analysis of SOP Estimation

Different sampling time intervals under the same temperature. The estimation results
for the peak current and peak power under the UDDS at an ambient temperature of 25 °C
are presented in Figure 10. Three sampling time intervals are shown: 10 s, 20 s, and 30 s.
In Figure 10(al,b1), it can be observed that both the peak charging current and power are
zeroatt=0s.

This occurs because the SOC of the battery at the start of charging/discharging is
100%. At this point, SOC acts as the primary constraint on battery current and SOP,
preventing overcharging. As discharging begins, the terminal voltage (Ut) becomes the
main constraint on peak charging current and power. Consequently, both the peak
charging current and power gradually increase until they reach the limits set by the
manufacturer.

In Figure 10(a2,b2), the limits set by the manufacturer and the terminal voltage (Ut)
serve as the main constraints on the SOP during most of the battery’s discharge process.
However, after extended discharge, the SOC becomes the limiting factor for SOP. To
prevent over-discharging, the peak discharge current and SOP of the battery gradually
decrease until they reach zero.
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Figure 10. Battery charge/discharge current and SOP estimation with different sampling time
intervals: 10 s, 20 s, and 30 s: (al) Charge current, (a2) Discharge current, (b1) Charge SOP, (b2)
Discharge SOP.

Additionally, it can be observed that a longer sampling time interval results in a
smaller battery current and SOP. This indicates that the duration of the sampling affects
the peak charge and discharge capabilities of the battery.

The same sampling time interval under different ambient temperatures. The
estimated results for battery current and SOP are shown in Figure 11 at different ambient
temperatures (0 °C, 25 °C, and 45 °C), with a sampling time interval of 30 s. As illustrated
in Figure 11, the peak charging and discharging current and power of the battery
gradually increase with rising temperature. This is primarily because temperature
significantly influences various battery parameters. At lower temperatures, the battery
resistance is higher, resulting in a marked decrease in charge and discharge current at 0
°C compared to higher temperatures.

Near the end of the battery discharge, the core temperature becomes the dominant
constraint, as seen in Figure 11(al,a2). In Figure 11(a2,b2), the peak discharge current and
peak power at 45 °C are notably lower than those at 0 °C and 25 °C, primarily due to the
constraint imposed by the battery core temperature. Thus, maintaining a reasonable limit
on the battery core temperature is crucial for effectively preventing thermal runaway.

In summary, the constraints for battery SOP are alternately dominated by multiple
battery parameters during the charging and discharging. The core temperature of the
battery has a critical limitation on its SOP during long charging and discharging processes,
which is important to avoid excessive battery temperature.
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Figure 11. Battery charge/discharge current and SOP estimation with different ambient
temperatures: 0 °C, 25 °C, and 45 °C: (al) Charge current, (a2) Discharge current, (b1) Charge SOP,
(b2) Discharge SOP.

5. Conclusions

In this study, we developed a battery electro-thermal model to estimate the SOP
under multi-parameter coupling. The model accounts for the battery core temperature,
with electro-thermal parameters coupled together. These parameters were identified
using Machine Learning Models (MLM) and Adaptive Genetic Algorithms (AGA),
respectively. The model outputs were derived using an adaptive unscented Kalman filter.

The validation of the model and the application of these methods ensured that the
estimation errors for SOC and SOTc were both less than 0.15 and 1 °C, respectively.
Consequently, the battery SOP was estimated under multiple constraints.

The results indicate that the constraints on battery SOP are influenced alternately by
multiple battery parameters during both charging and discharging. Notably, the core
temperature of the battery is critical in limiting SOP during prolonged charging and
discharging processes, which is essential for preventing excessive temperatures. The
multi-parameter coupling method for estimating SOP proposed in this study offers a
foundation for battery management systems to accurately assess SOP at elevated
temperatures. This approach significantly improves the safety of lithium batteries
operating under high-temperature conditions.
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