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Abstract: To guarantee the secure and effective long-term functionality of lithium-ion batteries, vital
functions, including lifespan estimation, condition assessment, and fault identification within battery
management systems, are necessary. Battery impedance is a crucial indicator for assessing battery
health and longevity, serving as an important reference in battery state evaluation. This study offers
a comprehensive review of the characterization and applications of impedance spectroscopy. It high-
lights the increasing attention paid to broadband perturbation signals for impedance measurements,
which promotes impedance characterization methods from laboratory to practical implementation.
The impact of varying impedance characteristics on distinct cell states and their utilization is further
examined. The discussion encompasses the challenges and opportunities for future research on
onboard battery management system characterizations.

Keywords: lithium-ion battery; perturbation signal; multi-sine signal; electrochemical impedance
spectroscopy; battery modeling

1. Introduction

To reduce climate pollution, countries have commenced the gradual establishment of
new power systems reliant on renewable energy sources. As a fundamental component
of the new energy sector, the advancement of energy storage technology has garnered
significant attention. Among various energy storage batteries, the lithium-ion battery (LIB)
has emerged as the predominant energy storage solution due to its minimal self-discharge
rate, elevated energy density, extended cycle life, and absence of memory effect [1,2].
To ensure LIB’s safety and power performance, it is essential to develop key functions in
battery management systems, including health prediction, state estimation, fault diagnosis,
and early warning systems for energy storage [3]. The state of health (SOH) and state of
charge (SOC) of lithium-ion batteries facilitate precise estimations that enhance battery
longevity and safety. Additionally, battery fault diagnosis ensures the secure and depend-
able operation of the energy storage system, optimizes its stable usage, and establishes a
foundation for energy and safety management within the system [4,5]. The impedance of a
LIB is influenced by its state, making it a critical parameter for monitoring and controlling
the battery. Compared to other metrics such as current and voltage, impedance pro-
vides a more precise characterization of the battery’s operational condition and longevity.
Consequently, research on impedance measurement has garnered significant interest [6–8].

Several review papers have been published so far, focusing on the widely known bat-
tery electrochemical impedance spectroscopy (EIS) test and related applications.
For example, Osaka et al. summarized an overview of diagnostic techniques for de-
termining the health status of commercial LIBs using electrochemical impedance energy
spectroscopy using equivalent circuit design techniques and also proposed the use of
square-wave current signals for monitoring large-scale LIB systems, enabling the develop-
ment of techniques for large-scale monitoring of lithium batteries [9]. Carthy et al. provide
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a comprehensive analysis of the many uses of battery impedance spectra in the assessment
of battery SOC, SOH, and internal temperature and have conducted in-depth analyses of
the partial impedance of batteries, internal chemical mechanisms, battery models, and the
accuracy of each model, demonstrating that impedance is affected by multiple factors, but
fault detection for batteries is rarely mentioned [10]. Sun et al. and Liu et al. review the EIS
method for battery health-state estimation and LIB aging mechanism analysis. The former
established the relationship between characteristic parameters and SOH by constructing a
frequency-domain equivalent circuit model and used a data-driven method to construct
the relationship between EIS data and SOH, which provided a new way of thinking about
SOH prediction based on EIS, and the latter classified the EIS according to different princi-
ples. The latter classifies EIS measurements according to different principles, analyses the
connection between aging and SOH in lithium batteries, proves that impedance-based SOH
prediction is more accurate than the traditional technique, and deepens the researchers’
understanding of impedance spectra [11,12]. These reviews have focused primarily on the
conventional EIS test for impedance measurement and various impedance applications for
battery condition assessment. However, the existing EIS technique is notably laborious and
challenging to perform on onboard applications. To push the impedance characterization
methods from laboratory to practical implementation, this paper mainly reviews the novel
perturbation signals employed in extracting the impedance response of a LIB and high-
lights their potential in capturing and analyzing the battery’s in-depth characters. From
the perspective of impedance applications, we believe that this study will contribute to the
development of the next generation of advanced battery management systems (BMS).

The impedance measurement of lithium-ion batteries can be obtained by several
methodologies owing to the variability of testing conditions, operational settings, and exci-
tation signals. This paper aims to systematically analyze and summarize the perturbation
signals for LIB characterization, examining the methods and applications for assessing the
battery impedance. It will address the types of signals, their applications, strengths and
weaknesses, improvement strategies, and the challenges and future obstacles encountered
by current impedance measurement methods in detail.

The primary contributions of this paper are enumerated as follows:

• The classification of perturbation signals for battery impedance characterization is
established, and the content of this classification, such as sine-sweep signal, step
signal, square wave signal, pseudo-random binary sequences, and multisine signals,
is systematically reviewed.

• The fundamental elements of perturbation signal design and their respective functions
in battery impedance characterization are outlined, along with the advantages and
limits of these perturbation signals for potential enhancement.

• This study examines the factors affecting the impedance of Li-ion batteries, such
as remaining battery life, state of charge, and variation in internal electrochemical
processes, to facilitate the application of battery impedance for predicting battery life,
fault detection, state of charge estimation, and battery modeling.

The primary contents of the paper are organized as follows. Section 2 outlines the fun-
damental theory of the battery impedance spectrum. Section 3 presents the classification of
perturbation signals. Section 4 delineates the fundamental components of signal design for
LIB impedance measurement. Section 5 examines the utilization of perturbation signals in
onboard battery management systems. Sections 6 and 7 delineate the principal conclusions
and prospects.

2. Battery Impedance Spectrum

The impedance of the battery typically characterizes its dynamic response to a distur-
bance signal at a specific frequency, serving as a crucial metric for assessing lithium battery
performance. The fundamental principle involves applying a low-amplitude sinusoidal
current excitation signal to the lithium battery. By examining the correlation between the
frequency and amplitude of the excitation signal and the resultant response signal, the



Batteries 2024, 10, 414 3 of 32

frequency response of the system under investigation within a specified frequency range is
ultimately derived.

The construction of the battery impedance spectrum requires the acquisition of
impedance responses across various frequencies. The impedance spectrum of a stan-
dard lithium-ion battery, as depicted in Figure 1, consists of four unique segments, each
of which has specific relevance [13]. The ultra-high-frequency segment (above 1000 Hz)
is represented by the inductive impedance, which corresponds to the battery’s ohmic re-
sistance ROhm and inductance L; the high-frequency segment (about 100–1000 Hz) of the
curve appears as a semicircle, corresponding to the lithium-ion impedance through the
solid electrolyte (including the solid electrolyte interface film, etc.). R1 and C1 denote the
resistance and capacitance of the solid electrolyte interface membrane; the semicircle in
the mid-frequency region (around 1–100 Hz) signifies the charge transfer impedance, also
referred to as the electrode polarization impedance, while R2 and C2 indicate the charge
transfer resistance and double-layer capacitance, respectively; the 45° straight line in the
low-frequency region (around 0–1 Hz) represents the Li-ion diffusion impedance, com-
monly known as the concentration polarization impedance or Warburg impedance [14,15].
Note that the frequency segments vary depending on battery configuration and chemistry.

Figure 1. Nyquist diagram representing the impedance spectrum of the battery in equivalent circuit
model components [16].

2.1. Inductive and Resistive Area

The impedance of the ultra-high frequency portion comprises the ohmic resistance
ROhm and the inductance L, which exists at frequencies exceeding thousands of hertz.
The inductive component is affected by the inductance of the collector wire and the in-
ductance of the test coils, while the resistive component comprises the electrolyte, elec-
trodes, diaphragm, and electrical contact resistance of the cell [17]. The conductivity of
the electrolyte is a primary element influencing the resistance of this component; higher
conductivity enhances ion migration, hence impacting resistance [18]. The impedance in
this frequency range is influenced by both temperature and battery health state. The ohmic
impedance increases more rapidly at higher temperatures than at room temperature [19].
As the battery degrades, the ohmic resistance changes due to the loss of the electrolyte and
the graphite anode [20].
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2.2. Solid Electrolyte Interface Layers Area

The EIS plot in the high-frequency range demonstrates the inductive impedance char-
acteristics related to solid electrolyte interface (SEI) layers, with characteristic frequencies
ranging from kilohertz to hundreds of hertz. In electrocatalytic processes, the catalytic
influence of reaction intermediates adsorbed on the electrode surface diminishes reaction
impedance, resulting in a high-frequency semicircle linked to sensing impedance within the
kilohertz to hundred-hertz range of the impedance spectrum [21]. The configuration of the
semicircle in the high-frequency impedance spectrum correlates with the decomposition
of the electrolyte and the growth of the SEI film [22]. The formation of the SEI film is pro-
foundly affected by the electrode material, electrolyte, and solvent of the battery, leading to
the depletion of lithium ions in the electrolyte, which causes lithium metal precipitation and
results in an irreversible capacity loss of the battery [23]. The creation of a dense SEI film
ideally prevents direct contact between the electrolyte and the electrode surface, mitigating
battery leakage and protecting the graphite structure; nevertheless, the SEI film may also
result in increased impedance.

2.3. Charge Transfer Kinetics Area

The mid-frequency impedance typically manifests around hundreds of Hertz, posi-
tioned between the semicircle linked to the diffusive migration of lithium ions through the
SEI layers on the electrode’s active material surface and the semicircle related to charge
transfer kinetics. Furthermore, the semicircle in the mid-frequency domain exhibits a
larger magnitude on the impedance spectrum compared to the semicircle in the high-
frequency domain [24]. This impedance semicircle is presented by the charge transfer
internal resistance RCT and the double layer capacitance Cdl in parallel, as expressed in the
following equation:

RCT =
RT

nFJ0
, (1)

where R is the air constant, T is the absolute temperature, n is the amount of substance of
the electrons participating in the reaction, F is the Faraday constant, and J0 is the exchange
current density.

Cdl = 1/(2π fmaxRCT), (2)

where fmax is the frequency corresponding to the local maximum value of the imaginary
part of the semicircle.

The impedance of charge transfer kinetics is related to the temperature and current, as
the characteristics of charge transfer resistance are contingent upon the electron mobility.
The double-layer capacitance is defined by two layers of oppositely charged particles
formed at the interface between the electrode surface and the electrolyte [25].

2.4. Diffuse Processes Area

The low-frequency component in Figure 1 is predominantly influenced by the cell’s
diffusion process of Li+ in the LIB electrolyte, represented by the Warburg impedance
ZW [26]. The EIS Nyquist plot displays a straight line at about 45° to the X-axis, influenced
by the state of charge, excitation current amplitude, battery capacity, and the number of
charge/discharge cycles [27]. The diffusion coefficient of lithium ions within the electrolyte
is the principal kinetic parameter of the diffusion process and indicates the electrode’s
capacity for high-rate discharges, computed as follows:

ZW =
W

(jω)
1
2

, (3)

where ω denotes the angular frequency, and W is the Warbug coefficient.
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3. Classification of Perturbation Signals

Section 2 illustrates that the battery impedance is frequently employed to characterize
the LIB dynamic response when exposed to excitation signals at particular frequencies.
Nonetheless, the widely utilized EIS technique is time-intensive, necessitating many hours
for testing within a particular frequency band. In recent years, researchers have garnered
significant interest in broadband perturbation signals in rapid battery characterization [28].
The perturbation excitation signals are chiefly classified as sine-sweep signals, step signals,
square-wave signals, pseudo-random sequences, and multisine signals. This section intro-
duces novel perturbation signals, examines their limitations, and delineates the potential
enhancement strategies.

3.1. Sine-Sweep Signal

A sine-swept signal is a sinusoidal waveform with a frequency that fluctuates loga-
rithmically with time, either increasing or decreasing sequentially. The sine-swept signal,
fundamental to the EIS technique, measures a battery’s impedance at different frequencies
by injecting sinusoidal currents or voltages, acquiring the battery’s frequency response,
and subsequently computing the resultant impedance spectrum for analysis.

Dam et al. employed a sinusoidal sweeping signal injected into a battery to conduct
a frequency analysis of the impedance spectrum within the range of 100 mHz to 100 Hz,
with a total measurement duration of 97 s [29]. Wei et al. employed a sinusoidal sweeping
signal to assess and analyze the impedance spectrum of a battery within a frequency
range of 0.1 Hz to 500 Hz [30]. To mitigate the prolonged measurement duration of the
sinusoidal sweep signal and the significant stability issues encountered when measuring
low frequencies below 1 Hz, Kallel et al. introduced an innovative design for sinusoidal
excitation signals [31]. This design establishes a virtual interval to optimize the spacing
between the crest factor and frequency samples, enhances the stability of the measurement
system, decreases measurement time, and employs a Kramers–Kronig-based approach.
The stability was evaluated utilizing the linear Kramers–Kronig (LKK) method, revealing
that across the frequency spectrum of 10 mHz to 1 kHz, the root mean square error of the
LKK diminished by 84% relative to the sinusoidal sweep signal, while the measurement
duration decreased from 1440 s to 315 s.

The sine-sweep signal offers advantages such as power concentration, high precision,
and ease of frequency modification during measurement. The measurement duration
is excessively prolonged, particularly for low-frequency impedance, and the intricate
signal design necessitates complex hardware, rendering it prohibitively expensive for non-
laboratory applications. Additionally, the lengthy injection time into a cell complicates the
feasibility of onboard measurement.

3.2. Step Signal

To enhance the precision of impedance acquisition and streamline the measurement
process, the researchers employed a step signal as a perturbation, which improves the
signal-to-noise ratio and encompasses additional harmonic components [16]. The step
signal is easier to generate than the sinusoidal sweep signal and may be produced using
a standard charging and discharging mechanism, hence enhancing the simplicity and
feasibility of quick impedance measurements. The step signal waveform possesses a
broader spectrum of harmonics and can accurately represent impedance values across
many frequencies [32].

Gabrielli et al. examined the application of white noise and step signals in measure-
ment techniques, emphasizing practical implementations [33]. Su et al. introduced a
step signal utilizing Gaussian process regression, wherein a step perturbation signal was
introduced into the battery during charging via the collaboration of a battery manage-
ment system and a bi-directional converter, resulting in the extraction of six Li-ion battery
health metrics and achieving a specific frequency range [34]. The impedance tests span
the frequency range of 10 mHz to 2 Hz, with the step signal response at each frequency
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being analogous to that of the sinusoidal signal at the corresponding frequency. Hoshi et al.
and Itagaki et al. conducted Morlet wavelet transforms on step current signals and their
corresponding voltage responses to calculate impedance throughout the frequency range of
0.1 Hz to 100 Hz [35,36]. The battery temperature is determined by the battery impedance
at a designated frequency during dynamic operation conditions. Wang et al. initially
introduced a rapid computation method for broadband battery impedance utilizing the
S-transform, which employs a Gaussian window of specified width and frequency to
address step perturbation signals and the battery response, significantly diminishing the
requirements for broadband impedance acquisition [37]. Simultaneously, the perturbation
signal and battery response can be produced using standard charging and discharging
apparatus, and this method reduces acquisition time by at least 19% compared to the
sinusoidal swept signal while decreasing computation time by at least 84% relative to the
previously proposed wavelet transform.

Despite the step signal’s straightforward composition and elevated signal-to-noise
ratio, facilitating impedance measurement, it possesses an inhomogeneous power spectrum,
with the majority of its power concentrated in the fundamental harmonics, potentially
leading to measurement inaccuracies in impedance.

3.3. Square Wave Signal

A square wave signal is a prevalent non-sinusoidal waveform and a standard analogue
circuit signal characterized by constant amplitude, adjustable duty cycle, adjustable phase,
and excellent stability. It finds extensive applications in switching power supplies, audio
signals, digital circuits, and sensor signals. Additionally, it shares similarities with step
signals, exhibiting reduced amplitude and a higher harmonic content.

Yokoshima et al. employed square waves for impedance measurements in a sim-
ple redox reaction of [Fe(CN)6]

4−/[Fe(CN)6]
3− solution and lithium-ion batteries [38].

It achieves stable impedance responses within the frequency ranges of 40 Hz to 3.5 kHz
for the former and 5 Hz to 2.5 kHz for the latter, with measurement errors between these
methods and conventional EIS being less than 3%. In addition, these authors posited that
the precision of impedance measurements is contingent upon the signal-to-noise ratio of
the harmonic power spectrum and the attenuation rate of the Fourier series impedance
measurements [39]. The accuracy was enhanced by modifying the input waveforms to
approximate the ideal Fourier series waveforms, in conjunction with employing a simple
moving average filter and an overall average. Wang et al. determined that the essential
factor in measuring battery impedance is the integration of the power conversion circuit
within the EIS detection system [40]. They demonstrated that a large square wave excitation
signal can be decomposed into a direct current (DC) component and several diminishing
odd harmonic components, each amenable to analysis akin to that of a sinusoidal waveform.
Consequently, a square wave excitation device with a microsecond response speed was
developed, employing a method for current control and voltage limitation to facilitate safe,
reliable, and rapid measurements.

Despite the benefits of constant amplitude, robust stability, and straightforward mod-
ulation of the square wave signal, unstable output voltage arises when the duty cycle
of the injected square wave signal is substantial [41]. Furthermore, the precision of the
cell response is constrained by the signal-to-noise ratio of the power spectrum and the
power controller generating the signal [39]. Additionally, the power controller produces
a degraded square wave when the measurement duration is reduced, adversely impact-
ing measurement accuracy. Consequently, the optimization of the square wave signal
necessitates additional investigation.

3.4. Pseudo-Random Sequence Signal

The sinusoidal scanning signal represents a concentrated power station at a singular
fundamental frequency to enhance the signal-to-noise ratio and optimize measurement
accuracy. However, this method is time-consuming, particularly at low frequencies, and
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the sinusoidal signal exhibits multiple amplitudes simultaneously, further complicating
the injection process. The pseudo-random sequence (PRS) signal exhibits characteristics of
straightforward signal composition, diverse frequency components, a more uniform power
spectrum, and multi-frequency superposability relative to the aforementioned signals [42].
Furthermore, in comparison to sinusoidal scanning signals, the pseudo-random sequence
introduced in the article [43] reduces time expenditure by 73%, thereby establishing the
superiority of the pseudo-random sequence. Consequently, pseudo-random sequence
signals are increasingly utilized in the acquisition of battery impedance.

The maximum length sequence (MLS) represents the fundamental category within the
PRS family and can be easily produced utilizing a linear feedback shift register [44]. The
parameter length N in the MLS is defined by the subsequent equation:

N = 2n − 1. (4)

Here, n = 1, 2, 3, ... denotes the order of the shift registers. In contrast to the square
wave and step perturbation signals, the PRS signal has a near-band-limited white noise
characteristic in frequency, with a power spectrum that displays a nearly uniform distribution.

The power content of the PRS signal is expressed using the following formula:

P(k) = I2
m

2(N + 1)
N2

(
sinπk/N

πk/N

)2
, (5)

where P(k) denotes the power of the kth harmonic, and Im and N denote the amplitude
and length of the PRS signal.

The aforementioned equations indicate that as the sequence length N increases, the
signal power significantly decreases, leading to an inadequate signal-to-noise ratio between
the altered signal and the response output, hence adversely impacting measurement ac-
curacy. Sihvo et al. proposed employing a ternary sequence signal as the perturbation
signal to enhance the signal-to-noise ratio and utilized a moving average filter (MAF) to
correct the impedance bias at high frequencies [45]. However, the efficacy of the MAF di-
minishes when measurements exhibit significant value discrepancies and a low-frequency
region with substantial bias persists. Liebhart et al. introduced a weighted overlapping
segment averaging technique to refine impedance measurements; however, the parameter
configuration necessitates specialized debugging and is impractical for real-world applica-
tions [46]. To enhance the signal-to-noise ratio for mitigating interference with impedance
measurements, Du et al. developed a series of double PRS signals utilizing two distinct
sub-sequences that measure varying frequency ranges of battery impedance [43]. This
approach reduces the length of the PRS signal while enhancing its power content, offering
advantages such as high efficiency, low computational cost, and ease of implementation,
thereby providing researchers with a novel perspective on signal processing.

Despite the signal’s benefits of reduced measurement and injection durations, along
with the capability for multi-frequency superposition, its deficiency in harmonic power
content renders it susceptible to noise interference, thereby diminishing the precision of
impedance measurements. Furthermore, the conflict between the measurable bandwidth
and the signal-to-noise ratio of the PRS signal employed for battery impedance measure-
ment should be addressed to address substantial impedance bias in both low-frequency and
high-frequency domains, thereby achieving reliable broadband impedance measurements.

3.5. Multisine Signal

The fast measurement of battery impedance by multisine signals has garnered signifi-
cant interest and is extensively employed. The multisine signal, created by superimposing
multiple frequency sinusoidal signals, has been utilized for impedance spectra and trans-
fer function studies across various domains, including biomedical applications, material
characterization, and battery impedance measurement [43].
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Macdonald et al. examined multisine s measurements of nickel–metal hydride
(Ni-MH) batteries, along with half-cell assessments of lithium-ion cathode and anode
materials at various discharge levels [26]. Schmidt et al. employed a multisine-based
impedance spectroscopy method to acquire the impedance spectrum of the battery within
the frequency range of 0.1 Hz to 1000 Hz during discharge, validating the impedance
model of the lithium-ion battery cell [47]. Widanage et al. devised a pulse-multisine
signal to measure impedance in the low-frequency spectrum [48]. The subsequent equation
illustrates the general throughput of the multisine signal:

u(t) =
N

∑
n=1

Ancos(2π fnt + φn), (6)

where t is the time, N is the number of excitation frequencies, fn is the nth excitation
frequency, An is the amplitude, and φn is the phase of fn, n = 1, ..., N. The aforementioned
equation indicates that the parameters in multisine signals are not predetermined, thereby
providing greater flexibility in designing the signal’s frequency components to generate an
arbitrary spectrum, making it particularly suitable for fast Fourier transform estimation of
broadband excitation signals [49].

Nevertheless, the intricate signal harmonics and substantial peak-to-peak variation of
the multisine might induce non-linearities in the cell, compromising the precision of the
frequency response. To address the aforementioned issue, the crest factor of the signal can
be diminished by altering the phase φn to mitigate the impact. Yang et al. utilized a clipping
strategy that combines repeated signal clipping with the reapplication of the clipped signal
phase of the multisine to reduce the crest factor [49]. Kallel et al. proposed a novel signal
design methodology to reduce the crest factor by allocating frequency components within
a virtual interval framework, thus significantly shortening scan time while maintaining
stability in the low-frequency range [31]. Janeiro et al. and Horner et al. proposed the
utilization of artificial bee colonies and genetic algorithms to enhance the crest factor of the
multisine signals, respectively [50,51].

In recent years, investigations on the characterization of the non-linear behavior of
batteries have intensified. Firouz et al. employed multisine signals with various random
phases to analyze battery dynamics, which identify the linear components of the battery,
non-linear distortions, and noise disturbances [52]. Fan et al. utilized a random phase
odd multisine signal in an experimental three-electrode NMC/silicon graphite battery to
examine the battery’s non-linearity inside a positive and negative system [53]. A rapid
frequency domain method was employed to ascertain the frequency response function
of the system, revealing that the primary source of non-linearity is the cathode. The
multisine-based non-linear method also elucidated the reasons for the low state of charge
accuracy in linear equivalent circuit models [54]. Subsequently, the correlation between the
non-linearity of the lithium-ion battery system and battery aging was established using a
sinusoidal-based non-linear characterization technique [55].

The multisine-based methods for assessing battery impedance not only decrease the
measurement length but also preserve battery stability during the process, thereby attaining
a very precise assessment. The parameters, including duration, frequency distribution,
and power density of the multisine signal, can be modified flexibility to offer considerable
flexibility in signal design. Additionally, the non-linear characterization method utilizing
this signal exhibits reduced operational time, facilitating the analysis of the non-linear
behavior of electrochemical reactions, thereby allowing for further exploration of the
signal’s potential. In conclusion, the multisine-based methods effectively capture both
impedance and non-linear information, facilitating enhanced implementation in BMS to
optimize battery utilization and inform future battery design.

3.6. Comparison of Signals

Table 1 lists the aforementioned perturbation signals employed for impedance mea-
surements and the comparison of signal features. The sine-swept signals exhibit excep-



Batteries 2024, 10, 414 9 of 32

tionally high signal-to-noise ratios (SNR) and precise frequency response accuracy [30].
The method offers advantages, including the capacity to focus power at a singular frequency,
yet the necessary measurement duration remains excessively prolonged, particularly for
extremely low-frequency impedance. The requirement for complex hardware design in
its signal injection makes it rarely utilized in real applications. Step signals have a wider
harmonic spectrum and can effectively represent impedance values across different frequen-
cies [32]. However, they display an uneven power spectrum, with most power concentrated
in the fundamental harmonics, limiting their effectiveness in measuring impedance at mul-
tiple frequencies [42]. Square wave signals provide benefits like limited amplitude and
improved stability. Nonetheless, these signals are inherently limited by the duty cycle
and the signal-to-noise ratio of the power spectrum, which may lead to complications
with degraded square waves [39]. Pseudo-random sequence signals exhibit finite ampli-
tude, varied harmonics, and a consistent power spectrum, rendering them appropriate for
impedance measurements across all frequency ranges [42]. Nonetheless, their signal-to-
noise ratio is inadequate, requiring additional processing for impedance measurements.
The properties of multisine signals, such as duration, dispersion, and frequency density,
can be adjusted flexibly, providing significant design freedom. Nonetheless, this complexity
and heightened peaking factor undermines the accuracy of impedance measurement [31].

Table 1. A comparison of features between different perturbation signals.

Perturbation Signal Schematic Representation Advantages Constraints

Sine-sweep
Maximized SNR and
excellent frequency
response accuracy

Intricate signal
injection process and

time-consuming

Step
Finite amplitude
levels and simple

implementation process

Uneven power spectrum
and limited measurable

bandwidth

Square wave
Abundant frequency

components and simple
implementation process

Requirements on signal
generator and low

measurement accuracy

PRS
Abundant frequency

components and simple
implementation process

Numerous amplitude
levels and large

peak factor

Multisine
Flexible design of

frequency components and
rapid signal injection

Inadequate SNR and
requirements on

impedance filtering

4. Elements of the Signal Design

It is essential to emphasize that, in the majority of impedance applications, the accuracy
of the measured impedance spectrum is of paramount significance [10]. The precision of
the measured impedance spectrum is intricately linked to the signal design. The benefits
of perturbation signals include flexibility of parameter configurations, such as signal
amplitude, signal-to-noise ratio, and power spectrum, during the signal design procedure.
This section will examine the factors affecting the signal and the rationale for the precision
of the impedance spectrum measurement.

4.1. Signal Amplitude

In battery impedance spectroscopy, the excitation signal must remain within the
linear range of the current-voltage characteristic. Conversely, the Parseval theorem states
that the amplitude levels in the time domain correspond to the amplitude levels in the
frequency domain [56]. The amplitude of the signal affects the crest factor, which denotes
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the ratio between the effective value of a signal and its peak, rendering it essential for
attaining optimal signal strength throughout all excitation frequencies. Consequently, in
the impedance spectrum, the excitation signal’s amplitude must be constrained to ensure
linearity, and its duration must be restricted to maintain stability [57].

For instance, excessively large crest factors of multisine signals may induce non-
linearity of a LIB, leading to worse accuracy in impedance spectrum measurements. The sig-
nal’s amplitude predominantly influences measurements in the low and medium frequency
ranges of the impedance response, where excessively high crest factors may induce sig-
nificant non-linearities. The impedance value in the high-frequency region is primarily
influenced by the characteristics of the cell itself, together with additional parameters such
as the SEI layers and the electrolyte within the cell [58]. The impedance results of the
complete cell at various AC amplitudes and temperatures are presented in Figure 2.

Figure 2. (a–i) The impedance response of the full cell with different AC amplitudes (0.013 A, 0.027 A,
0.135 A, 0.27 A, 0.54 A, 1 A) at 25 °C [59].

Figure 2 illustrates a slight decrease of impedance at low SOC levels, exclusively
within the medium and low-frequency bands at 25 °C. No significant change is observed
in the impedance arcs of medium and high SOC levels as the alternating current (AC)
amplitude increases. The impedance in the mid and low-frequency regions for impedance
arcs of low SOC levels are slightly influenced by AC amplitude, with the fluctuation being
insignificant. Moreover, no substantial difference is apparent in the Bode plots at 25 °C for
Figure 2. At −10 °C, the impedance at medium and low-frequency ranges is significantly
affected by changes in AC amplitudes, regardless of the SOC levels [59].

4.2. Signal-to-Noise Ratio

During the measurement of battery impedance, the excitation and response signals,
along with any noise disturbances, are acquired concurrently. The measured impedance is
denoted as Z1, while the real impedance is denoted as Z2. The equation is as follows:

Z1( fk) =
Va( fk) + Vn( fk)

Ia( fk) + In( fk)
, (7)

Z2( fk) =
Va( fk)

Ia( fk)
, (8)

where Va and Vn represent the actual and noisy voltage signals, and Ia and IN correspond to
the current signals. The error between the two impedances is denoted as |△Z( fk)|, which
can be calculated as follows:
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|△Z( fk)| =

∣∣∣∣∣∣
SNR ej△φv

v, fk
− SNR ej△φi

i, fk(
SNR ej△φv

v, fk

)(
SNR ej△φi

i, fk
− 1

)
∣∣∣∣∣∣, (9)

where △φi denotes the divergence in phase between Ia and In. △φi denotes the phase
divergence between Ia and In. SNRv, fk

and SNRi, fk
denote the SNRs of the measured

voltage and current signals.
The aforementioned equation illustrates that the amplitude, phase, and frequency

of the signal can influence the signal-to-noise ratio. The objective of minimizing the
mistake can be accomplished by decreasing the signal’s amplitude or modifying the signal’s
frequency component [60].

4.3. Power Spectrum

The power spectrum defines the distribution of a signal’s power across varying fre-
quencies. An inhomogeneous power spectrum may restrict the accuracy of the signal used
to assess cell impedance response across various frequency ranges [61]. For any signal
x(t), let

xT(t) = x(t)rect
(

t
T

)
(10)

denote a “time-windowed” projection of x(t) taking value zero outside of the interval
[−T/2, T/2]), where T > 0. Assume, for each T, that the Fourier transform of xT(t) exists
and is given by xT( f ).

Since white noise is a stationary process, according to the Wiener–Khinchin theorem,
as follows:

Sx( f ) = lim
T→∞

1
T
|XT( f )|2 (11)

where Sx( f ) quantifies the contribution to the power of x from complex-exponential sig-
nal components at frequency f . The overall power corresponding to x is subsequently
expressed as

Px =
∫ −∞

∞
Sx( f )d f . (12)

In summary, the perturbed signal will possess a matching power at each frequency,
enabling the power spectrum to be integrated with the cell impedance. When the power
spectrum value is diminished, the signal becomes less informative and is less likely to
represent a legitimate value [62]. Meng et al. introduced a fusion algorithm that integrates
the power and frequency attributes of impedance measurements, leveraging the inherent
relationships among impedance, frequency, and power spectra to establish an innovative
fusion mechanism, resulting in the efficient extraction of battery impedance via an auto-
mated selection process [42]. Consequently, the power spectrum serves as a crucial statistic
for assessing signals across various frequencies.

5. Applications of Battery Impedance

Battery impedance has been extensively utilized for the development of essential
functions in battery characterization and performance analysis. The perturbation signals,
designed to facilitate the rapid acquisition of battery impedance, are intended to be de-
veloped as onboard impedance characterization methods. This section reviews essential
operations such as battery health prediction, charge state estimation, battery defect di-
agnostics, parameter estimation, and battery modeling, emphasizing the importance of
developing characterization methods of perturbation signals.

The batteries currently discussed in this section are mainly experimental batteries
and commercial batteries. The batteries used in the experiments can be either commercial
batteries or experimental batteries. Experimental batteries for research on lithium batteries
mainly include three-electrode experimental batteries and button batteries. Commercial
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batteries mainly refer to cylindrical batteries, square batteries, and soft pack batteries.
Cylindrical batteries have high stability, standard size, reliable thermal management and
high power density, but the packaging efficiency of the battery module is low; square
batteries have a slightly lower energy density, but the design is robust; pouch batteries are
lightweight and flexible, and the power density can be changed according to the design,
but the stability is poor, and is prone to expansion. Cylindrical and soft-packed batteries are
used to improve the repeatability of EIS measurements [63] or to study electrodes during
cycling [64]; button batteries are commonly used to study the electrochemical properties
of component materials [65]; three-electrode batteries are able to decouple the potentials
of the positive and negative electrodes, focusing more on the electrode dynamics but are
difficult to be applied in practice because they need to be disassembled and fabricated [53].
The experimental cell is exemplified by a three-electrode cell. The electrode structure of a
three-electrode cell consists of a cathode, an anode, and a reference electrode (RE). The RE
should exhibit reversible, ideally unpolarized, stable, and reproducible potentials under all
conditions experienced during electrochemical measurements [66]. In situ monitoring of
individual electrode potentials allows for the analysis of the different operational effects on
each electrode [67]. Thus, the three-electrode cell is capable of monitoring the lithium-ion
battery’s lithium-dissolution behavior under different conditions. RE is very sensitive
to experimental conditions such as electrolyte selection and design and is not as safe as
commercial batteries [68]. EIS measurements using RE can isolate the various contributions
from individual battery components (i.e., diaphragm, electrolyte, collector, and electrodes),
which can aid in experimental investigations of EIS [69]. In conclusion, commercial and
experimental batteries have their own advantages and disadvantages. When researching
EIS, each battery has its own emphasis on applicability, and the choice needs to be based
on practical decisions.

5.1. Battery Health Prediction

The state of health of a lithium-ion battery is a critical metric that indicates the extent
of the battery’s aging, denoted by the ratio of residual capacity to original capacity, with
100% indicating a new battery and 80% signifying a retired battery. With an increase in the
number of cycles, the maximum accessible capacity diminishes as the internal resistance
escalates. A BMS must be capable of evaluating the battery SOH, issuing danger alerts,
and maintaining safe and stable battery functionality over time. The identification of
battery degradation mechanisms analysis is also crucial for a novel BMS, as illustrated in
Figure 3, which depicts the aging mechanisms of Li-ion batteries, including the creation and
expansion of the SEI layer, as well as electrode and electrolyte degradation, among other
variables [6]. An understanding of degradation mechanisms is essential for predicting
battery health [7]. Moreover, precise SOH estimation can enhance battery economics
and facilitate the optimization of charging and discharging procedures, hence preventing
battery overuse.

Figure 3. The most common lithium-ion battery degradation mechanisms in lithium-ion batteries [6].
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The degradation of Li-ion batteries is attributed to alterations in the battery electrode
interface [70]. Factors such as the formation of the solid electrolyte interphase film, deple-
tion of active lithium materials and electrolytes, and loss of active materials in both cathode
and anode are primary contributors to capacity decline [71]. The benefits of electrochemical
impedance spectroscopy, which can elucidate the kinetics of the battery’s reactive processes
and the structural characteristics of the electrode interface, offer theoretical support for
SOH estimation based on electrochemical impedance spectra.

The aging degradation mostly increases ohmic resistance for the evaluated Li-ion
battery while exerting no substantial effect on charge transfer and diffusion processes [72].
Sun et al. present a novel approach for obtaining the impedance spectrum via a convo-
lutional neural network, as illustrated in Figure 4, which employs impedance measure-
ments at various characteristic frequencies as input [73]. The algorithm’s input consists of
impedance measurements taken at various characteristic frequencies within the mid and
high-frequency ranges. The suggested method can reliably get the impedance spectrum
and rapidly adjust to various battery states and chemistry by integrating straightforward
measurements with model-based predictions. The experimental results confirmed that the
predictions aligned with the actual values, with a maximum root mean square error of
0.93 mΩ. Liu et al. claimed that most aging processes in Li-ion batteries have no correlation
solely with a specific region on the impedance curve and that the same region may be
affected by multiple aging mechanisms [12].

Figure 4. Process for obtaining impedance spectra using impedance features as input to a convolu-
tional neural network [73].

In Section 2, the Nyquist plot of the impedance spectrum of the Li-ion battery was
categorized into four distinct regions: the inductive and resistive area, the SEI layer area, the
charge transfer kinetics area, and the diffusion processes area. The influence of the battery’s
SOH on these four impedance regions will be examined subsequently. The dimensions of
the inductive and resistive area are primarily dictated by the resistance of the electrolyte
while also being influenced by the resistance among the electrode metal, electrode leads,
terminals, and contacts. Furthermore, the resistance value of the impedance and inductance
region markedly escalates with the depletion of lithium ions in the electrolyte. Figure 5
illustrates the correlation between Li-ion batteries and aging in electric vehicles [74]. The
ohmic resistance of the batteries at three temperatures progressively increased with the
distance traveled, suggesting that the impedance value in this context can serve as an
indicator of battery aging. Yoshida et al. measured the thickness of the SEI film and
determined that the increase in resistance within the ohmic zone correlated with the growth
of the SEI layer [75]. Schindler et al. ascribed the rise in ohmic resistance to the corrosion
of the current collector and the decomposition of the electrolyte, alongside the SEI film’s
growth, which further influenced the impedance value in the high-frequency region [76].

The impedance in the high-frequency range is influenced by the development of
the SEI film as the graphite electrode ages within the cell [77]. This reaction generates
a lithium-containing SEI layer on the electrode surface, which obstructs the electrolyte’s
access to the electrode and impedes lithium insertion. Consequently, the proliferation of
the SEI results in a depletion of recoverable lithium, thereby diminishing the battery’s
capacity [73]. Witt et al. provide a solution that integrates physicochemical SEI and cell
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modeling for the concurrent analysis of both measurement types [78]. The interfacial and
bulk characteristics of the SEI were examined, emphasizing the significance of SEI thickness
and ionic conductivity on cell performance. Figure 6a illustrates the analysis of the impact
of SEI thickness on the impedance response. It is evident that it predominantly produces a
higher impedance at the Z0−axis intercept at elevated frequencies, accompanied by a parallel
shift of the entire spectrum. This pertains to its influence on the ohmic resistance of the
surface coating and, consequently, the total ohmic resistance of the cell. Figure 6b illustrates
the impact of the SEI ionic conductivity. A reduced conductivity mostly influences the
Z0-axis intercept at elevated frequencies without a corresponding increase in low-frequency
impedance. Its conductivity impacts the potentials in both the active material and the
electrolyte phase.

Figure 5. Describing the relationship between the ohmic resistance of lithium batteries in electric vehi-
cles and the driving distance by electric vehicles using linear regression at different temperatures [74].

The development of machine learning algorithms has also made great strides in
current research. Advances in algorithms have improved the accuracy of EIS calculations,
overcoming the trade-off between accuracy and efficiency for researchers. Many researchers
use EIS features as machine learning inputs to predict battery health. Bao et al. [79]
compared six machine learning models of varying complexity to reveal the accuracy and
reliability of battery health prediction. Bao et al. extracted the statistical features of the
EIS data using the mean and extreme values of the impedance. Twenty features were
extracted from 120 data points in each cycle to effectively retain trends in the high and
low-frequency portions of the data. Six machine learning models with different levels of
complexity were used to reveal the accuracy and reliability of battery health prediction.
The results indicated that the MLP model had a mean absolute error (MAE) of 0.17, a mean
square error of 0.32, a root mean square error of 0.40, and a mean absolute percentage error
of 0.97 %. After combining these features, the MAE of the XGBoost model was 0.05. Wang
et al. [80] chose the point at 10 kHz, the leftmost point of the curve, and the vertex on the
charge-transfer impedance segment, as shown in Figure 7, as feature points of EIS as inputs
to four machine learning models (CatBoost, random forest, support vector machine, and
deep neural networks), the relationship between aging features and EIS was explored. The
results show that the accuracy of the EIS features in classifying that the battery resistance
can reach 100% under certain conditions. It is also found that the features extracted from
EIS curves are more suitable for applications with high power requirements. In addition to
the possibility of choosing EIS curve features as inputs to machine learning, there are also
many researchers who use physical features [81] and data [82,83] from batteries as inputs.
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Figure 6. Simulated full-cell impedance spectra at 3.7V with the parameterized model for a variation
of (a) SEI thickness, (b) ionic conductivity of the SEI, (c) diffusion coefficient of lithium in the SEI,
and (d) SEI surface site density (five frequencies are highlighted in red: 1 kHz, 100 Hz, 10 Hz, 1 Hz,
and 0.1 Hz) [78].

Figure 7. EIS curves of one NMC battery at 25 °C. (a) Variation of the Nyquist plots under different
SOHs, where the low frequency range is not taken into account. (b) Three features selected from the
EIS curve. [80].

The magnitude of the impedance value in the mid-frequency region is determined by
the depletion of the cathode active material, including the double-layer capacitance and
charge transfer resistance present at the interface between the battery electrodes and the
electrolyte, which produces a double-layer effect at the interface when ions are adsorbed
onto the surface of the electrodes and consists of two parallel and opposing layers of
charges surrounding the electrodes, and in Sabet et al. [84], a high rate of discharge was
used for nickel, cobalt, and aluminum (NCA) batteries to study the effect of battery aging,
the experimental results show that due to the growth and structural damage of the cathode
SEI layer is less in the high frequency region, but the impedance is still increasing in the
mid-frequency region, which is due to the decomposition of the cathode SEI layer and the
formation of the cathode–electrolyte interface (CEI) film at the anode–electrolyte interface.

The impedance magnitude in the mid-frequency range is influenced by the depletion
of the cathode’s active material, which encompasses the double-layer capacitance and
charge transfer resistance at the interface between the battery electrodes and the electrolyte.
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This interaction generates a double-layer effect when ions adsorb onto the electrode sur-
faces, resulting in two parallel and opposing charge layers surrounding the electrodes.
Sabet et al. proposed a high discharge rate employed for NCA batteries to investigate
the impact of battery aging [84]. The experimental findings indicate that, despite the
reduced growth and structural damage of the cathode SEI layer in the high-frequency
region, impedance continues to rise in the mid-frequency region due to the decomposition
of the cathode SEI layer and the formation of the cathode–electrolyte interface film at the
anode–electrolyte interface.

The EIS-based SOH estimation method is defined in terms of capacity and inter-
nal resistance from a selection of characteristic parameters with different performances,
as follows [12]:

SOH =
Cnow

C0
100%, (13)

SOH =
REOL − Rnow

REOL − Rnew
100%, (14)

where Cnow represents the maximum permissible discharge capacity, C0 signifies the stan-
dard capacity of the battery, Rnow indicates the internal resistance at the present moment,
Rnew refers to the internal resistance of a new battery, and REOL denotes the internal resis-
tance after the battery’s lifespan. Zhang et al. propose a battery model that utilizes charge
transfer resistance, temperature, and SOC as input variables, leveraging the advantages
of EIS [85]. The study examines the effects of ambient temperature, SOC, and battery
aging on impedance spectra through EIS modeling, extracting charge transfer resistance for
SOH estimation. A data-driven methodology can be employed to assess the battery health
condition, thereby circumventing the intricacies of modeling by concentrating on the ex-
traction of SOH-related information from extensive datasets [86]. Pradyumna et al. utilized
a convolutional neural network to analyze EIS data. Subsequently, they assessed the cycle
life of a lithium battery using a fully connected neural network, illustrating that the cycle
life of lithium batteries can be evaluated through neural network analysis of the impedance
behavior of multiple batteries to comprehend the aging patterns of the battery [87].

In summary, although the SOH of Li-ion batteries affects the impedance spectrum
over the full frequency range, the aging of Li-ion batteries is more prominently affected
by factors such as the electrolyte and the SEI layer. Battery aging is manifested in the
form of the growth of the SEI layer and the decomposition of the electrolyte, which in
turn leads to the growth of the battery ohmic impedance. The impedance spectrum of
medium frequency, high frequency, and ultra-high frequency is seriously sensitive to the
above factors, so the prediction of SOH for lithium batteries can be analyzed using the
ohmic impedance of EIS. In recent years, some researchers have also used non-linearities to
analyse the aging pattern of batteries, using odd random phase multi-frequency sinusoidal
to three-electrode experimental battery experiments, proving that there is a correlation
between the change of non-linearities and the aging pattern of the batteries, which provides
a new way of thinking for the researchers so that they can better quantify the causes of the
aging of the batteries [54,55].

5.2. Charge State Estimation

The impedance spectrum is intricately connected to the internal reaction mechanism of
the battery. When a perturbing current is applied to the battery, the battery system exhibits
varying reactions to different frequencies of current or voltage, which can be associated
with particular physical processes. Through qualitative analysis of the many resistive
components, one may construct a model of the power supply system and then analyze the
impedance across different frequencies, enabling the assessment of the battery’s SOC using
impedance spectra. The examination of a battery by impedance spectroscopy enables the
battery to be The impedance spectrum analysis of the battery can distinguish the impacts
of various internal components, allowing for the identification of the actual variables



Batteries 2024, 10, 414 17 of 32

influencing the SOC, hence facilitating the development of an estimation algorithm for
SOC assessment [88].

Certain investigations indicate that high-frequency and following partial medium-
frequency impedances (100 Hz–10 kHz) exhibit minimal dependence on the relaxation time,
although these impedances consistently vary with the states of the battery. This indicates
the practicality of simultaneous estimation of SOC by employing the impedance within
these ranges [89]. Battery impedance exhibits a more pronounced response to temperature
and SOC in the low-frequency domain, facilitating the detection of these parameters. Con-
versely, its response is less distinct in the high-frequency domain, rendering the impedance
characteristics across varying SOC states inadequately represented in that region [90].
Zhang et al. examined the mechanisms by which ambient temperature, state of charge, and
battery aging affect the measured impedance of the battery by electrochemical impedance
spectroscopy modeling [85,91]. Figure 8 illustrates that the initial arc is independent of
SOC across all temperature scenarios, suggesting that the SEI layer does not influence SOC.
Furthermore, it suggests that the charge transfer resistance, represented by the subsequent
arc, impacts SOC. The figure illustrates that the second impedance arc diminishes and sub-
sequently grows when the SOC declines at low temperatures. A comparable relationship is
evident at 40 °C; however, it requires the amplification of the combined first and second
impedance arcs for observation. Referring to [92], the correlation between charge transfer
resistance Rct and SOC was measured, as shown in Equation (15).

Rct ∝ (SOC(1 − SOC))−1/2. (15)

Wang et al. examined the influence of SOC and temperature on circuit parameters,
specifically analyzing the impact of cell SOC on ohmic resistance, charge transfer resistance,
and Warburg impedance at varying temperatures [93]. The findings indicated that the
sensitivity of ohmic resistance and charge transfer resistance to SOC is inferior to that of
temperature. Conversely, Warburg impedance, as illustrated in Figure 9, was observed
within the 10–95% SOC range, with Warburg resistance typically diminishing as temper-
ature increases. In the lowest SOC range of 0–5%, Warbug resistance exhibits a sudden
increase at elevated temperatures of 293 K and 303 K, whereas it demonstrates a sudden
increase across all temperatures in the greatest SOC range of 95–100%. The potential cause
for this phenomenon is that the buildup of lithium ions at the cathode and anode during
discharge and charging markedly diminishes the diffusion rate of solid-state lithium ions,
particularly at extreme states of charge, resulting in an escalation of Warburg resistance.
In summary, the influence of SOC on Warburg resistance surpasses that of ohmic resistance
and charge transfer resistance, so Warburg impedance can be utilized as a metric to estimate
the SOC of lithium-ion batteries.

In conclusion, although there is a strong correlation between the internal resistance
of Li-ion batteries and their SOC, SOC estimation can be accomplished by describing the
relationship characterized by perturbation signals. However, most of the existing studies
for the estimation of the SOC of Li-ion batteries are dominated by the use of equivalent
circuits, whose parameters are determined by impedance measurements, and the prediction
of the SOC of Li-ion batteries is achieved by using impedance components or correlations
between specific frequencies and themselves. The main reason that impedance spectra
are seldom utilized for the direct estimation of battery SOC is due to the fact that unlike
temperature and SOH, SOC does not respond as sensitively to impedance spectra in the
mid- and high-frequency regions as temperature and SOH. In the low-frequency region,
impedance spectra are more affected, and the cost of using impedance to detect battery
SOC is high.
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Figure 8. Impedance spectrum of four cells at different SOC levels after 400 aging cycles. (a) 10 ◦C,
(b) 25 ◦C, (c) 40 ◦C, (d) 55 ◦C [85].

Figure 9. Warburg resistance profiles with respect to SOC at different temperatures: (a) 273 K,
(b) 283 K, (c) 293 K, and (d) 303 K [93].

In recent years, the application of machine learning to lithium batteries has evolved to
better help researchers understand the relationship between SOC and EIS while improving
the accuracy of the models. Buchicchio et al. [94] proposed a SOC estimation method
based on EIS and equivalent circuit models to provide a compact approach to describe
the frequency and time domain behavior of the battery impedance. The proposed method
allows very efficient model training and generates a low-dimensional SOC classification
model with an accuracy of more than 93 %. It is confirmed that EIS data can distinguish
between different states of charge with good reliability. A new idea is provided for online
SOC estimation of batteries.
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5.3. Battery Fault Diagnosis

Ensuring the safe operation of Li-ion batteries is crucial; otherwise, they may suffer
performance deterioration and thermal runaway, potentially resulting in severe reper-
cussions. Prevalent lithium battery faults encompass overcharge, overdischarge, lithium
precipitation, internal short circuits, and thermal runaway [5,95].

Figure 10 illustrates the surface temperature, voltage, and dynamic impedance of a
pouch battery subjected to overcharging conditions, which indicates that overcharging
introduces excessive energy to the battery, alters its impedance, and results in overheat-
ing, potentially leading to accidents [96]. While overdischarge is less hazardous than
short-circuiting and over-charging, it nonetheless impacts the battery’s lifespan; recurrent
overdischarge may result in a permanent decrease in battery capacity and hasten the decline
of battery performance [97]. Furthermore, lithium plating is a critical concern regarding
battery aging and safety. This phenomenon typically transpires during the charging pro-
cess of lithium batteries, where lithium ions deposit on the surface of the lithium metal
within the anode materials. Ideally, this lithium metal should reintegrate into the redox
reaction; however, a significant portion transforms into ’dead lithium,’ leading to dimin-
ished capacity. In more severe instances, lithium dendrites form, causing a permanent
decline in battery capacity and hastening the degradation of battery performance [97]. In
extreme instances, lithium dendrites form, compromising the battery’s safety [98]. The
examination of impedance spectra provides critical insights into failure mechanisms, aiding
in the differentiation between normal and abnormal batteries, hence mitigating the danger
of premature failure.

Figure 10. The charging process starts at 0 s, and the overcharge starts at 3600 s, as indicated by the
arrow. (a) shows the voltage and surface temperature Tsur f variation, and (b) shows the dynamic
impedances of multiple frequencies.[96].

As demonstrated in Section 2, the impedance in the high-frequency domain correlates
with the decomposition of the electrolyte and the development of the SEI film on the
electrode material [22]. Furthermore, the impedance in this domain is minimally influenced
by extraneous variables such as the SOC levels and load current, thereby facilitating the
identification of overcharging and discharging issues in batteries. Prolonged overdischarge
results in numerous irreversible alterations, including copper dissolution [8], increased
impedance [99], and decomposition of the SEI layer [100], subsequently precipitating the
thermal runaway of the battery.

Currently, multisine-based perturbation signal is regarded as a method for monitoring
individual cells in Li-ion battery packs; however, its practical application is hindered by
space and power constraints. Carkhuff et al. introduced a compact, low-power battery
management system utilizing multi-frequency (1–1000 Hz) impedance measurements to
address the aforementioned issues by monitoring and analyzing mismatches and tempera-
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ture abnormalities in each cell [101]. Discrepancies and other thermal irregularities arise,
particularly during battery charging, discharging, and idle states, to guarantee battery
safety and efficacy. Thermal runaway resulting from overcharging can be prevented by
monitoring impedance during overcharging incidents.

The mid-frequency impedance spectrum is predominantly constrained by charge
transfer and exhibits heightened sensitivity to temperature, hence serving as a detection
parameter for thermal runaway. Lyu et al. conducted experiments on battery overcharg-
ing [96]. The results, illustrated in Figure 11, indicate that at the onset of overcharging,
the slope of the dynamic impedance in the frequency range of 30–90 Hz transitions from
negative to positive. It is noted that the impedance spectra of overcharged batteries differ
from those of normally operating batteries. Furthermore, the 70 Hz impedance is pointed
out as an example of preventing thermal runaway by disconnecting power when the slope
shifts from negative to positive during charging. Consequently, the impedance parameter
inside this frequency domain may serve as an early detection indicator for thermal runaway,
and the perturbation signal must position the characteristic frequency inside the designated
frequency range.

Figure 11. Schematic diagram of the LIB that demonstrates the feature that impedance slope turns
positive from negative when the cell starts to overcharge. (a) Optical picture of the cell at different
stages during overcharge. (b) Shape schematic of the cell at different stages. (c) Theoretical expla-
nations on impedance increasing with bubbles and bulges. (d) Expected impedance curve during
overcharge [96].

The low-frequency impedance is primarily influenced by the diffusion processes of
lithium ions in both solid and liquid phases. This diffusion phenomenon characterizes the
movement of charged and uncharged particles to equilibrate the concentration gradient
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induced by variations in electrochemical potential, thus serving as a detection parameter for
lithium precipitation. Schindler et al. conducted electrochemical impedance analysis during
voltage relaxation, executed at 10 min intervals over one hour following the charging pe-
riod [102]. They performed impedance measurements using a constant current, restricting
the minimum test frequency to 0.5 Hz to maintain brevity in the impedance measurements,
with the results illustrated in Figure 12. This posits that the recovery of these two resistance
values correlates with the depletion of live lithium on the anode surface. Koseoglou et al.
suggested a method for detecting lithium precipitation utilizing dynamic electrochemical
impedance spectroscopy for the impedance analysis of lithium-ion batteries [103]. The
low-frequency impedance dummy component of the battery is monitored in real time by
superimposing sinusoidal currents onto the charging current. The emergence of a valley
characteristic point in the low-frequency impedance dummy component during the initial
charging phase signifies lithium precipitation.

Figure 12. Experiments were conducted at ambient temperature T = −15C, initial SOC = 50%, and
charging current I = 2 C. A short impedance spectrum test plus a 10-h measurement was performed
every 10 min for one hour after charging the battery to different SOC end states, with (a) R0,rel (the
point with the imaginary part of 0) and (b) |Z|rel,5Hz (the frequency of the 5 Hz impedance real part)
two resistance values with relaxation time (different colors represent different changing SOCs) [102].

5.4. Battery Modeling

To extend battery life and guarantee safe operation, it is imperative to develop a
dependable battery management system that monitors the battery’s condition, and the
model-based algorithm for battery control and monitoring has been widely applied. Thus,
an accurate battery mathematical model is required to ensure performance and acquire
the battery parameters [104,105]. For onboard BMS applications, the equivalent circuit
model (ECM), utilizing various fundamental circuit components such as voltage sources,
resistors, and parallel configurations of resistor–capacitor combinations, is extensively
utilized to simulate the current–voltage characteristics and transient responses of lithium-
ion batteries [106], as shown in Figure 13.
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Figure 13. The examples of equivalent circuit models (ECM). (a) 1-RC circuit model; (b) 2-RC circuit
model [107].

Battery impedance is predominantly determined by ohmic internal resistance, whereas
polarization internal resistance displays significant variability relative to the SOC level [108].
To estimate the parameter of ECM impedance-related components, the square wave-based
perturbation signal, termed the hybrid pulse power characterization method (HPPC), is
employed to accurately measure the charging and discharging ohmic resistance and the
polarization internal resistance [109]. The primary objective of this square wave signal
is to evaluate the operational pulse power of the battery at various SOC levels, examine
the correlation between the response voltage and current during charging, discharging,
and resting phases, and compute the internal resistance [110]. An ECM can be developed
to replicate the operational condition of the battery based on the voltage and current
responses obtained from the HPPC test. The usual HPPC test current and voltage graphs
are illustrated in Figure 14, and its calculation formula is provided as follows [111]:

R0 =
△ U0

I
=

UB − UA
I

, (16)

Rp =
△ Up

I
=

UC − UB
I

, (17)

where R0 denotes the ohmic internal resistance; Rp signifies the polarization internal
resistance; I represents the current (A); △ U0 indicates the voltage variation associated with
the ohmic internal resistance (V); △ Up denotes the voltage variation corresponding to the
polarization internal resistance (V); UA represents the initial voltage of the discharging
work-step; UB denotes the final voltage of the discharging work-step; UC indicates the final
voltage of the stationary work-step.

Figure 14. HPPC test based direct current (DC) pulse test current curve (left) and example voltage
response (right) [111].

Like the square wave signal, the step signal has also been utilized in battery modeling.
The internal resistance of the battery encompasses ohmic internal resistance, concentrated
differential polarization internal resistance, and charge transfer internal resistance. Each
type of internal resistance can indicate various states and power characteristics of the
battery. The resistive and high-frequency regions correspond to impedance, whereas the
impedance value in the mid-frequency region is dictated by the charge transfer process and
double-layer capacitance [16]. Consequently, the internal resistance value in this frequency
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range can be assessed using the step signal-based approach, termed direct current internal
resistance test method (DCIR).

The DCIR is a prevalent method for assessing the DC internal resistance by utilizing the
dynamic features of the battery, capitalizing on the stability of the battery’s SOC following a
brief alteration in the operating current. Pan et al. introduced a methodology for identifying
the components of direct current internal resistance via both DC and alternating current
internal resistance testing [112]. They employed the Butler–Volmer equation and a second-
order ECM to simulate the time constants that characterize interfacial charge transfer
and concentration polarization processes. Figure 15 illustrates that the final results of
electrochemical polarization internal resistance identification exhibit a minimum error
of under 5% compared to the electrochemical impedance test results and an average
error of 3.7% to the EIS ohmic internal resistance test results, thereby confirming the
method’s reliability.

EIS test

experimental value

error

Figure 15. Comparison of cell polarization internal resistance impedance spectral values and experi-
mental measurements and their errors [112].

While the DCIR test technique can effectively characterize and quantify ohmic internal
resistance, charge transfer internal resistance, and polarization internal resistance, it proves
challenging to differentiate between charge transfer internal resistance and ohmic internal
resistance during actual measurements [113]. This difficulty arises because the diffusion
rate of lithium ions within the battery is significantly slower than the interfacial charge
transfer rate [114]. Typically, the interfacial charge transfer duration is considerably shorter
than the DCIR sampling interval. Consequently, the instantaneous internal resistance
associated with voltage fluctuations predominantly comprises ohmic internal resistance
and polarization internal resistance. Therefore, to delineate the resistance associated with
charge transfer for advanced battery modeling, a characterization method including a
broadband frequency range should be contemplated.

The ECM necessitates great precision in its bandwidth, which should encompass the
frequency range of the realistic driving cycle; hence, frequency domain battery models
and associated characterization methods have garnered considerable interest. The sine-
sweep-based signal, such as EIS, serves as the primary technique not only for analyzing
and characterizing the electrochemical properties of lithium-ion batteries but also for
battery modeling [115]. Figure 16 illustrates the LIB EIS plot alongside its fractional-order
equivalent circuit model, which is segmented into three distinct regions: a low-frequency
straight segment, a mid-frequency semi-circle segment, and a high-frequency segment,
where the resistance R0 in the high-frequency region denotes the battery’s ohmic resistance.
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The mid-frequency curve is not a semicircle, indicating that the conventional RC
network structure is inadequate for modeling the battery’s characteristics in this frequency
range; thus, a constant phase element (CPE) should be utilized in place of a capacitor.
Additionally, a CPE that represents the properties of an imperfect double-layer capacitor has
been employed to model the depressed semicircles in the Nyquist plots [116], thus leading
to the proposal of a fractional order equivalent circuit model [117]. Yang et al. introduced a
simplified fractional order impedance model employing a genetic method for parameter
identification, achieving a voltage inaccuracy of less than 0.5% [118]. Mu et al. [119] and
Xiong et al. [120] employed a fractional order equivalent circuit model and Kalman filtering
to assess the state of charge and conduct reliability analysis of lithium batteries.

The low-frequency component pertains to the diffusion effect of the battery’s positive
and negative electrodes, represented by ZFSW for Warburg impedance. Figure 16 illustrates
that the prevalent equivalent circuit elements for simulating diffusion behavior include
finite space Warburg (FSW), finite length Warburg (FLW), and CPE [27]. The Randles
model comprises an ohmic resistor, several resistors and capacitors arranged in parallel,
and Warburg impedance, enabling the model to analyze and simulate large time-constant
diffusion processes [121].

Figure 16. Typical impedance spectrum of a Li-ion cell and common EC to model the impedance
behavior. Four different loss processes can be identified. The low frequency diffusion behavior is
typically modeled by (1) a finite space Warburg, (2) a constant phase element, or (3) a finite length
Warburg [27].

The frequency domain equivalent circuit model adopts the measured impedance data
to fit the model parameters, which can more accurately describe the dynamic characteristics
of the lithium-ion battery, and the model accuracy is higher than that of the conventional
time domain ECM. Meanwhile, equivalent circuit models are now often used to detect
the SOC and SOH of battery packs. The model-based approach to detecting the SOH
of a battery is to consider the whole battery as one ECM or to consider each individual
cell as one ECM and then connect each ECM to each other. For example, Bi et al. [122]
established a second-order equivalent circuit model for resistive-capacitive circuits and
optimized the state space of the model by combining it with a genetic resampling particle
filter to improve the model accuracy. Finally, the study, in conjunction with real data,
demonstrated better performance than the traditional particle filtering method. Diao
et al. [123] found that there is a link between the maximum available energy (MAE) of the
battery pack and the degradation and inconsistency of the battery pack, based on which
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a first-order ECM model was developed, and the ECM was used to calculate the MAE of
each individual cell to obtain the MAE of the whole battery pack. This method of using the
MAE to study the aging of battery packs provides a new way of thinking for researchers.
However, the method of detecting the SOH of lithium batteries using ECM will have a
conflict between accuracy and computational effort. To solve the above problems, the
researchers proposed to integrate battery pack SOH and inconsistency modeling to predict
the SOH of the battery pack. The former is to divide the aging of the battery pack into the
degradation of individual cells and the consistent degradation of the whole battery, model
the inconsistency of different parameters of each individual cell in the aging of the battery,
and compute the reversible loss due to the inconsistency to derive the MAE of the battery
pack [124]. Figure 17 shows a specific flow chart. The latter is inconsistency modeling.
In terms of inconsistency modeling, Xu et al. [125] performed SOH estimation for each
battery and obtained the SOH difference by obtaining the voltage of each battery. Using
the method of wavelet analysis, more detailed battery information can be obtained.

Figure 17. A scheme for battery pack state-of-health estimation based on the present (maximum)
available energy [124].

For the detection of battery pack SOC, the current mainstream method is also pre-
dicted by modeling the battery pack. This method has high accuracy and reliability and
is suitable for real-time applications [126]. For the detection of battery pack SOC, the
current mainstream method is also predicted by modeling the battery pack. This method
has high accuracy and reliability and is suitable for real-time applications. In practice,
inconsistencies in the internal and external parameters of the battery can lead to inaccurate
SOC measurements. These factors include differences in capacity, differences in internal
resistance, and the way the battery is connected. Inconsistencies in internal parameters can
be attributed to design and assembly factors. Differences in internal resistance can lead to
higher currents between cells, resulting in capacity degradation [127]. In terms of battery
connection methods, parallel and then series battery packs can better reduce the effects
of variations in battery parameters and greatly increase the usable capacity and power of
the battery packs [128]. In the case of the battery connection methods, parallel and then
series battery packs can better reduce the effects of variations in battery parameters and
greatly increase the usable capacity and power of the battery packs [129]. Xiong et al. [130]
used capacity and impedance as indicators to establish a parametric battery model and
used Adaptive Extended Kalman Filter to estimate the SOC, and the results showed that
the SOC error of the battery pack was less than 2%. There are also researchers’ methods
to estimate the SOC for each unit in the battery. Chen et al. [131] built an ECM model
consisting of an open circuit voltage source and a series RC network for each individual
cell in the battery pack, and used Kalman Filter algorithm to estimate the SOC for each
individual cell. The accuracy of this method is high, but when the number of cells is large,
the computation is too large for the case. To improve the performance and reduce the
inconsistency, some researchers have also proposed to let the first cell that reaches the
cut-off voltage as a representative cell to estimate the SOC of the battery pack [132].

6. Discussion and Prospects

Currently, battery impedance has advanced considerably in evaluating the perfor-
mance of electrochemical energy storage, safety monitoring, and battery management
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system (BMS) design. Despite the utilization of numerous characterization approaches,
including the innovative perturbation signals method, unresolved challenges persist as the
onboard practical implementation for energy storage expands, and the expectations for
safety, dependability, and capacity intensify. Future research priorities and development
directions will concentrate on the following aspects:

(1) The impedance measurement process is vulnerable to interference from various fac-
tors, including noise and temperature. Additionally, the detection of internal re-
sistance requires enhancement for onboard practical applications. Therefore, it is
essential to investigate new testing methods and technologies, potentially integrating
deep learning and neural network algorithms to enhance the identification of dynamic
changes in impedance measurement.

(2) Regardless of the ability of contemporary mainstream perturbation signals to encom-
pass measurements within the accessible frequency domain, each perturbation signal
exhibits a blind spot in impedance measurement, preventing the comprehensive
assessment of the entire frequency spectrum. Furthermore, each signal possesses
inherent limitations; for instance, the pseudo-random sequence signal, while offering
rapid measurement, suffers from a low signal-to-noise ratio in comparison to alterna-
tive signals. Consequently, comprehensive investigation and implementation of the
signals are required.

(3) Further study is required on the impedance properties of batteries throughout various
operating situations, particularly in the mid and low-frequency ranges, to facilitate im-
proved battery modeling and more precise impedance measurements. The impedance
measuring process should be streamlined, and more cost-effective and easily imple-
mentable methods must be developed to accommodate various regional settings and
onboard application scenarios.

(4) As the energy storage industry continues to evolve, many new issues arise, such as
volatility in the energy system and the tension between the energy supplier and the
demand side [133]. The relationship between new energy systems and the power
industry is becoming more and more intricate, with new connections being made in
all sectors, and even more so between education and practice. In this interdisciplinary
study of energy, the new field of energy informatics plays an important role. In
order to solve problems, traditional energy science can be combined with the current
new methods of machine learning [134]. Therefore, for lithium battery research, it
is important to combine research, education, and practice for the development of
energy informatics. Currently, many lithium battery impedance testing techniques
can only be performed in the laboratory for economic reasons. Laboratories need
specialists with skills related to managing and analysing complex data on batteries,
the ability to address the challenges of future integrated energy systems and a good
educational philosophy of energy informatics. When training students, researchers
should focus not only on theoretical understanding but also on the development of
practical skills [135]. In this way, researchers will be able to seize the opportunity
to lead their research teams to success and break through the limitations of lithium
battery testing technology from the laboratory to practical applications.

In summary, battery impedance measurement techniques will help sustain the new
energy industry and popularize chemical power applications. Continuous research and
innovation on battery impedance measurement methods, variables, applications, and mea-
surement improvement by comprehensive evaluation of multiple factors, data sampling
optimization, battery internal resistance database establishment, and machine learning tech-
nology make impedance measurement methods more advanced, accurate, and applicable
to a variety of complex working conditions.

7. Conclusions

This paper discusses the main types of perturbation signals used to measure battery
impedance and their respective advantages and disadvantages. The paper elucidates and
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compares the precise composition of each type of perturbation signal, such as sinusoidal
sweep signals, step signals, square wave signals, pseudo-random sequence signals, and
multi-sine signals. The report also explores the advantages and disadvantages of each
perturbation signal through theoretical and application evaluations. These signals can be
affected by various external factors and other influences in practical applications, which can
cause errors in the measurement results, so future research should enhance the reliability
and stability of impedance measurements.

The factors affecting impedance measurements, such as signal-to-noise ratio, signal
amplitude and power spectrum, are also analyzed. The emerging perturbation signals used
for impedance measurement have some of the above problems and do not allow for accurate
measurements over the full frequency band. When the perturbation signal amplitude is too
large, the lithium battery will be non-linear. In order to improve the understanding of the
impedance spectrum, some researchers have also launched a study on the non-linearity
of the battery, hoping to extract the information containing the impedance spectrum from
the non-linearity of the battery. The current research trend is to design a simple, efficient,
accurate and cost-effective impedance testing technique for in-vehicle applications, and the
signal generator and data acquisition device should be further optimized to be suitable for
existing BMSs.

The applications of using perturbation signals to characterize battery impedance
are reviewed, and the future prospects of impedance characterization methods are out-
lined. Also, this paper expresses that there are many intricate relationships between the
battery impedance response and the internal chemical reaction mechanism and physical
properties of Li-ion batteries, some parts of which are difficult to express. To solve the above-
mentioned complexities, a more accurate battery impedance model should be developed.
Batteries are affected by multiple factors such as temperature, SOC, and SOH coupling, and
it is difficult to delineate the boundaries between the impedance characteristics of Li-ion
battery impedance exhibited by different factors. Therefore, it is necessary to study and
understand the correlation between different factors and impedance characteristics more
deeply so that the interface between impedance changes caused by different factors can be
more obvious.

This review establishes the theoretical framework of perturbation signals for onboard
impedance characterization methods. Impedance spectra are also discussed with respect
to their application to battery packs; this motivates researchers to further investigate and
apply impedance spectroscopy as a reliable and effective tool for battery management and
provides valuable insights for readers aiming to develop the optimal range of applications
for battery BMS.
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