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Abstract: Energy storage technologies have experienced significant advancements in recent decades,
driven by the growing demand for efficient and sustainable energy solutions. The limitations
associated with lithium’s supply chain, cost, and safety concerns have prompted the exploration
of alternative battery chemistries. For this reason, research to replace widespread lithium batteries
with sodium-ion batteries has received more and more attention. In the present work, we report
cutting-edge research, where we explored a wide range of compositions of cathode materials for
Na-ion batteries by first-principles calculations using workflow chains developed within the AiiDA
framework. We trained crystal graph convolutional neural networks and geometric crystal graph
neural networks, and we demonstrate the ability of the machine learning algorithms to predict the
formation energy of the candidate materials as calculated by the density functional theory. This
materials discovery approach is disruptive and significantly faster than traditional physics-based
computational methods.

Keywords: DFT calculations; neural networks; machine learning; electrochemical energy storage;
Na-ion; high-throughput calculations

1. Introduction

As global technology advances, humanity faces significant challenges in terms of
pollution and climate impact. The current trajectory is unsustainable; while technological
progress improves our quality of life, it simultaneously endangers the planet. A critical
shift is necessary, from relying on fossil fuels like oil and coal for energy production to
adopting renewable energy sources [1]. Renewable energy primarily involves converting
power from the Sun, wind, and oceans into electricity. However, these energy sources do
not incessantly produce power, creating a need for effective energy storage solutions.

Lithium-ion batteries (LIBs) have been highly successful in meeting energy storage
demands in recent years [2]. Yet, with the growing energy needs, particularly in sectors like
transportation where the shift from fossil fuels to electricity is accelerating, LIBs face two
major challenges: an increase in the cost of Li due to its limited availability with respect to
the increasing demand; and safety concerns related to the reactivity of lithium with oxygen.
Sodium-ion batteries (NIBs) offer a promising alternative to LIBs. Sodium is abundant and
more stable than lithium, making NIBs an attractive option [3]. Additionally, NIBs are safer
than LIBs due to sodium’s lower reactivity compared to lithium, which mitigates the risks
associated with flammable batteries. Actually, NIBs are rechargeable batteries analogous
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to LIBs, in which both cathodes use the intercalation reaction mechanism. Sodium-based
cathodes have high operating potentials and high capacities, potentially comparable to
lithium-based ones [4–7]. Consequently, the combination of strong performance and lower
costs, along with the ability to leverage existing technology and production methods
developed for LIBs without incurring additional expenses, has fueled growing interest in
these systems.

Sodium cathode material based on layered transition metal (M) oxide (LTMO), NaxMO2,
is one of the more promising classes of materials to consider [8,9]. Indeed, NaxMO2 materials
exhibit reversible phase transitions that enhance the stability of batteries during charge–
discharge cycles. LTMO is classified as On and Pn depending on its octahedral and prismatic
crystal phase, respectively, where n counts the number of transition metal layers in the unit
cell. It has been found that the O3–P3 and P2–O2 phase transitions do not break the M–O
bond during the electrochemical cycle, saving the cathode from damages. However, the
P2–O2 phase transition requires a minimal transformation of the crystal, preserving the
structural integrity of the P2-type phase and ensuring robust cycling stability. Moreover, the
spacing between the metal layers is larger in the P2- than in the O3-type phase, allowing the
enhancement of the Na+-ion’s mobility. On the other hand, the O3-type phase can suffer
complex distortion during the charge–discharge process.

Different strategies have been proposed to increase the density of energy and to
enhance stability, preventing Jahn–Teller distortions [10,11] in NIB LTMO cathode materials,
including structural modulation, surface modification, and elemental doping [12–16].

Machine learning (ML) has become a widely utilized technique, enabling researchers
to accelerate their work using trained algorithms. In materials science, ML is applied to
predict material properties, significantly reducing the time and computational resources
needed compared to traditional numerical physical models, which are often resource-
intensive and rely on modern supercomputers [17]. In the present work, we propose
a computational study to enhance the stability of NaxMnO2 cathode materials by the
substitutional doping of Mn elements with two different methods: (1) high-throughput
first principles calculations based on density functional theory (DFT); and (2) machine
learning techniques based on the training of a convolutional neural network (CNN) from a
dataset generated by DFT calculations. The stability is established by the DFT calculations
or CNN predictions to determine the formation energy (more stable crystals have lower
formation energy). We compare the two methods to assess the predictive capability of the
CNN upon training.

Our previous work [18] provided details on the ML methodology and computational
architecture employed to predict the formation energy using the Materials Project dataset.
The design, training process, and computational tools utilized to achieve accurate predic-
tions on the dataset have been illustrated. However, the focus of the present work diverges
from this approach. Instead of exploring the initial training and methodology, this study
aims to evaluate the performance of the pre-trained model on an entirely different dataset
that was not included in the original training phase. Specifically, the assessment centers
on NIB systems, chosen for their distinctive properties, to determine the extent to which
the pre-trained model is capable of generalizing to new and unseen data. By doing so, this
work seeks to validate the robustness and transferability of the pre-trained model, offering
insights into its broader applicability and limitations when applied to diverse datasets.

2. Materials and Methods
2.1. Base Crystal NaMnO2 and Doping

The P2-type crystal cathode materials of the present study were generated from
the base P2-NaMnO2 crystal by the substitution of randomly selected Mn atoms with
the first-row transition metals Ni and Ti. The procedure of the substitution is shown
in Section 2.3 (Computational Workflow). The base crystal where the Mn atoms were
substituted was created as the supercell 3 × 2 × 1 of the crystal mp-971647 of the Materials
Project database [19] so that 48 atoms were present therein. Preliminary studies indicated
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that Ti substitution enables the better optimization of the stability and intercalation potential
compared to other elements such as V, Cr, Cu, Fe, and Zn [18].

2.2. First-Principles Method

To characterize the structural and electronic properties of the materials under study, a
first-principles approach was adopted using the Plane-Wave Self-Consistent Field (PWSCF)
code, which is based on density functional theory and is part of the Quantum ESPRESSO
suite [20,21]. The PWSCF code conducts various types of self-consistent calculations of
electronic structural properties within the framework of DFT [22,23], utilizing a plane-wave
(PW) basis set and pseudopotentials (PP).

The electron–ion interaction was described using Rappe–Rabe–Kaxiras–Joannopoulos
ultrasoft pseudopotentials with nonlinear core correction, while the exchange–correlation
energies were modeled using the generalized gradient approximation (GGA) with the
Perdew–Burke–Ernzerhof (PBE) functional [24]. A total of 9, 15, 6, 12, and 10 electrons were
explicitly considered in the wave functions for Na, Mn, O, Ti, and Ni, respectively. The
electronic wave functions were expanded using a plane-wave basis set with a kinetic energy
cut-off of 80 Ry, while the charge density cutoff was set to 640 Ry (eight times greater).
A 4 × 4 × 4 Monkhorst-Pack k-point mesh [25] was employed. Additionally, Marzari–
Vanderbilt smearing [26] with a width of 0.01 Ry was applied. In our calculations, we
considered the spin polarization. Although the generalized gradient approximation (GGA)
approach provides accurate predictions for many materials’ properties, it is not consistently
reliable for all cases. Specifically, GGA functionals struggle with accurately describing
electronic correlations in the partially occupied 3d, 4d, and 5d shells of transition metals.
This limitation often leads to the underestimation of the energy band gap in transition
metal oxides. To address this issue, the Hubbard U self-interaction correction (DFT + U
method) was adopted to consider the d–orbitals correlation [27]. We assumed the values
UMn = 4.7 eV, UNi = 6.95 eV, and UTi = 3.22 eV for the Hubbard parameters.

Periodic boundary conditions (PBC), which allow for the simulation of an infinitely
extended system, were applied in all calculations in combination with the supercell approx-
imation. To determine reliable values for the kinetic energy cutoff, k-point sampling, and
smearing width, preliminary test calculations were performed on the pseudopotentials.
Total energy, forces, and stress were verified to match the tolerances of 0.001 Ry/atom,
0.0001 Ry/Bohr, and 0.1 kbar, respectively. The conjugate gradient (CG) minimization
method was employed for energy minimization, with a convergence threshold for self-
consistency set at 10−6 Ry. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton
algorithm was used for geometry optimization, which was considered achieved when
the following two conditions were met: (i) the energy change between two consecutive
self-consistent field (SCF) steps was less than 10−4 Ry, and (ii) the maximum force acting on
an atom was less than 10−3 Ry/Bohr. We also used the BFGS quasi-Newton algorithm for
variable cell relaxation, adding the additional condition that all components of the stress
tensor should be smaller than 0.05 GPa.

To evaluate the impact of the doping in the starting structure (P2-layered oxide
NaMnO2), several structures were built by replacing the Mn atoms (from 1 up to 12)
with Ti and Ni atoms. These systems were inspected by calculating the formation energy.

The formation energy Ef is calculated by using the following formula:

E f =
Etot

sys − nNaEbulk
Na − nMnEbulk

Mn − nTiEbulk
Ti − nNiEbulk

Ni − 1
2 nOEO2

Ntot
(1)

where Etot
sys is the total energy of the system, Ntot is the total number of atoms contained

in the supercell, Ebulk
X is the total energy per atom of the species X (Na, Mn, Ti, and Ni) in

the most stable bulk phase, EO2 is the total energy of the oxygen molecule, and nX is the
number of atoms of the species X (Na, Mn, Ti, Ni, and O).



Batteries 2024, 10, 431 4 of 12

2.3. Computational Workflow

The search for optimal cathodic materials in terms of formation energy was addressed
here through the systematic screening of numerous materials. To validate the ML model,
the values obtained through artificial intelligence (AI) for the formation energy were
compared with their counterparts obtained through the DFT calculations, which were
conducted for each of the candidates. These DFT calculations, as well as the methodologies
employed to generate material variants, were based on well-established procedures, and
this circumstance made it possible to automate and integrate them within a computational
workflow chain (workchain).

A workchain can be defined as the total or partial automation of a work process,
divided into simpler tasks processed sequentially or in parallel according to a logical
model. The workchain employed here for the screening of potential cathodic materials
was developed within the AiiDA (Automated Interactive Infrastructure and Database)
framework [28–30], an open-source workflow management system devised for compu-
tational science. The AiiDA infrastructure is implemented in the Python language and
has interfaces that allow it to be flexible. The management of DFT calculations within the
workflow described here was performed using the plugin for the Quantum ESPRESSO
code [31].

The workflow implementation was based on the AiiDA workchain object, which
manages the execution of multiple long-duration calculations through the definition of
sub-units called steps, ensuring that progress is not lost in case of sudden interruptions.

The tasks for each step are schematically depicted in Figure 1. They consist of
the following:

1. Random generator. This involves creating a variation from the starting structure in a
random way. Starting from the initial structure S0 (NaMnO2), alternative structures
are randomly generated by applying one or more rules. The rules adopted can be
summarized as follows.

• Doping via the replacement of manganese atoms with transition metals. This
rule takes, as the input, the initial structure S0, a list of Ntm transition metals, the
minimum number of manganese atoms to be maintained within the structure
min(#Mn), and multiplier steps that define the number of atoms to be replaced at a
time. The output is S1, a structure varied by replacing some of the manganese
atoms with transition metals belonging to the list of the Ntm transition metals.
The site positions of the manganese atoms to be replaced are randomly chosen.
The number of the replaced manganese atoms is also randomly chosen such that
the number of manganese atoms in S1 is greater or equal to min(#Mn).

• Variation in the number of intercalated ions to define structures with fewer or no
sodium atoms. This rule takes as the input the initial structure S0. The output is
S1, a structure varied by removing a randomly chosen number of sodium atoms.

2. Symmetry equivalence check. The symmetry equivalence check task compares the
structure generated by the random generator task with all the structures for which
the calculation has already been performed to determine whether the structures
are symmetrically equivalent. The algorithm is based on the open-source solution
reported in the ref. [32] that was implemented in the Python tool Atomic Simulation
Environment (ASE) [33].

3. Computing procedure. The computing procedure task submits the DFT + U calcula-
tion jobs to the ENEA HPC computing infrastructure [34] to extract the quantities of
interest for this study.

4. Data store. The data store task stores the results of the DFT + U calculation in the
AiiDA database and in an external Mongo DB instance. To accomplish this, the task
consists of two parts:

• Adapter. This organizes the data extracted from the parser into the chosen format
(json in our case).



Batteries 2024, 10, 431 5 of 12

• Uploader. This loads the data with the new format into the database.
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2.4. Machine Learning Method

In this study, we explored a wide combinatorial space of material candidates for
cathode batteries by generating numerous alternatives through the random substitution
of crystal elements. To evaluate the properties of this extensive dataset, consisting of
systems generated by doping the initial NaMnO2 structure, we adopted a data-driven
approach. The geometric crystal graph neural network (GeoCGNN) [35] was used to
predict the formation energies of the crystals. The GeoCGNN enhances the earlier crystal
graph convolutional neural network (CGCNN) [36] version by integrating detailed spatial
geometric information into the model. Both the CGCNN and GeoCGNN architectures
leverage message-passing neural networks (MPNNs) [37] and gated convolution.

The input of the GeoCGNN model is a graph generated on top of the crystal structure
provided as a crystallographic information file (CIF) where the nodes represent the atoms
in the crystal and the edges represent the interactions between them. The edges are defined
for atoms separated by less than 8 Å, with a maximum of 12 neighbors considered for each
atom. The nodes are encoded as one-hot feature vectors based on atomic properties, while
the edge feature vectors are the distance vectors between interacting atoms. Additionally,
the model incorporates descriptors that encode lattice vectors and the cell volume. The
output is typically a scalar property of the material. In this case, the target property is the
formation energy.

The network was trained on a large dataset of materials obtained from the Materials
Project (MP) database [19], excluding only structures containing noble gasses. The data
were stored on Red Hat Ceph Storage [38], a solution tailored for data analytics and artificial
intelligence. We used 80% of the dataset, comprising 126,162 materials, for training, with
the remaining 20% split equally for validation and testing. The training process utilized the
Stochastic Gradient Descent (SGD) [39] method with a learning rate of 0.001, a batch size of
64, and mean squared error (MSE) as the loss function for the regression task. The training
ran for a maximum of 500 epochs, with the best-performing hyperparameters selected
based on validation error.

During the inference phase, the trained model was used to estimate the formation
energies of the candidate material for cathode batteries. A total of 8071 crystal structures
were randomly generated based on the rules outlined in Section 2.3 (Computational Work-
flow). Since these new structures are not present in the MP database, DFT calculations were
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performed to compare the obtained formation energy values with those predicted by the
model. To efficiently manage the large number of materials, both the random generation of
crystal structures and the DFT calculations were automated using the workflow detailed in
the previous section (Section 2.3).

3. Results and Discussion
3.1. Base Crystal Structure

As we have reported above, the NaMnO2 base crystal was modeled using the supercell
3 × 2 × 1 of the crystal mp-971647 of the Materials Project database [19]. The resulting
supercell was monoclinic with a = 9.30 Å; b = 6.20 Å; c = 10.90 Å; α = 90◦; β = 90◦; γ = 120◦;
and Ntot = 48 atoms (12 Na atoms, 12 Mn atoms, and 24 O atoms), as depicted in Figure 2. In
this P2-layered oxide, the Na and Mn layers alternated at a distance of 2.73 Å (the distance
between layers of the same type was doubled at 5.45 Å). Each Mn layer had two O layers
(above and below) at a distance of 0.95 Å. The Na layer formed a hexagonal structure
with a side aNa = 3.10 Å in which each Na atom had six Na atoms at distance dNa-Na = aNa,
and the stacking sequence was ABA. Equally, the Mn layer formed the same hexagonal
structure but with an overlapping stacking sequence (dMn-Mn = aMn = 3.10 Å). Each Na(Mn)
atom had six Mn(Na) at a distance of dNa-Mn = 3.26 Å and had six O atoms at a distance of
dNa-O = 2.52 Å (dMn-O = 2.03 Å). Upon the substitution of randomly selected Mn atoms, each
supercell geometry was fully relaxed, allowing for the optimization of the cell parameters
(variable cell relax). As an example, here we report the cell parameters of the base crystal
with the Na-ions. Upon the cell relaxation, the structure distorted, increasing the volume by
about 2.6% and losing its hexagonal shape. The cell parameters were a = 9.77 Å; b = 5.86 Å;
c = 10.92 Å; α = 90◦; β = 90◦; and γ = 116.7◦. The Na and Mn layers’ distance remained the
same, but the O layers increased their distance from the Mn layers up to 1.12 Å. The Na(Mg)
layers lost the hexagonal symmetry and then each Na(Mn) atom had two Na(Mn) atoms at
dNa-Na (dMn-Mn) = 2.93 Å and four Na(Mn) atoms at dNa-Na (dMn-Mn) = 3.26 Å. Likewise, two
pairs of Na-Mn atoms approached each other, reducing their distance at dNa-Mn = 3.23 Å,
while four pairs of Na-Mn atoms moved apart each other, increasing their distance at
dNa-Mn = 3.32 Å. For the oxygen, the situation was the opposite, as the distance was reduced
to dMn-O = 1.97 Å for four pairs of Mn-O atoms and was increased to dMn-O = 2.49 Å for
two pairs of Mn-O atoms. The distances between the Na and O atoms were reduced to
dNa-O = 2.41 Å for four pairs and to dNa-O = 2.47 Å for two pairs.
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3.2. Formation Energy

The formation energy was calculated using Equation (1) for the base crystal NaMnO2;
Ef was −2.01 eV for the non-relaxed system and −2.12 eV for the relaxed one. To make a
comparison between the predicted and actual formation energies, it was necessary to create
a test dataset useful for this case. Creating a good test dataset is crucial for evaluating the
performance and the generalizability of a deep learning (DL) model.

Firstly, the test dataset should represent the entire distribution of data that the DL
model will encounter in common usage [40,41]. If the test dataset does not represent the
diversity of the real usage, the evaluation metrics will be misleading. AiiDA workflow
rules have made it possible to represent this diversity by creating a balanced dataset.

Secondly, the test dataset should be large enough to provide reliable performance
estimates [40,42]. This was difficult to achieve because of the long times required for the
simulations. Despite these difficulties, the dataset contained more than 500 calculations.

Lastly, it should be ensured that the test dataset does not include information from
the training dataset [40,41]. In this case, none of our calculated systems were stored in
Materials Project database.

The test dataset was created with all these principles in mind by using the AiiDA work-
flow. In Figure 3, we compare and validate predictions from our ML method with results
from the DFT calculations. On the left, the predictions of Ef for the 8071 non-relaxed crystal
structures randomly generated are depicted in gray circles, showing a negative range of
values between −3 eV and −1 eV. Moreover, some systems are highlighted by circles of
different colors and labeled with their specific composition. This evidences that titanium
doping increased the stability of the system (more negative Ef), while nickel doping reduced
it (less negative Ef). Indeed, Na12Ti12O24 (violet circle) was the system with the lowest Ef
(−2.78 eV); conversely, Na12Ni12O24 was the system (dark green circle) with the highest
value of Ef (−1.20 eV). The base crystal Na12Mn12O24 (black circle), placed in the middle of
the range (−1.88 eV), was in an intermediate state of stability. The substitution of one man-
ganese atom with a titanium atom (Na12Mn11TiO24; red circle; Ef = −1.97 eV) decreased
the formation energy by 0.09 eV, thereby increasing the system’s stability. Conversely,
the substitution of a manganese atom with a nickel atom (Na12Mn11NiO24; brown circle;
Ef = −1.84 eV) increased the formation energy by 0.04 eV, making the structure less stable.
In Figure 3, predictions are also reported for the system Na12Mn4Ni4Ti4O24 (orange circles)
with an equal composition of the three transition metals (Mn, Ti, and Ni) and for the systems
in which two transition metals have the same concentration, i.e., Na12Mn3Ni6Ti3O24 (ma-
genta circles), Na12Mn6Ni3Ti3O24 (green circles), and Na12Mn3Ni3Ti6O24 (light blue circles).
Since, for these compositions, there were several different configurations, in addition to
the range of the variability in the formation energy, the mean value <Ef> and the standard
deviation σEf were calculated to evaluate statistical uncertainty. For the Na12Mn4Ni4Ti4O24
system, the range was from −2.10 to −2.00 eV; <Ef> = −2.06 eV; and σEf = 0.01 eV. For the
Na12Mn3Ni6Ti3O24 system, the range was from −1.87 to −1.80 eV; <Ef> = −1.85 eV; and
σEf = 0.01 eV. For the Na12Mn6Ni3Ti3O24 system, the range was from −2.05 to −1.98 eV;
<Ef> = −2.02 eV; and σEf = 0.02 eV. For the Na12Mn3Ni3Ti6O24 system, the range was from
−2.30 to −2.24 eV; <Ef> = −2.27 eV; and σEf = 0.01 eV. In Figure 3, statistical uncertainty
is indicated by black solid lines centered in the mean values and limited by the standard
deviations. On the right side of Figure 3, the calculated values of the formation energy
of the non-relaxed systems using the first-principles method are shown by colored cross
symbols. At least one of the systems highlighted on the left in the figure was analyzed by
DFT calculations by evaluating its formation energy. Notably, we see that the same order
of stability as the predicted formation energy was found. The Na12Ti12O24 system (violet
cross) was the most stable, with Ef = −2.52 eV; the Na12Ni12O24 (dark green cross) system
was the least stable, with Ef = −1.15 eV. The base crystal Na12Mn12O24 (black cross) had a
formation energy value equal to −2.01 eV; this value was between the ones corresponding
to the Na12Mn11TiO24 system (red cross; Ef = −2.03 eV) and to the Na12Mn11NiO24 system
(brown cross; Ef = −1.93 eV), respectively. The calculated values of the formation energy of
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the Na12Mn4Ni4Ti4O24 system (orange crosses) ranged from −1.98 to −1.94 eV. Finally, we
list also the calculated Ef values for the systems in which two transition metals had the same
concentration, i.e., Na12Mn3Ni6Ti3O24 (magenta crosses; range from −1.80 to −1.77 eV),
Na12Mn6Ni3Ti3O24 (green crosses; range from −2.07 to −1.96 eV), and Na12Mn4Ni4Ti4O24
(light blue crosses; range from −2.15 to −2.12 eV).
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Figure 3. A comparison of the predicted (circles) and calculated (crosses) formation energy for
the non-relaxed systems. For the Na12Mn3Ni6Ti3O24, Na12Mn6Ni3Ti3O24, Na12Mn4Ni4Ti4O24, and
Na12Mn3Ni3Ti6O24 systems, the statistical uncertainty of the predicted formation energies is indicated
by black solid lines centered in the mean values and limited by the standard deviations.

To further assess the predictive performance of the machine learning model, the
predicted formation energies were compared against the calculated ones obtained through
the DFT method managed by the AiiDA workflow. In this second stage, the DFT-calculated
Ef was relative to that of the relaxed systems. Figure 4 shows the scatter plots of the
predicted versus calculated formation energies for two sets of systems: the non-relaxed
systems (red circles) are on panel (a) and the relaxed systems (blue circles) are on panel
(b). Each data point represents a unique configuration of the material composition. As
illustrated, most of the points lie close to the y = x line (black dashed line), indicating a strong
agreement between the predictions and the calculated values. The tight clustering around
this line demonstrates the model’s accuracy across a wide range of formation energies.

Furthermore, the accuracy of the predictions was quantified using the mean absolute
error (MAE), the coefficient of determination (R2), and Pearson’s r correlation, as reported
in Table 1. From the comparison of the scatter plots, two key observations emerge: (1) the
GeoCGNN could provide reasonably accurate predictions for the formation energy using
non-relaxed systems directly from the input CIF; (2) the accuracy improved for the relaxed
systems, as indicated by the closer alignment of points with the diagonal in the plot of
Figure 4b. The first observation is significant because we trained the DL model to make
predictions while saving time, bypassing the need for computationally expensive first-
principles calculations. The relaxed structure was only obtained after the calculation was
complete (with both the formation energy and the relaxed structure as outputs). As far
as we know, no DL models currently exist that could predict the geometry of the relaxed
system. Therefore, the standard approach is to predict the formation energy of the non-
relaxed crystal structure. Our results show that the GeoCGNN achieved satisfying accuracy
in this task. The second observation is equally important, as the best performance of the
predictive algorithms for relaxed systems agrees with the fact that Quantum Espresso
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calculates the formation energy of relaxed structures. This is confirmation that the training
of the GeoCGNN was successful.
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Table 1. Mean absolute error (MAE), coefficient of determination (R2), and Pearson’s correlation
coefficient (r) were calculated by comparing predicted and calculated formation energies for non-
relaxed and relaxed systems.

Systems MAE (eV) R2 Pearson’s r

Non-relaxed 0.166 0.665 0.960

Relaxed 0.052 0.944 0.975

4. Conclusions

In conclusion, to evaluate the stability of substitutionally doped P2-layered oxide
NaMnO2 cathode materials, we adopted two different computational methods: (1) com-
putationally demanding, high-throughput, first-principles DFT calculations; and (2) an
ML technique based on the training of a GeoCGNN. In both cases, we explored a wide
combinatorial space of material candidates for cathode batteries by generating numerous
alternative compositions through the random substitution of Mn atoms. The DFT calcu-
lations were automated and integrated into a computational workflow chain developed
within the AiiDA framework. The first-principles total energy of the materials was used
to evaluate the formation energy. On the other hand, we adopted a data-driven approach
where the GeoCGNN was used to predict the formation energy as the target property
of the generated crystals upon training on a dataset extracted from the Materials Project
database [19]. The input of the GeoCGNN model was a graph supplemented with other
information on the crystal lattice. The results revealed that titanium doping improved the
system’s stability, while nickel doping reduced it.

To evaluate the predictive performance of the DL model, the predicted formation
energies were compared to the calculated formation energies obtained from DFT calcu-
lations. Our results show that the GeoCGNN achieved satisfying accuracy in predicting
the formation energy of non-relaxed crystal structures, with the accuracy improving when
relaxed systems were used as the input. This demonstrates that the GeoCGNN was success-
fully trained to predict results consistent with the DFT calculations, which computed the
formation energy of the relaxed structures. However, since the relaxed structures were only
available after performing the DFT total energy calculation, the most effective approach
without executing DFT calculations was to use the non-relaxed systems as the input for the
GeoCGNN to generate predictions.
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To further enhance the ML model and expand its applicability, the model’s versatility
can be improved by incorporating properties such as the band gap, the bulk modulus, the
shear modulus, and Poisson’s ratio into the training dataset. These properties often correlate
with critical performance metrics, such as mechanical stability and electronic characteristics,
thereby improving the understanding of material behavior. Additionally, by reusing a
pre-trained ML model, such as one developed for predicting electronic properties, it may
be possible to fine-tune the model for other related properties, like redox potential, using
transfer learning for cross-property prediction techniques. This approach could significantly
reduce computational resource requirements while leveraging existing knowledge.

The Hubbard correction improves the description of the d–orbitals correlation in
transition metal electronic shells and the energy gap estimation. However, the r2SCAN
meta-GGA exchange–correlation functional [43] performs better than GGA in predicting
the thermodynamic properties of various 3d, 4d, and 5d transition metals [44]. Therefore, the
adoption of the r2SCAN functional in workflows is a promising strategy for future research.

As final observation, it is worth noting that running a typical DFT calculation for a
single crystal structure requires a time ranging from 1 to 24 h, while training the model
from the dataset requires a few hours, and a single prediction is made in fractions of a
second. This demonstrates that the GeoCGNN reduces the time required to predict material
properties by several orders of magnitude compared to traditional DFT calculations, while
maintaining satisfactory accuracy. Additionally, the reduction in energy consumption is
significant and should not be overlooked.
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