Could Commercially Available Aqueous Binders Allow for the Fabrication of Highly Loaded Sulfur Cathodes with a Stable Cycling Performance?
Abstract
:1. Introduction
2. Aqueous Binders
2.1. Carboxymethyl Cellulose (CMC) Binders
Binder | Cathode | Carbon Additives | Current Collector | Areal Sulfur Loading (mg cm−2) | Coin Cell Performance | Ref. | |
---|---|---|---|---|---|---|---|
Initial Capacity (mAh g−1) | Cycling Performance (mAh g−1) | ||||||
CMC + PTFE (2:18) | Sulfur | Super P | Al foil | 1.05 | ~ | ~ | [20] |
CMC + SBR (1:1) | Sulfur | Carbon black | Al foil | ~ | 870 (at 100 mA g−1) | 580 (at 100 mA g−1 after 60 cycles) | [21] |
CMC + SBR (2:3) | CNF–sulfur | Carbon black | Carbon-coated Al foil | ~ | 1313 (at 0.05 C) | 586 (at 0.05 C after 60 cycles) | [22] |
CMC + SBR (2:3) | Carbon–sulfur composites | Carbon nanofibers + Carbon particles | Carbon-coated Al foil | ~ | 1200 (at 0.05 C) | 668 (at 0.05 C after 50 cycles) | [23] |
CMC + SBR (1:1) | Sulfur–KB composite | Super P | Al foil | 0.7–1 | 1046 (at 0.2 C) | 821 (at 0.2 C after 50 cycles) | [24] |
CMC + SBR | Sulfur/integrated KB | Graphene/MWCNT | Carbon-coated Al foil | 4.7 | 1200 (at 0.05 C) | 700 (at 0.2 C after 90 cycles) | [25] |
CMC + SBR (2:1) | Sulfur/KB | KB | 3D Al foam | 17.7 | ~ | ~ | [33] |
CMC–CA (9:1) | NG-CN/S composite | CNTs/Super P | AvCarb P50 paper | 2 | 1340 (at 0.05 C) | 1100 (at 0.5 C after 100 cycles) | [27] |
CMC–CA (9:1) | Sulfur/KB | MWCNT/KB | Toray carbon paper | 2.5 | 1600 (at 0.1 C) | 960 (at 0.1 C after 200 cycles) | [28] |
CMC + NBR | Sulfur | Super P | Al foil | 4.6 | 770 (at 0.05 C) | 410 (at 0.05 C after 40 cycles) | [29] |
CMC | Sulfurized polyacrylonitrile | Carbon black | Al foil | 1 | ~ | 938 (at 0.9 C after 450 cycles) | [30] |
CMC | Sulfur | Super P | Non-woven carbon paper | 4 ± 0.4 | 1180 (at 0.02 C) | 860 (at 0.02 C after 50 cycles) | [26] |
CMC | Colloidal sulfur | Carbon | Al foil | 6–15 | 1670 (at 0.1 C) | 1000 (at 0.2 C after 100 cycles) (6 mg cm−2) | [31] |
CMC–glucose | Sulfur | Conductive carbon powder | Al foil | 2–11 | 1629 (at 0.2 C) | 700 (at 0.2 C after 1000 cycles) (3 mg cm−2) | [32] |
2.2. Polyvinyl Alcohol (PVA) Binders
2.3. Polyacrylic Acid (PAA) Binders
2.4. Polyethylene Oxide (PEO) Binders
2.5. Polyethylene Imine (PEI) Binders
2.6. Other Functional Aqueous Binders
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, Y.X.; Xin, S.; Guo, Y.G.; Wan, L.J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew Chem. Int. Ed. Engl. 2013, 52, 13186–13200. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Q.; Chen, J. Recent progress on lithium-ion batteries with high electrochemical performance. Sci. China Chem. 2019, 62, 533–548. [Google Scholar] [CrossRef]
- Fichtner, M. Recent research and progress in batteries for electric vehicles. Batter. Supercaps. 2021, 5, e202100224. [Google Scholar] [CrossRef]
- Deng, J.; Bae, C.; Denlinger, A.; Miller, T. Electric vehicles batteries: Requirements and challenges. Joule 2020, 4, 511–515. [Google Scholar] [CrossRef]
- Tian, Y.; Zeng, G.; Rutt, A.; Shi, T.; Kim, H.; Wang, J.; Koettgen, J.; Sun, Y.; Ouyang, B.; Chen, T.; et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Rational design of MOF-based materials for next-generation rechargeable batteries. Nano-Micro Lett. 2021, 13, 203. [Google Scholar] [CrossRef] [PubMed]
- Cleaver, T.; Kovacik, P.; Marinescu, M.; Zhang, T.; Offer, G. Perspective—Commercializing lithium sulfur batteries: Are we doing the right research? J. Electrochem. Soc. 2017, 165, A6029–A6033. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, W.; Lei, T.; Jiao, Y.; Huang, J.; Hu, A.; Gong, C.; Yan, C.; Wang, X.; Xiong, J. Strategies toward high-loading lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 2000082. [Google Scholar] [CrossRef]
- Bhargav, A.; He, J.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Z.W.; Peng, H.J.; Huang, J.Q.; Zhang, Q. A toolbox for lithium-sulfur battery research: Methods and protocols. Small Methods 2017, 1, 1700134. [Google Scholar]
- Rana, M.; Ahad, S.A.; Li, M.; Luo, B.; Wang, L.; Gentle, I.; Knibbe, R. Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Mater. 2019, 18, 289–310. [Google Scholar] [CrossRef]
- Zhou, H.-J.; Song, C.-L.; Si, L.-P.; Hong, X.-J.; Cai, Y.-P. The development of catalyst materials for the advanced lithium–sulfur battery. Catalysts 2020, 10, 682. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, N.; Yan, J.; Kang, W.; Ju, J.; Ruan, Y.; Wang, X.; Zhuang, X.; Li, Q.; Cheng, B. A review on anode for lithium-sulfur batteries: Progress and prospects. J. Chem. Eng. 2018, 347, 343–365. [Google Scholar] [CrossRef]
- Brückner, J.; Thieme, S.; Grossmann, H.T.; Dörfler, S.; Althues, H.; Kaskel, S. Lithium–sulfur batteries: Influence of c-rate, amount of electrolyte and sulfur loading on cycle performance. J. Power Sources 2014, 268, 82–87. [Google Scholar] [CrossRef]
- Li, J.-T.; Wu, Z.-Y.; Lu, Y.-Q.; Zhou, Y.; Huang, Q.-S.; Huang, L.; Sun, S.-G. Water soluble binder, an electrochemical performance booster for electrode materials with high energy density. Adv. Energy Mater. 2017, 7, 1701185. [Google Scholar] [CrossRef]
- Liao, J.; Wang, J.; Liu, Z.; Ye, Z. Polar benzimidazole-containing (sulfonated) poly(arylene ether ketone)s as bifunctional binders for lithium–sulfur battery cathodes with high sulfur loadings. ACS Appl. Energy Mater. 2019, 2, 6732–6740. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Sun, Y.-K. Recent progress of advanced binders for Li-S batteries. J. Power Sources 2018, 396, 19–32. [Google Scholar] [CrossRef]
- Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S. Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 2018, 11, 3096–3127. [Google Scholar] [CrossRef]
- Jin, B.; Li, Y.; Qian, J.; Zhan, X.; Zhang, Q. Environmentally friendly binders for lithium-sulfur batteries. ChemElectroChem 2020, 7, 4158–4176. [Google Scholar] [CrossRef]
- Kim, N.-I.; Lee, C.-B.; Seo, J.-M.; Lee, W.-J.; Roh, Y.-B. Correlation between positive-electrode morphology and sulfur utilization in lithium–sulfur battery. J. Power Sources 2004, 132, 209–212. [Google Scholar] [CrossRef]
- He, M.; Yuan, L.-X.; Zhang, W.-X.; Hu, X.-L.; Huang, Y.-H. Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J. Phys. Chem. C 2011, 115, 15703–15709. [Google Scholar] [CrossRef]
- Rao, M.; Song, X.; Liao, H.; Cairns, E.J. Carbon nanofiber–sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim. Acta 2012, 65, 228–233. [Google Scholar] [CrossRef]
- Rao, M.; Song, X.; Cairns, E.J. Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells. J. Power Sources 2012, 205, 474–478. [Google Scholar] [CrossRef]
- Hong, X.; Jin, J.; Wen, Z.; Zhang, S.; Wang, Q.; Shen, C.; Rui, K. On the dispersion of lithium-sulfur battery cathode materials effected by electrostatic and stereo-chemical factors of binders. J. Power Sources 2016, 324, 455–461. [Google Scholar] [CrossRef]
- Lv, D.; Zheng, J.; Li, Q.; Xie, X.; Ferrara, S.; Nie, Z.; Mehdi, L.B.; Browning, N.D.; Zhang, J.-G.; Graff, G.L.; et al. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes. Adv. Energy Mater. 2015, 5, 1402290. [Google Scholar] [CrossRef]
- Lemarié, Q.; Alloin, F.; Thivel, P.X.; Idrissi, H.; Roué, L. Study of sulfur-based electrodes by operando acoustic emission. Electrochim. Acta 2019, 299, 415–422. [Google Scholar] [CrossRef]
- Pang, Q.; Liang, X.; Kwok, C.Y.; Kulisch, J.; Nazar, L.F. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density. Adv. Energy Mater. 2016, 7, 1601630. [Google Scholar] [CrossRef]
- Huang, X.; Luo, B.; Knibbe, R.; Hu, H.; Lyu, M.; Xiao, M.; Sun, D.; Wang, S.; Wang, L. An integrated strategy towards enhanced performance of the lithium-sulfur battery and its fading mechanism. Chem. A Eur. J. 2018, 24, 18544–18550. [Google Scholar] [CrossRef]
- Waluś, S.; Robba, A.; Bouchet, R.; Barchasz, C.; Alloin, F. Influence of the binder and preparation process on the positive electrode electrochemical response and Li/S system performances. Electrochim. Acta 2016, 210, 492–501. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, Q.; Gentle, I.R.; Wang, D.-W. Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for Li–S batteries. J. Mater. Chem. A 2017, 5, 5460–5465. [Google Scholar] [CrossRef]
- Shaibani, M.; Mirshekarloo, M.S.; Singh, R.; Easton, C.D.; Cooray, M.C.D.; Eshraghi, N.; Abendroth, T.; Dörfler, S.; Althues, H.; Kaskel, S.; et al. Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Sci. Adv. 2020, 6, eaay2757. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shaibani, M.; Gamot, T.D.; Wang, M.; Jovanovic, P.; Cooray, M.C.D.; Mirshekarloo, M.S.; Mulder, R.J.; Medhekar, N.V.; Hill, M.R.; et al. A saccharide-based binder for efficient polysulfide regulations in Li-S batteries. Nat. Commun. 2021, 12, 5375. [Google Scholar] [CrossRef] [PubMed]
- Nara, H.; Yokoshima, T.; Mikuriya, H.; Tsuda, S.; Momma, T.; Osaka, T. The potential for the creation of a high areal capacity lithium-sulfur battery using a metal foam current collector. J. Electrochem. Soc. 2016, 164, A5026–A5030. [Google Scholar] [CrossRef]
- Nakazawa, T.; Ikoma, A.; Kido, R.; Ueno, K.; Dokko, K.; Watanabe, M. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries. J. Power Sources 2016, 307, 746–752. [Google Scholar] [CrossRef]
- Liao, J.; Liu, Z.; Wang, J.; Ye, Z. Cost-effective water-soluble poly(vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium-sulfur batteries. ACS Omega 2020, 5, 8272–8282. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, H.; Chen, T.; Chen, Z.; Zhang, Y.; Fan, X.; Zhan, L.; Ma, L.; Zhou, X. Constructing crosslinked lithium polyacrylate/polyvinyl alcohol complex binder for high performance sulfur cathode in lithium-sulfur batteries. Colloids Surf. A Physicochem. 2021, 611, 125870. [Google Scholar] [CrossRef]
- Zhang, Z.; Bao, W.; Lu, H.; Jia, M.; Xie, K.; Lai, Y.; Li, J. Water-soluble polyacrylic acid as a binder for sulfur cathode in lithium-sulfur battery. ECS Electrochem. Lett. 2012, 1, A34–A37. [Google Scholar] [CrossRef]
- Pan, J.; Xu, G.; Ding, B.; Chang, Z.; Wang, A.; Dou, H.; Zhang, X. PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium–sulfur batteries. RSC Adv. 2016, 6, 40650–40655. [Google Scholar] [CrossRef]
- Fu, X.; Scudiero, L.; Zhong, W.-H. A robust and ion-conductive protein-based binder enabling strong polysulfide anchoring for high-energy lithium–sulfur batteries. J. Mater. Chem. A 2019, 7, 1835–1848. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Z.; Lu, H.; Cheng, H.; Zheng, D.; Fang, Z. Investigation of a hybrid binder constitution for lithium–sulfur battery application. New J. Chem. 2020, 44, 10648–10653. [Google Scholar] [CrossRef]
- Liu, Z.; He, X.; Fang, C.; Camacho-Forero, L.E.; Zhao, Y.; Fu, Y.; Feng, J.; Kostecki, R.; Balbuena, P.B.; Zhang, J.; et al. Reversible crosslinked polymer binder for recyclable lithium sulfur batteries with high performance. Adv. Funct. Mater. 2020, 30, 2003605. [Google Scholar] [CrossRef]
- Xie, Z.H.; Huang, Z.X.; Rong, M.Z.; Zhang, M.Q. Imparting high robustness and suppression ability of shuttle effect to sulfur cathode in the Li–S battery via a novel multifunctional binder. Mater. Today Energy 2020, 18, 100555. [Google Scholar] [CrossRef]
- Chuang, Y.-P.; Hong, J.-L. Triple cross-linked network derived from xanthan gum/sodium poly(acrylic acid)/metal ion as a functional binder of the sulfur cathode in lithium–sulfur batteries. ACS Appl. Energy Mater. 2021, 4, 10213–10221. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Gao, Y.; Wang, X.; Zhang, Y.; Zhang, S. A water-soluble, adhesive and 3D cross-linked polyelectrolyte binder for high-performance lithium–sulfur batteries. J. Mater. Chem. A 2021, 9, 2375–2384. [Google Scholar] [CrossRef]
- Wang, J.-T.; Chuang, Y.-P.; Wang, C.-C.; Hong, J.-L. Hydrogen bonds to balance mechanical and adhesive properties of pectin/polyacrylic acid blends as efficient binders for cathode in lithium-sulfur battery. Mater. Today Commun. 2022, 31, 103211. [Google Scholar] [CrossRef]
- Hwa, Y.; Cairns, E.J. Polymeric binders for the sulfur electrode compatible with ionic liquid containing electrolytes. Electrochim. Acta 2018, 271, 103–109. [Google Scholar] [CrossRef]
- Kim, H.M.; Hwang, J.Y.; Aurbach, D.; Sun, Y.K. Electrochemical properties of sulfurized-polyacrylonitrile cathode for lithium-sulfur batteries: Effect of polyacrylic acid binder and fluoroethylene carbonate additive. J. Phys. Chem. Lett. 2017, 8, 5331–5337. [Google Scholar] [CrossRef] [PubMed]
- Cheon, S.-E.; Cho, J.-H.; Ko, K.-S.; Kwon, C.-W.; Chang, D.-R.; Kim, H.-T.; Kima, S.-W. Structural factors of sulfur cathodes with poly(ethylene oxide) binder for performance of rechargeable lithium sulfur batteries. J. Electrochem. Soc. 2002, 149, A1437–A1441. [Google Scholar] [CrossRef]
- Liu, J.; Nara, H.; Yokoshima, T.; Momma, T.; Osaka, T. Li2S cathode modified with polyvinylpyrrolidone and mechanical milling with carbon. J. Power Sources 2015, 273, 1136–1141. [Google Scholar] [CrossRef]
- Lacey, M.J.; Osterlund, V.; Bergfelt, A.; Jeschull, F.; Bowden, T.; Brandell, D. A robust, water-based, functional binder framework for high-energy lithium-sulfur batteries. ChemSusChem 2017, 10, 2758–2766. [Google Scholar] [CrossRef]
- Chien, Y.C.; Jang, H.; Brandell, D.; Lacey, M.J. Poly(ethylene glycol-block-2-ethyl-2-oxazoline) as cathode binder in lithium-sulfur batteries. ChemistryOpen 2021, 10, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, X.; Zhang, Y.; Wang, S.; Xin, F.; Chen, X.; Yu, D. 3D-crosslinked tannic acid/poly(ethylene oxide) complex as a three-in-one multifunctional binder for high-sulfur-loading and high-stability cathodes in lithium-sulfur batteries. Energy Storage Mater. 2019, 17, 293–299. [Google Scholar] [CrossRef]
- Do, V.; Lee, S.H.; Jang, E.; Lee, J.H.; Lee, J.W.; Lee, J.T.; Cho, W.I. Aqueous quaternary polymer binder enabling long-life lithium-sulfur batteries by multifunctional physicochemical properties. ACS Appl. Mater. Interfaces 2022, 14, 19353–19364. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Y.; Zhang, G.; Yang, Z.; Chen, Y.; Deng, Y.; Yang, Y.; Wang, C. Water-based dual-network conductive polymer binders for high-performance Li–S batteries. Electrochim. Acta 2021, 371, 137822. [Google Scholar] [CrossRef]
- Zhang, L.; Ling, M.; Feng, J.; Liu, G.; Guo, J. Effective electrostatic confinement of polysulfides in lithium/sulfur batteries by a functional binder. Nano Energy 2017, 40, 559–565. [Google Scholar] [CrossRef]
- Liao, J.; Liu, Z.; Liu, X.; Ye, Z. Water-soluble linear poly(ethylenimine) as a superior bifunctional binder for lithium-sulfur batteries of improved cell performance. J. Phys. Chem. C 2018, 122, 25917–25929. [Google Scholar] [CrossRef]
- Akhtar, N.; Shao, H.; Ai, F.; Guan, Y.; Peng, Q.; Zhang, H.; Wang, W.; Wang, A.; Jiang, B.; Huang, Y. Gelatin-polyethylenimine composite as a functional binder for highly stable lithium-sulfur batteries. Electrochim. Acta 2018, 282, 758–766. [Google Scholar] [CrossRef]
- Wang, H.; Ling, M.; Bai, Y.; Chen, S.; Yuan, Y.; Liu, G.; Wu, C.; Wu, F. Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. J. Mater. Chem. A 2018, 6, 6959–6966. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Q.; Zhao, Y.; Han, Z.; Sun, C.; Sheng, J.; Zhong, X.; Chen, B.; Li, C.; Ni, S.; et al. Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 2021, 32, 2110313. [Google Scholar] [CrossRef]
- Liu, J.; Galpaya, D.G.D.; Yan, L.; Sun, M.; Lin, Z.; Yan, C.; Liang, C.; Zhang, S. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery. Energy Environ. Sci. 2017, 10, 750–755. [Google Scholar] [CrossRef]
- Liu, J.; Sun, M.; Zhang, Q.; Dong, F.; Kaghazchi, P.; Fang, Y.; Zhang, S.; Lin, Z. A robust network binder with dual functions of Cu2+ ions as ionic crosslinking and chemical binding agents for highly stable Li–S batteries. J. Mater. Chem. A 2018, 6, 7382–7388. [Google Scholar] [CrossRef]
- Liu, X.; Qian, T.; Liu, J.; Tian, J.; Zhang, L.; Yan, C. Greatly improved conductivity of double-chain polymer network binder for high sulfur loading lithium-sulfur batteries with a low electrolyte/sulfur ratio. Small 2018, 14, 1801536. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Yang, L.; Zhang, J.; Cai, Y.; Zhu, J.; Lu, J.; Hou, Y.; He, Q.; Xing, H.; Zhan, X.; et al. Bioinspired binders actively controlling ion migration and accommodating volume change in high sulfur loading lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1902938. [Google Scholar] [CrossRef]
- Chu, Y.; Chen, N.; Cui, X.; Liu, A.; Zhen, L.; Pan, Q. A multi-functional binder for high loading sulfur cathode. J. Energy Chem. 2020, 46, 99–104. [Google Scholar] [CrossRef]
- Rashid, A.; Zhu, X.; Wang, G.; Ke, C.; Li, S.; Sun, P.; Hu, Z.; Zhang, Q.; Zhang, L. Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium–sulfur batteries. J. Energy Chem. 2020, 49, 71–79. [Google Scholar] [CrossRef]
Binder | Cathode | Carbon Additives | Current Collector | Areal Sulfur Loading (mg cm−2) | Coin Cell Performance | Ref. | |
---|---|---|---|---|---|---|---|
Initial Capacity (mAh g−1) | Cycling Performance (mAh g−1) | ||||||
PVA–X | Sulfur/Carbon | ~ | Al foil | 0.5 | ~ | ~ | [34] |
PVA | Sulfur/Carbon (super P) | ~ | Carbon paper | 2.0/3.5/8.5/ 10.5 | 811 (at 0.2 C/10.5 mg cm−2) | 379 (at 0.2 C after 200 cycles) (10.5 mg cm−2) | [35] |
LiPAA–PVA | Sulfur/Carbon | Carbon black | Al foil | 1.2 | 758.4 (at 0.25 C) (4.0 mg cm−2) | 646.9 (after 100 cycles) (4.0 mg cm−2) | [36] |
Binder | Cathode | Carbon Additives | Current Collector | Areal Sulfur Loading (mg cm−2) | Coin Cell Performance | Ref. | |
---|---|---|---|---|---|---|---|
Initial Capacity (mAh g−1) | Cycling Performance (mAh g−1) | ||||||
PAA | Sulfur | Super P | Al foil | 1.5 | 758 (at 335 mA g−1) | 325 (at 335 mA g−1 after 50 cycles) | [37] |
PEDOT:PSS + PAA | Sulfur/Carbon (KB) | Acetylene black | Al foil | 0.8 | 1121 (at 0.5 C) | 833 (at 0.5 C after 80 cycles) | [38] |
PAA | Sulfurized carbonized polyacrylonitrile (S-CPAN) | Super P | Carbon-coated Al foil | 3 | 1530 (at 0.5 C) | 1507 (at 0.5 C after 100 cycles) | [47] |
SP-PAA | Sulfur | Carbon black | Carbon-coated Al foil | 2.8/5.6/9.4 | 826 (at 0.3 A g−1) (5.6 mg cm−2) | 725 (at 0.3 A g−1 after 100 cycles) | [39] |
PAA–HPRN+ | Sulfur/Super P | Acetylene black | Al foil | 0.7/2.78/4.07 | ~ | 880.9 (at 0.2 C after 50 cycles) (4.07 mg cm−2) | [42] |
PAM–PAA | Sulfur/Carbon | Carbon black | Al foil | 1.5–2 | 1008.1 (at 0.2 C) | 600 (at 0.2 C after 200 cycles) | [40] |
PAA–PEI | Sulfur/Carbon (KB) | Ni foam | 5.5 | 1448 (at 0.1 C) (5.5 mg cm−2) | 841.7 (at 0.1 C after 100 cycles) (5.5 mg·cm−2) | [41] | |
NaPAA–XG/Zn | Sulfur/CNT | Super P | Carbon paper | 1.2–1.5 | ~ | 770 (at 1 C after 300 cycles) | [43] |
D–PAA/C–EA | Sulfur/Carbon (KB) | Acetylene black | Al foil/Carbon paper | 1/3/5 | ~ | 679 (at 0.2 C after 100 cycles) (5 mg cm−2) | [44] |
PAA/PEC | Sulfur/PPy | Carbon black | Al foil | 1.7/4.3 | ~ | 616 (at 0.2 C after 100 cycles) (4.3 mg cm−2) | [45] |
Binder | Cathode | Carbon Additives | Current Collector | Areal Sulfur Loading (mg cm−2) | Coin Cell Performance | Ref. | |
---|---|---|---|---|---|---|---|
Initial Capacity (mAh g−1) | Cycling Performance (mAh g−1) | ||||||
PEO | Sulfur | Super P | Al foil | 1.5 | ~ | ~ | [48] |
PEO + PVP | Li2S/KB | Acetylene black | Al foil | 1.5 | ~ | 460 (at 0.1 C after 50 cycles) | [49] |
PEO + PVP | Sulfur/KB | VGCF/Super C65 | Graphite-coated Al foil | 1.9–2.2 | ~ | 900 (at 0.1 C after 50 cycles) (1.2 mg cm−2) | [50] |
PEO–TA | Sulfur/Carbon (Super P) | ~ | Ni foam | 2.0/3.0/4.0/5.0 | 1051.5 (at 0.2 C) | ~400 (at 0.2 C after 150 cycles) (5 mg cm−2) | [52] |
poly (ethylene glycol-block-2-ethyl-2-oxazoline) | Sulfur/KB | VGCF/Super C65 | Carbon-coated Al foil | 2.01–2.44 | 1250 (at 0.04 C) | 950 (at 0.04 C after 75 cycles) (~2 mg cm−2) | [51] |
PEDOT:PSS/P-SP/PEO/PA | Sulfur/Carbon (3D carbon) | Super P | Carbon-coated Al foil | 1.2/1.7/3.6/4.5/6.1 | 969.1 (at 1 C) (1.2 mg cm−2) | 664.0 (at 1 C after 500 cycles) | [54] |
PEI-PVP-PEO | Sulfur/MWCNT | Carbon black/carbon fiber | Al foil | 2.5–10 | 981.6 (at 0.5 C) (2.5 mg cm−2) | 598 (at 0.5 C) after 200 cycles | [53] |
Binder | Cathode | Carbon Additives | Current Collector | Areal Sulfur Loading (mg cm−2) | Coin Cell Performance | Ref. | |
---|---|---|---|---|---|---|---|
Initial Capacity (mAh g−1) | Cycling Performance (mAh g−1) | ||||||
PEI | Sulfur | Super C45/graphene | Al foil | 8.6 | 1126.4 (at 0.05 C) (8.6 mg cm−2) | 744.2 (at 0.05 C after 50 cycles) | [55] |
Gelatin–PEI | Sulfur | Acetylene black | Al foil | 1.07–3.2 | 969.4 (at 0.2 C) (2.14 mg cm−2) | 845.7 (at 0.2 C after 50 cycles) | [57] |
PEI | Sulfur/Super P | Super P | Carbon paper | 2.4/3.5/5.5/6.5 | 1089 (at 0.5 C) (3.5 mg cm−2) | 554 (at 0.5 C after 300 cycles) 509 (at 0.5 C after 170 cycles) (6.5 mg cm−2) | [56] |
PEI cationic polymer (CH3I) | Sulfur | Super C45/graphene | Al foil | 6.5 | ~ | ~670 (at 0.05 C after 70 cycles) | [58] |
PVP–PEI | Sulfur/Carbon | Carbon black | Al foil/carbon paper | 1.5–3.32 | 1481 (at 0.5 C) (2 mg cm−2) | 880.1(at 0.5 C after 150 cycles) | [59] |
Binder | Cathode | Carbon Additives | Current Collector | Areal Sulfur Loading (mg cm−2) | Coin Cell Performance | Ref. | |
---|---|---|---|---|---|---|---|
Initial Capacity (mAh g−1) | Cycling Performance (mAh g−1) | ||||||
N-GG-XG binder (guar gum (GG) and xanthan gum (XG)) | Sulfur/Carbon (super P) | Ni foam | 6.5/11.9/19.8 | 1200 | 724 (at 0.5 C after 150 cycles) (0.78 mg cm−2) | 733 (at 1.6 mA cm−2 after 60 cycles) (11.9 mg cm−2) | [60] |
SA–Cu | Sulfur/Carbon (super P) | Carbon cloth | 0.75/4.1/8.05 | 1200 | 758 (at 1 C after 250 cycles) (0.75 mg cm−2) | 598 (at 0.15 C after 60 cycles) (4.1 mg cm−2) | [61] |
DCP (4,4′-biphenyldisulfonic acid (BSA) connected pyrrole monomer) | Sulfur/Carbon (CNT) | Ni foam | 2.5/5.2/6.8/9.8 | 1326.9 | 649.2 (at 1.5 C after 400 cycles) (1.2 mg cm−2) | 600 (at 0.5 mA cm−2 after 50 cycles) (9.8 mg cm−2) | [62] |
P(DAA-r-SBMA-r-PEGMA) (DSM) | Sulfur/Carbon (super P) | Ni foam | 3.7/6.6/9.7/12.0 | 1077 | 674.2 (at 1 C after 350 cycles) | 742.3 (at 0.81 mA cm−2 after 70 cycles) (9.8 mg cm−2) | [63] |
CN (chitosan substituted with nitrocatechol) | Sulfur | Ni foam/ Al foil | 2.0/3.7/4.3/11.3/12.2 | 902.2 | ~ | 700 (at 0.2 C after 100 cycles) (4.3 mg cm−2) | [64] |
PD-c-PAM (polydopamine cross-linked polyacrylamide) | Graphene/Sulfur | Al foil | 2.2/4.5/7.0/8.2/9.1 | 1145 | 495 (at 4 C after 800 cycles) (2.0 mg cm−2) | 480 (at 1 C after 300 cycles) (5.6 mg cm−2) | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Barghamadi, M.; Hollenkamp, A.F.; Mahon, P.J. Could Commercially Available Aqueous Binders Allow for the Fabrication of Highly Loaded Sulfur Cathodes with a Stable Cycling Performance? Batteries 2024, 10, 67. https://doi.org/10.3390/batteries10020067
Wei W, Barghamadi M, Hollenkamp AF, Mahon PJ. Could Commercially Available Aqueous Binders Allow for the Fabrication of Highly Loaded Sulfur Cathodes with a Stable Cycling Performance? Batteries. 2024; 10(2):67. https://doi.org/10.3390/batteries10020067
Chicago/Turabian StyleWei, Wenli, Marzi Barghamadi, Anthony F. Hollenkamp, and Peter J. Mahon. 2024. "Could Commercially Available Aqueous Binders Allow for the Fabrication of Highly Loaded Sulfur Cathodes with a Stable Cycling Performance?" Batteries 10, no. 2: 67. https://doi.org/10.3390/batteries10020067
APA StyleWei, W., Barghamadi, M., Hollenkamp, A. F., & Mahon, P. J. (2024). Could Commercially Available Aqueous Binders Allow for the Fabrication of Highly Loaded Sulfur Cathodes with a Stable Cycling Performance? Batteries, 10(2), 67. https://doi.org/10.3390/batteries10020067