Design and Development of Flow Fields with Multiple Inlets or Outlets in Vanadium Redox Flow Batteries
Abstract
:1. Introduction
2. Model
2.1. Model Assumptions
- Membrane permeable to only protons and not permeable to vanadium ions, since in the symmetric cell configuration the net vanadium flux through the separator is negligible and moreover it does not affect the battery state of charge (SoC).
- Laminar flow regime due to the reduced electrolyte velocities expected from the investigated flow rates. This assumption is then verified analysing the simulated velocity field.
- Electroneutrality of the electrolytes, permitting the calculation of the concentration of without the resolution of the corresponding Nernst–Planck equation [20].
2.2. Model Governing Equations
2.2.1. Mass Balance
2.2.2. Momentum Balance
2.2.3. Species Balance
2.2.4. Charge Balance
2.3. Boundary Conditions
2.4. Simulated Flow Field Configurations and Model Resolution
3. Experimental
3.1. Experimental Setup
3.2. Experimental Tests
3.2.1. Polarization Curves
3.2.2. Electrochemical Impedance Spectroscopy
3.2.3. Pressure Drops
4. Results and Discussion
4.1. Model Simulations
4.2. Experimental Results
5. Conclusions
- Compared to the conventional Interdigitated, in the Two Outlets model simulations highlight a more homogenous distribution of the local velocities over the electrode area, while in the Four Inlets the predicted electrolyte velocities under the distribution channels result in very low values due to the flow splitting into four inlets. Accordingly, the simulated local reaction rate in the Two Outlets is also more homogenous across the active area, while the Four Inlets presents a lower value of the peak reaction rate.
- Compared to a conventional Interdigitated geometry, both the developed configurations allow a significant decrease in the pressure drops without any reduction in battery performance. In particular, at 90 mL min−1 the Two Outlets and the Four Inlets induced a reduction of around 50% and 60%, respectively.
- The heterogeneity index, that quantifies the variability of the current density distribution, exhibits a sensible reduction in the case of Two Outlets, suggesting that the considered geometry tends to homogenize battery operation across the active area. By contrast, the Four Inlets induces a reduction of heterogeneity only at low flow rate and high current density.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
List of symbols | |
a | Specific active area [m2 m−3] |
c | Molar concentration [mol m−3] |
D | Diffusivity of vanadium ions [m2 s−1] |
Eeq | Equilibrium potential [V] |
F | Faraday constant [C mol−1] |
f | Volume force vector [N m−3] |
hm | Mass transport coefficient [m s−1] |
i | Current density [A m−2] |
iR | Reaction rate [A m−3] |
k0 | Reaction rate constant [m s−1] |
M | Molarity [mol l−1] |
N | Species molar flux [mol m−2 s−1] |
p | Pressure [Pa] |
R | Universal gas constant [J mol−1 K−1] |
T | Temperature [K] |
u | Velocity vector [m s−1] |
t | Compressed electrode thickness [m] |
t0 | Uncompressed electrode thickness [m] |
ui | Species mobility [mol s kg−1] |
z | Charge number [-] |
Greek symbols | |
α | Charge transfer coefficient [-] |
β F | Forchheimer drag coefficient [m−1] |
ε | Porosity of compressed electrode [-] |
εno compression | Porosity of uncompressed electrode [-] |
η | Overpotential [V] |
κ | Permeability [m2] |
μ | Viscosity [Pa s] |
ρ | Density [kg m−3] |
ϕ | Potential [V] |
Superscripts | |
b | Relative to bulk |
eff | Effective properties |
s | Relative to surface |
T | Transposed |
Subscripts | |
- | Relative to negative electrode |
acid | Relative to sulphuric acid |
H+ | Relative to protons |
Relative to hydrogen sulphate ions | |
l | Relative to electrolyte |
out | Relative to channel outlet |
s | Relative to solid phase |
Relative to sulphate ions | |
V | Relative to Vanadium |
VO2+ | Relative to VO2+ ion—Vanadium (IV) |
Relative to ion—Vanadium (V) |
Glossary
CFD | Computational fluid dynamics |
PRESTO! | Pressure staggering options |
SIMPLE | Semi-implicit method for pressure linked equations |
SoC | State of charge |
VRFB | Vanadium redox flow battery |
References
- Puleston, T.; Clemente, A.; Costa-Castelló, R.; Serra, M. Modelling and Estimation of Vanadium Redox Flow Batteries: A Review. Batteries 2022, 8, 121. [Google Scholar] [CrossRef]
- Alotto, P.; Guarnieri, M.; Moro, F. Redox flow batteries for the storage of renewable energy: A review. Renew. Sustain. Energy Rev. 2014, 29, 325–335. [Google Scholar] [CrossRef]
- Soloveichik, G.L. Flow Batteries: Current Status and Trends. Chem. Rev. 2015, 115, 11533–11558. [Google Scholar] [CrossRef]
- Parasuraman, A.; Lim, T.M.; Menictas, C.; Skyllas-Kazacos, M. Review of material research and development for vanadium redox flow battery applications. Electrochim. Acta 2013, 101, 27–40. [Google Scholar] [CrossRef]
- Weber, A.Z.; Mench, M.M.; Meyers, J.P.; Ross, P.N.; Gostick, J.T.; Liu, Q. Redox flow batteries: A review. J. Appl. Electrochem. 2011, 41, 1137–1164. [Google Scholar] [CrossRef]
- Wu, M.; Liu, M.; Long, G.; Wan, K.; Liang, Z.; Zhao, T.S. A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries. Appl. Energy 2014, 136, 576–581. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Brandon, N.; Hajimolana, S.; Tariq, F.; Yufit, V.; Hashim, M.; Hussain, M.; Low, C.; Aravind, P. Application of carbon materials in redox flow batteries. J. Power Sources 2014, 253, 150–166. [Google Scholar] [CrossRef]
- Zhang, X.; Higier, A.; Zhang, X.; Liu, H. Experimental studies of effect of land width in PEM fuel cells with serpentine flow field and carbon cloth. Energies 2019, 12, 471. [Google Scholar] [CrossRef]
- Arenas, L.F.; de León, C.P.; Walsh, F.C. Pressure drop through platinized titanium porous electrodes for cerium-based redox flow batteries. AIChE J. 2018, 64, 1135–1146. [Google Scholar] [CrossRef]
- Houser, J.; Pezeshki, A.; Clement, J.T.; Aaron, D.; Mench, M.M. Architecture for improved mass transport and system performance in redox flow batteries. J. Power Sources 2017, 351, 96–105. [Google Scholar] [CrossRef]
- Lisboa, K.M.; Marschewski, J.; Ebejer, N.; Ruch, P.; Cotta, R.M.; Michel, B.; Poulikakos, D. Mass transport enhancement in redox flow batteries with corrugated fluidic networks. J. Power Sources 2017, 359, 322–331. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, F.; Lu, F.; Zhou, X.; Yuan, Y.; Cao, X.; Xiang, B. A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries. Appl. Energy 2019, 238, 435–441. [Google Scholar] [CrossRef]
- Akuzum, B.; Alparslan, Y.C.; Robinson, N.C.; Agar, E.; Kumbur, E.C. Obstructed flow field designs for improved performance in vanadium redox flow batteries. J. Appl. Electrochem. 2019, 49, 551–561. [Google Scholar] [CrossRef]
- Messaggi, M.; Gambaro, C.; Casalegno, A.; Zago, M. Development of innovative flow fields in a vanadium redox flow battery: Design of channel obstructions with the aid of 3D computational fluid dynamic model and experimental validation through locally-resolved polarization curves. J. Power Sources 2022, 526, 231155. [Google Scholar] [CrossRef]
- Messaggi, M.; Canzi, P.; Mereu, R.; Baricci, A.; Inzoli, F.; Casalegno, A.; Zago, M. Analysis of flow field design on vanadium redox flow battery performance: Development of 3D computational fluid dynamic model and experimental validation. Appl. Energy 2018, 228, 1057–1070. [Google Scholar] [CrossRef]
- Wang, Y.; Cho, S.C. Analysis and Three-Dimensional Modeling of Vanadium Flow Batteries. J. Electrochem. Soc. 2014, 161, A1200–A1212. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, B.W.; Bai, B.F.; Chen, X.; Zhao, T.S. A transient model for vanadium redox flow batteries with bipolar membranes. J. Power Sources 2021, 496, 229829. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Cao, L.; Bao, J.; Skyllas-Kazacos, M. Dynamic model based membrane permeability estimation for online SOC imbalances monitoring of vanadium redox flow batteries. J. Energy Storage 2021, 39, 102688. [Google Scholar] [CrossRef]
- Cecchetti, M.; Toja, F.; Casalegno, A.; Zago, M. A Comprehensive Experimental and Modelling Approach for the Evaluation of Cross-Over Fluxes in Vanadium Redox Flow Battery. J. Energy Storage 2023, 68, 107846. [Google Scholar] [CrossRef]
- Knehr, K.W.; Agar, E.; Dennison, C.R.; Kalidindi, A.R.; Kumbur, E.C. A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane. J. Electrochem. Soc. 2012, 159, A1446–A1459. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, B.; Bai, B.; Zhao, T. A transient electrochemical model incorporating the Donnan effect for all-vanadium redox flow batteries. J. Power Sources 2015, 299, 202–211. [Google Scholar] [CrossRef]
- Chen, J.Q.; Wang, B.G.; Lv, H.L. Numerical Simulation and Experiment on the Electrolyte Flow Distribution for All Vanadium Redox Flow Battery. Adv. Mater. Res. 2011, 236–238, 604–607. [Google Scholar] [CrossRef]
- Ghimire, P.C.; Bhattarai, A.; Schweiss, R.; Scherer, G.G.; Wai, N.; Yan, Q. A comprehensive study of electrode compression effects in all vanadium redox flow batteries including locally resolved measurements. Appl. Energy 2018, 230, 974–982. [Google Scholar] [CrossRef]
- Schmal, D.; Van Erkel, J.; Van Duin, P.J. Mass transfer at carbon fibre electrodes. J. Appl. Electrochem. 1986, 16, 422–430. [Google Scholar] [CrossRef]
- Yamamura, T.; Watanabe, N.; Yano, T.; Shiokawa, Y. Electron-Transfer Kinetics of Np3+/Np4+, NpO2+/NpO22+, V2+/V3+, and VO2+ /VO2+ at Carbon Electrodes. J. Electrochem. Soc. 2005, 152, A830–A836. [Google Scholar] [CrossRef]
- Schweiss, R.; Meiser, C.; Damjanovic, T.; Galbiati, I.; Haak, N. SIGRACET® Gas Diffusion Layers for PEM Fuel Cells, Electrolyzers and Batteries (White Paper). 2016. Available online: https://www.fuelcellstore.com/spec-sheets/sigracet-gdl-white-paper-new-generation.pdf (accessed on 10 February 2024).
- Xu, Q.; Zhao, T.S.; Zhang, C. Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries. Appl. Energy 2014, 130, 139–147. [Google Scholar] [CrossRef]
- Pezeshki, A.M.; Sacci, R.L.; Delnick, F.M.; Aaron, D.S.; Mench, M.M. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries. Electrochim. Acta 2017, 229, 261–270. [Google Scholar] [CrossRef]
- Messaggi, M.; Rabissi, C.; Gambaro, C.; Meda, L.; Casalegno, A.; Zago, M. Investigation of vanadium redox flow batteries performance through locally-resolved polarisation curves and impedance spectroscopy: Insight into the effects of electrolyte, flow field geometry and electrode thickness. J. Power Sources 2019, 449, 227588. [Google Scholar] [CrossRef]
- Aaron, D.S.; Liu, Q.; Tang, Z.; Grim, G.M.; Papandrew, A.B.; Turhan, A.; Zawodzinski, T.A.; Mench, M.M. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 2012, 206, 450–453. [Google Scholar] [CrossRef]
- National Instruments, PXIe-4139 Specifications. 2024. Available online: https://www.ni.com/docs/en-US/bundle/pxie-4139-specs/page/specs.html (accessed on 10 February 2024).
- Vivona, D.; Messaggi, M.; Baricci, A.; Casalegno, A.; Zago, M. Unravelling the Contribution of Kinetics and Mass Transport Phenomena to Impedance Spectra in Vanadium Redox Flow Batteries: Development and Validation of a 1D Physics-Based Analytical Model. J. Electrochem. Soc. 2020, 167, 110534. [Google Scholar] [CrossRef]
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy, Theory, Experiment, and Applications, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2005. [Google Scholar]
- Schneider, J.; Tichter, T.; Khadke, P.; Zeis, R.; Roth, C. Deconvolution of electrochemical impedance data for the monitoring of electrode degradation in VRFB. Electrochim. Acta 2019, 336, 135510. [Google Scholar] [CrossRef]
Negative Electrode | Positive Electrode | |
---|---|---|
Negative Electrode | Positive Electrode | |
---|---|---|
Symbol | Description | Value | Unit | Reference |
---|---|---|---|---|
Electrode equilibrium potential | 1.004 | V | - | |
Faraday constant | 96,485 | C mol−1 | - | |
Universal gas constant | 8.314 | J mol−1 K−1 | - | |
Temperature | 300 | K | - | |
V4+ diffusivity | 3.9·10−10 | m2 s−1 | [25] | |
V5+ diffusivity | 3.9·10−10 | m2 s−1 | [25] | |
H+ diffusivity | 9.3·10−9 | m2 s−1 | [20] | |
diffusivity | 1.33·10−9 | m2 s−1 | [20] | |
SO2− diffusivity | 1.065·10−9 | m2 s−1 | [20] | |
Electrode porosity w/o compression | 0.89 | - | [26] | |
Electrode porosity with compression | 0.859 | - | ||
Specific active area | 8·104 | m2 m−3 | [14] | |
Electrolyte density | 1350 | kg m−3 | measured | |
Electrolyte viscosity | 1.32·10−3 | Pa s | [27] | |
Transfer coefficient | 0.5 | - | [28] | |
Reaction rate | 4.94·10−6 | m s−1 | [14] | |
Electrode permeability | 6.67·10−11 | m2 | [14] | |
Convective mass transport coefficient | 2.5·10−4· | - | [14] | |
Electrolyte conductivity | 3 | S m−1 | measured | |
Electrode conductivity | 5 | S m−1 | [26] | |
Vanadium molarity in the electrolyte | 1.6 | mol L−1 | - | |
Sulfuric acid molarity | 5 | mol L−1 | - | |
Electrolyte state of charge | 50 | % | - |
Flow Rate [mL min−1] | 20 mL min−1 | 90 mL min−1 | |||||||
---|---|---|---|---|---|---|---|---|---|
Current Density [A cm−2] | 0.05 | 0.1 | 0.2 | 0.3 | 0.05 | 0.1 | 0.2 | 0.3 | 0.4 |
Interdigitated | 0.080 | 0.083 | 0.105 | 0.157 | 0.071 | 0.072 | 0.076 | 0.081 | 0.098 |
Two Outlets | 0.089 | 0.090 | 0.096 | 0.101 | 0.050 | 0.048 | 0.052 | 0.056 | 0.065 |
Four Inlets | 0.112 | 0.114 | 0.121 | 0.135 | 0.083 | 0.083 | 0.084 | 0.084 | 0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cecchetti, M.; Messaggi, M.; Casalegno, A.; Zago, M. Design and Development of Flow Fields with Multiple Inlets or Outlets in Vanadium Redox Flow Batteries. Batteries 2024, 10, 108. https://doi.org/10.3390/batteries10030108
Cecchetti M, Messaggi M, Casalegno A, Zago M. Design and Development of Flow Fields with Multiple Inlets or Outlets in Vanadium Redox Flow Batteries. Batteries. 2024; 10(3):108. https://doi.org/10.3390/batteries10030108
Chicago/Turabian StyleCecchetti, Marco, Mirko Messaggi, Andrea Casalegno, and Matteo Zago. 2024. "Design and Development of Flow Fields with Multiple Inlets or Outlets in Vanadium Redox Flow Batteries" Batteries 10, no. 3: 108. https://doi.org/10.3390/batteries10030108
APA StyleCecchetti, M., Messaggi, M., Casalegno, A., & Zago, M. (2024). Design and Development of Flow Fields with Multiple Inlets or Outlets in Vanadium Redox Flow Batteries. Batteries, 10(3), 108. https://doi.org/10.3390/batteries10030108