Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
Abstract
:1. Introduction
2. An Overview of the Proposed Concept
3. Battery Temperature Prediction Methodology
3.1. Battery Experimental Setup and Test Procedures
3.1.1. NCA Battery
3.1.2. LFP Battery
3.1.3. Experimental Setup
3.1.4. Experimental Test Procedures
- The battery undergoes constant current discharge and mixed pulse discharge tests to assess its performance.
- The battery experiences the WLTP test to evaluate its performance under a realistic driving condition.
3.2. Battery Modelling for Temperature Prediction
3.2.1. Battery Electrical Modelling
3.2.2. Battery Thermal Modelling
- Heat value due to entropy changes from electrochemical reactions;
- Polarisation heat value ;
- Battery side reactions, self-discharge, and such due to electrolyte decomposition, which are named ;
- Joule heat value , which is caused by the ions shift between the anode and the cathode through the electrolyte with resistance called battery internal equivalent resistance, is also overpotential.
3.3. ANFIS Model
- Rule 1: if x is A1 and y is B1, then f1 = p1 x + q1 y + r1.
- Rule 2: if x is A2 and y is B2, then f2 = p2 x + q2 y + r2.
3.4. Model Performance Evaluation, Test Reliability, and Consistency Assessment
- Data measurement accuracy: the power supply is calibrated before the test to ensure it provides accurate power to the battery. Multi-thermocouples are attached to the battery surface to avoid thermocouple failure or inconsistencies in quality. To minimise computational effort, the average temperature data value is taken from all thermocouples, with a temperature difference threshold of Δ ≤ 0.2 °C between them. This approach helped to reduce computational complexity while still providing accurate temperature data. Furthermore, all data acquisition equipment is synchronised at a 1 Hz sampling rate, ensuring that the data collection is consistent and precise.
- Noise reduction: the battery and the rack are kept in the thermal chamber with a metal shell to reduce electromagnetic interference. To minimise the impact of vibration from the thermal chamber during testing, fire-resistant foam is added under the battery rack to absorb any potential vibration. Maintaining a consistent ambient temperature during testing is essential for obtaining accurate and reliable data. Keeping the battery in the thermal chamber allows it to control the ambient temperature and minimise the impact of external factors on the battery’s performance.
- Improved environmental conditions: while the thermal chamber can precisely control the ambient temperature with a quick response, the battery temperature may not shift as efficiently as expected. To ensure accurate temperature measurements, the battery is left in the thermal chamber for at least two hours before each test to allow the battery temperature to reach the same level as the ambient temperature. One factor that could not be controlled is the humidity level inside the chamber. However, the thermal chamber is equipped with a ventilation system to maintain relatively dry conditions inside the chamber.
4. Battery Temperature Prediction Results
4.1. NCA Battery Temperature Prediction Results
4.2. LFP Battery Temperature Prediction Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Lu, Z.; Yu, X.L.; Wei, L.C.; Cao, F.; Zhang, L.Y.; Meng, X.Z.; Jin, L.W. A comprehensive experimental study on temperature-dependent performance of lithium-ion battery. Appl. Therm. Eng. 2019, 158, 113800. [Google Scholar] [CrossRef]
- Yi, F.; Jiaqiang, E.; Zhang, B.; Zuo, H.; Wei, K.; Chen, J.; Zhu, H.; Zhu, H.; Deng, Y. Effects analysis on heat dissipation characteristics of lithium-ion battery thermal management system under the synergism of phase change material and liquid cooling method. Renew. Energy 2022, 181, 472–489. [Google Scholar] [CrossRef]
- Xu, C.; Feng, X.; Huang, W.; Duan, Y.; Chen, T.; Gao, S.; Lu, L.; Jiang, F.; Ouyang, M. Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry. J. Energy Storage 2020, 31, 101670. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Luo, L.; Fan, Y.; Du, Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022, 238, 121652. [Google Scholar] [CrossRef]
- Pesaran, A.A.; Vlahinos, A.; Burch, S.D. Thermal Performance of EV and HEV Battery Modules and Packs; National Renewable Energy Laboratory: Golden, CO, USA, 1997.
- Motloch, C.G.; Christophersen, J.P.; Belt, J.R.; Wright, R.B.; Hunt, G.L.; Sutula, R.A.; Duong, T.; Tartamella, T.J.; Haskins, H.J.; Miller, T.J. High-Power Battery Testing Procedures and Analytical Methodologies for HEV’s; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2002. [Google Scholar]
- Zhao, R.; Zhang, S.; Liu, J.; Gu, J. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system. J. Power Sources 2015, 299, 557–577. [Google Scholar] [CrossRef]
- Bandhauer, T.M.; Garimella, S.; Fuller, T.F. A Critical Review of Thermal Issues in Lithium-Ion Batteries. J. Electrochem. Soc. 2011, 158, R1. [Google Scholar] [CrossRef]
- Wu, W.; Ma, R.; Liu, J.; Liu, M.; Wang, W.; Wang, Q. Impact of low temperature and charge profile on the aging of lithium-ion battery: Non-invasive and post-mortem analysis. Int. J. Heat Mass Transf. 2021, 170, 121024. [Google Scholar] [CrossRef]
- Na, Y.; Sun, X.; Fan, A.; Cai, S.; Zheng, C. Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chin. Chem. Lett. 2021, 32, 973–982. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, W.; Li, H.; Wan, W.; Zhang, W.; Zhuo, W.; Liu, Q. Heat transfer characteristics and low-temperature performance of a lithium-ion battery with an inner cooling/heating structure. Appl. Therm. Eng. 2023, 219, 119352. [Google Scholar] [CrossRef]
- Shahid, S.; Chaab, M.A. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries. Energy Convers. Manag. X 2022, 16, 100310. [Google Scholar] [CrossRef]
- Rao, Z.; Wang, S. A review of power battery thermal energy management. Renew. Sustain. Energy Rev. 2011, 15, 4554–4571. [Google Scholar] [CrossRef]
- Ludwig, S.; Steinhardt, M.; Jossen, A. Determination of Internal Temperature Differences for Various Cylindrical Lithium-Ion Batteries Using a Pulse Resistance Approach. Batteries 2022, 8, 60. [Google Scholar] [CrossRef]
- Leising, R.A.; Palazzo, M.J.; Takeuchi, E.S.; Takeuchi, K.J. A study of the overcharge reaction of lithium-ion batteries. J. Power Sources 2001, 97–98, 681–683. [Google Scholar] [CrossRef]
- Feng, F.; Teng, S.; Liu, K.; Xie, J.; Xie, Y.; Liu, B.; Li, K. Co-estimation of lithium-ion battery state of charge and state of temperature based on a hybrid electrochemical-thermal-neural-network model. J. Power Sources 2020, 455, 227935. [Google Scholar] [CrossRef]
- Li, M.; Dong, C.; Li, X.; Dong, X.; Mu, Y.; Jia, H. A Sequential Network-model Alliance Module for Lithium-ion Battery Temperature Prediction. In Proceedings of the 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 9–13 October 2022. [Google Scholar]
- Billert, A.M.; Frey, M.; Gauterin, F. A Method of Developing Quantile Convolutional Neural Networks for Electric Vehicle Battery Temperature Prediction Trained on Cross-Domain Data. IEEE Open J. Intell. Transp. Syst. 2022, 3, 411–425. [Google Scholar] [CrossRef]
- Park, S.; Ahn, C. Stochastic Model Predictive Controller for Battery Thermal Management of Electric Vehicles. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019. [Google Scholar]
- Wang, M.; Hu, W.; Jiang, Y.; Su, F.; Fang, Z. Internal temperature prediction of ternary polymer lithium-ion battery pack based on CNN and virtual thermal sensor technology. Int. J. Energy Res. 2021, 45, 13681–13691. [Google Scholar] [CrossRef]
- Fang, K.; Mu, D.; Chen, S.; Wu, B.; Wu, F. A prediction model based on artificial neural network for surface temperature simulation of nickel–metal hydride battery during charging. J. Power Sources 2012, 208, 378–382. [Google Scholar] [CrossRef]
- Willard, J.; Jia, X.; Xu, S.; Steinbach, M.; Kumar, V. Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems. ACM Comput. Surv. 2022, 55, 66. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, B.; Deng, C.; Lu, W. Physics-encoded deep learning in identifying battery parameters without direct knowledge of ground truth. Appl. Energy 2022, 321, 119390. [Google Scholar] [CrossRef]
- E. Board. EV Markets Reports. August 2023. Available online: https://evmarketsreports.com/lfp-batteries-transforming-ev-market-dynamics-globally/ (accessed on 22 November 2023).
- EUR-Lex. Worldwide Harmonised Light-Duty Vehicles Test Procedure (WLTP) and Real Driving Emissions (RDE). 1 September 2023. Available online: https://eur-lex.europa.eu/EN/legal-content/summary/worldwide-harmonised-light-duty-vehicles-test-procedure-wltp-and-real-driving-emissions-rde.html (accessed on 1 December 2023).
- Pavlovic, J.; Marotta, A.; Ciuffo, B. CO2 emissions and energy demands of vehicles tested under the NEDC and the new WLTP type approval test procedures. Appl. Energy 2016, 177, 661–670. [Google Scholar] [CrossRef]
- Johnson, V.H. Battery performance models in ADVISOR. J. Power Sources 2002, 110, 321–329. [Google Scholar] [CrossRef]
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S. A Study on Battery Model Parametrisation Problem—Application-Oriented Trade-offs between Accuracy and Simplicity. IFAC PapersOnLine 2016, 49, 48–53. [Google Scholar] [CrossRef]
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S.; Wild, M. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur. Renew. Sustain. Energy Rev. 2016, 56, 1008–1021. [Google Scholar] [CrossRef]
- Shateri, N.; Auger, D.J.; Fotouhi, A.; Brighton, J. An Experimental Study on Prototype Lithium–Sulfur Cells for Aging Analysis and State-of-Health Estimation. IEEE Trans. Transp. Electrif. 2021, 7, 1324–1338. [Google Scholar] [CrossRef]
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S. Accuracy Versus Simplicity in Online Battery Model Identification. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 195–206. [Google Scholar] [CrossRef]
- Shateri, N.; Shi, Z.; Auger, D.J.; Fotouhi, A. Lithium-Sulfur Cell State of Charge Estimation Using a Classification Technique. IEEE Trans. Veh. Technol. 2021, 70, 212–224. [Google Scholar] [CrossRef]
- Shateri, N.; Auger, D.J.; Fotouhi, A.; Brighton, J.; Du, W. Investigation of the Effect of Temperature on Lithium-Sulfur Cell Cycle Life Performance Using System Identification and X-ray Tomography. Batter. Supercaps 2022, 5, e202200035. [Google Scholar] [CrossRef]
- Sato, N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles. J. Power Sources 2001, 99, 70–77. [Google Scholar] [CrossRef]
- Bernardi, D.; Pawlikowski, E.; Newman, J. A General Energy Balance for Battery Systems. J. Electrochem. Soc. 1985, 132, 5. [Google Scholar] [CrossRef]
- Schuster, E.; Ziebert, C.; Melcher, A.; Rohde, M.; Seifert, H.J. Thermal behavior and electrochemical heat generation in a commercial 40 Ah lithium ion pouch cell. J. Power Sources 2015, 286, 580–589. [Google Scholar] [CrossRef]
- Bai, Y.; Li, L.; Li, Y.; Chen, G.; Zhao, H. Reversible and irreversible heat generation of NCA/Si–C pouch cell during electrochemical energy-storage process. J. Energy Chem. 2019, 29, 95–102. [Google Scholar] [CrossRef]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Keller, J.M.; Krishnapuram, R.; Rhee, F.H. Evidence aggregation networks for fuzzy logic inference. IEEE Trans. Neural Netw. 1992, 3, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review]. IEEE Trans. Autom. Control 1997, 42, 1482–1484. [Google Scholar] [CrossRef]
- Şişman Yilmaz, N.A. A Temporal Neuro-Fuzzy Approach for Time-Series Analysis. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2003. [Google Scholar]
Parameter | Value |
---|---|
Rated capacity (mAh) | 4800 mAh |
Nominal voltage (V) | 3.62 V |
Max charging voltage (V) | 4.2 V |
Cut-off voltage | 2.5 V |
Operating temperature (surface) (°C) | Charge: 0 to 45 Discharge: −30 to 60 |
Standard discharging current | 0.2 C |
Standard charging current | C/3 |
Maximum discharge rate | 2 C |
Maximum charge rate | 1 C |
Peak discharging current (30 s, 10 s) @ SOC 50% | 42 A, 54 A |
Item | Value | Note | |
---|---|---|---|
Standard capacity | 3200 mAh | 0.5 C (current value of 3200 mAh at 1 C) | |
Capacity range | 3100~3300 mAh | 0.5 C | |
Standard voltage | 3.2 V | ||
Alternating internal resistance | ≤30 mΩ | With PTC | |
Charge conditions | Cut-off voltage | 3.65 ± 0.05 V | Constant current charge to 3.65 V at 0.5 C Constant voltage charge to stop until 0.01 C mA |
Cut-off current | 0.01 C | ||
Discharge cut-off voltage | 2.5 V | ||
Cycle characteristic | 2000 times | 100% DOD, the residual capacity is no less than 80% of rated capacity at 1 C-rate | |
Max. continuous discharge current | 9.6 A | ||
Pulse discharge current | 15 A, 10 s | ||
Working temperature | Charge: 0~55 °C Discharge: −20~60 °C | ||
Storage temperature | −20–45 °C | ||
Battery weight | 86 g (approx.) |
Cell Group | Current Profile | RMSE of Voltage | RMSE of Temperature |
---|---|---|---|
Cell 1 and Cell 2 | WLTP | 0.0599 | 0.2651 |
Test Scenario | MAE | Maximum Error | RMSE |
---|---|---|---|
WLTP at 10 °C | 0.0369 | 0.7708 | 0.0655 |
WLTP at 20 °C | 0.0374 | 0.5729 | 0.0862 |
WLTP at 30 °C | 0.0488 | 0.6390 | 0.0922 |
Test Scenario | MAE | Maximum Error | RMSE |
---|---|---|---|
20 °C, 60 s ahead | 0.0765 | 1.1115 | 0.1203 |
20 °C, 90 s ahead | 0.1275 | 1.1812 | 0.1954 |
Test Scenario | Average Error | Maximum Error | RMSE |
---|---|---|---|
WLTP at 0 °C | 0.1327 | 2.4744 | 0.2947 |
WLTP at 10 °C | 0.0686 | 0.6954 | 0.1137 |
WLTP at 20 °C | 0.0559 | 0.6266 | 0.0904 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Fotouhi, A.; Auger, D.J.; Lowe, M. Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System. Batteries 2024, 10, 85. https://doi.org/10.3390/batteries10030085
Zhang H, Fotouhi A, Auger DJ, Lowe M. Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System. Batteries. 2024; 10(3):85. https://doi.org/10.3390/batteries10030085
Chicago/Turabian StyleZhang, Hanwen, Abbas Fotouhi, Daniel J. Auger, and Matt Lowe. 2024. "Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System" Batteries 10, no. 3: 85. https://doi.org/10.3390/batteries10030085
APA StyleZhang, H., Fotouhi, A., Auger, D. J., & Lowe, M. (2024). Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System. Batteries, 10(3), 85. https://doi.org/10.3390/batteries10030085