
Citation: Sun, C.; Qin, W.; Yun, Z. A

State-of-Health Estimation Method

for Lithium Batteries Based on

Fennec Fox Optimization

Algorithm–Mixed Extreme Learning

Machine. Batteries 2024, 10, 87.

https://doi.org/10.3390/

batteries10030087

Academic Editors: Matthieu

Dubarry and Carlos Ziebert

Received: 29 November 2023

Revised: 22 February 2024

Accepted: 28 February 2024

Published: 2 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

A State-of-Health Estimation Method for Lithium Batteries
Based on Fennec Fox Optimization Algorithm–Mixed Extreme
Learning Machine
Chongbin Sun 1, Wenhu Qin 1,* and Zhonghua Yun 2

1 School of Instrument Science and Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China;
sunchongbin@seu.edu.cn

2 School of Intelligence Science and Technology, Xinjiang University, No. 777 Huarui Road,
Urumqi 830046, China; zhonghuayun@xju.edu.cn

* Correspondence: qinwenhu@seu.edu.cn

Abstract: A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical
to safely operating electric vehicles and other equipment. This paper proposes a state-of-health
estimation method based on fennec fox optimization algorithm–mixed extreme learning machine
(FFA-MELM). Firstly, health indicators are extracted from lithium-battery-charging data, and grey
relational analysis (GRA) is employed to identify highly correlated features with the state-of-health
of the battery. Subsequently, a state-of-health estimation model based on mixed extreme learning
machine is constructed, and the hyperparameters of the model are optimized using the fennec fox
optimization algorithm to improve estimation accuracy and convergence speed. The experimental
results demonstrate that the proposed method has significantly improved the accuracy of the state-
of-health estimation for lithium batteries compared to the extreme learning machine. Furthermore,
it can achieve precise state-of-health estimation results for multiple batteries, even under complex
operating conditions and with limited charge/discharge cycle data.

Keywords: lithium batteries; state-of-health; grey relational analysis; fennec fox optimization
algorithm; extreme learning machine

1. Introduction

With the growing emphasis on environmentally friendly, energy-saving, and low-
carbon driving concepts worldwide, electric vehicles are increasingly prevalent. Lithium
batteries serve as the primary energy storage device in electric vehicles because of their
high power density, long cycle lifetimes, and wide range of operating temperatures [1,2].
However, in practical use, lithium batteries inevitably experience a decline in capacity
and performance as they age [3], which could result in battery failure or even catastrophic
accidents. Therefore, accurately estimating the state-of-health (SOH) of batteries is of great
significance for their safe operation [4,5]. The SOH of a battery is typically defined as the
ratio of its current maximum available capacity to its initial capacity [6]. Measuring the
SOH of lithium batteries directly is challenging; the most commonly used methods are
model-based or data-driven [7].

Model-based methods aim to comprehend the aging process of batteries by estab-
lishing electrochemical or equivalent circuit models, with accuracy depending on the
attenuation law of key parameters in the model [8]. The electrochemical model, grounded
in electrochemical kinetics, derives internal parameters that represent the battery aging
process. It establishes a physical model and achieves SOH estimation [9]. Bi et al. [10]
introduced a simple structured single-particle degradation model capable of predicting bat-
tery failures from overall and local aging mechanisms and estimating SOH. Experimental
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verification of the model was conducted across various temperatures. Gao et al. [11] pro-
posed a simplified electrochemical model alongside a dual nonlinear filter, synergistically
estimating the state-of-charge (SOC) and SOH. While electrochemical models can achieve
precise SOH estimation, they entail solving numerous highly coupled partial differential
equations, leading to significant time and resource consumption and requiring extensive
prior knowledge about battery aging mechanisms [12]. In comparison, equivalent circuit
models have simpler algorithms, consume fewer computational resources, and are more
cost-effective. Manh-Kien et al. [13] established a Thevenin equivalent circuit model ac-
counting for the influence of battery aging parameters, highly accurate with low complexity,
facilitating integration into a practical battery management system (BMS). Sihvo et al. [14]
utilized the equivalent circuit model (ECM) to fit impedance data and estimate the SOH
of vehicle batteries based on ECM parameters. However, the accuracy and stability of the
equivalent circuit model may diminish when dealing with complex application scenarios
and degrading batteries [15]. While model-based methods provide strong interpretabil-
ity, the complex and varied degradation mechanisms of lithium batteries, coupled with
the inability to consider environmental factors, pose challenges in constructing accurate
mathematical or physical models.

Data-driven methods eschew complex electrochemical processes and battery models,
relying instead on the analysis of historical data to obtain battery aging information [16].
Consequently, these methods have gradually become a current research hotspot. They are
primarily categorized into two groups: shallow learning-based and deep learning-based.
Shallow learning methods encompass neural networks like multilayer perceptron (MLP)
and extreme learning machine (ELM), support vector machines (SVM) and their variants, as
well as stochastic techniques such as Gaussian and Wiener processes. Li et al. [17] extracted
internal and external health features based on electrochemical models (EM) and voltage
and temperature curves, and constructed SOH estimation models using a back-propagation
neural network (BPNN). This approach effectively enhances the estimation accuracy across
various operating conditions and charge/discharge patterns. Pan et al. [18] introduced a
SOH estimation model based on multiple health indicators (HI) and ELM. HI quantifies
capacity degradation, while ELM captures the potential correlation between extracted HI
and capacity degradation, thereby improving the accuracy and efficiency of online SOH
estimation. Zhang et al. [19] proposed a method for estimating SOH based on an improved
particle swarm optimized extreme learning machine (PSO-ELM), utilizing the improved
PSO to search for the optimum input weights and hidden layer neurons for ELM model
establishment. Zuo et al. [20] devised a hybrid data-driven method incorporating failure
features. The method employed fuzzy grey relational analysis (FGRA) to extract failure
features and an improved least squares support vector machine (LSSVM) model to estimate
SOH under varying environmental temperatures. Yun et al. [21] introduced a novel hybrid
approach for SOH prediction, utilizing complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) to decompose health indicators. Additionally, LSSVM
was incorporated to construct a nonlinear prediction model. Chen et al. [22] developed
an online SOH estimation approach employing the bat algorithm optimization-relevance
vector machine (BA-RVM) with dynamic integration. The BA algorithm optimized the
RVM kernel parameters, and the sub-models were continuously updated with online data,
thereby further enhancing the accuracy. Jia et al. [23] derived indirect health indicators
from the voltage, current, and temperature curves of lithium batteries by employing grey
relational analysis for feature analysis. They combined Gaussian process regression (GPR)
with probability prediction to achieve high prediction accuracy. Xu et al. [24] investigated
the impact of relaxation effect on the decay of lithium batteries, accurately modeling
degradation using the wiener process, and implementing one-step and multi-step SOH
estimation methods.

The SOH estimation methods based on deep learning primarily encompass deep
neural network (DNN), convolutional neural network (CNN), recurrent neural network
(RNN), etc. Khumprom et al. [25] employed DNN to predict the SOH and conducted
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experiments on the NASA battery dataset, demonstrating comparable performance to other
machine learning algorithms. Li et al. [26] proposed a capacity estimation approach based
on CNN, utilizing partially charging voltage, current, and temperature data converted
into images for rapid online health monitoring. Manali et al. [27] utilized various RNN
techniques to establish battery SOH estimation models and compared the performance
of different approaches, illustrating the accuracy improvement achievable with RNN.
Bao et al. [28] proposed a multi-stage adaptive prediction method, integrating two swarm
intelligence optimization algorithms to optimize variational mode decomposition (VMD)
and long short-term memory neural network (LSTM), respectively. Additionally, the
method incorporated an autoregressive integrated moving average (ARIMA) model to
predict the declining trend of battery capacity in small training datasets.

The research conducted by numerous scholars indicates that the current SOH estima-
tion methods may yield poor model performance if inappropriate hyperparameters are
employed. The process of battery capacity degradation is highly correlated with operating
conditions, so insufficient generalization of the model will lead to suboptimal SOH estima-
tion in complex operating conditions. Furthermore, the accuracy of the model is contingent
upon the availability of sufficient historical training data; insufficient data can impede
the comprehensive capture of key SOH-related information. To tackle these challenges,
this paper proposes a novel SOH estimation method for lithium batteries based on the
fennec fox optimization algorithm–mixed extreme learning machine (FFA-MELM). Firstly,
12 health indicators were extracted from charging data, and grey relational analysis was
employed to evaluate and select the most crucial features as model inputs. Subsequently, by
integrating the ELM-RBF model and introducing a mixed parameter, a mixed extreme learn-
ing machine model with strong generalization was constructed to improve the estimation
stability. The fennec fox optimization algorithm was then utilized to optimize the number
of hidden layer neurons and the mixed parameter of the mixed extreme learning machine,
thereby achieving hyperparameter optimization of the model. Finally, SOH estimation
experiments were conducted on 12 batteries from two public datasets, NASA and CALCE.
The results show that the proposed method outperforms ELM in terms of accuracy and
exhibits adaptability to various battery types and operating conditions. Moreover, the
method maintains stable performance even when confronted with limited data availability.

The rest of this paper is structured as follows: Section 2 analyzes and extracts the
battery health indicators based on grey relational analysis. Section 3 constructs the SOH
estimation model based on the fennec fox optimization algorithm–mixed extreme learning
machine. Section 4 includes SOH estimation experiments under different conditions and
discusses the experimental results. Section 5 presents the conclusion.

2. Analysis and Construction of Battery Health Indicators
2.1. Analysis of Battery Degradation Data

The SOH of a battery is usually expressed as the ratio of its current maximum available
capacity to its initial capacity as follows:

SOH =
Ci
C0
× 100% (1)

where Ci is the maximum discharged capacity of the i-th cycle; C0 is the initial capacity.
This section is based on battery degradation data from the National Aeronautics and

Space Administration (NASA) Prediction Center of Excellence [29] and the Center for
Advanced Life Cycle Engineering (CALCE) at the University of Maryland [30]. The rated
capacity of the NASA lithium battery is 2 Ah. At room temperature of 24 ◦C, B05, B06,
B07, and B18 are charged at a constant current (CC) of 1.5 A until the voltage rises to 4.2 V,
followed by constant voltage (CV) charging until the current drops to 20 mA. They are then
discharged at 2 A constant current (CC) until the voltage is 2.7 V, 2.5 V, 2.2 V, and 2.5 V,
respectively. Due to the significant impact of battery operating temperature and discharge
rate on battery degradation, more complex B34, B55, B45, and B31 batteries have also been
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used for analysis. The rated capacity of CALCE lithium battery is 1.1 Ah, with CS2_35,
CS2_36, CS2_37, and CS2_38 also adopting a charging/discharging standard similar to the
NASA dataset: at room temperature, CC charging is performed at 0.55 A until the voltage
rises to 4.2 V, and then CV charging is performed until the current drops to 20 mA. Next, CC
discharging is performed at 1.1 A until the voltage is 2.7 V. Table 1 shows the experimental
conditions for each battery, and Figure 1 shows the battery capacity degradation curve.

Table 1. Experimental conditions for each battery.

No. Temperature
(◦C)

Charging
Current (A)

Charging Cut-Off
Voltage (V)

Discharging
Current (A)

Discharging
Cut-Off Voltage (V)

B05 24 1.5 4.2 2.0 2.7
B06 24 1.5 4.2 2.0 2.5
B07 24 1.5 4.2 2.0 2.2
B18 24 1.5 4.2 2.0 2.5
B34 24 1.5 4.2 4.0 2.2
B55 4 1.5 4.2 2.0 2.5
B45 4 1.5 4.2 1.0 2.0
B31 43 1.5 4.2 4.0 2.5

CS2_35 \ 0.55 4.2 1.1 2.7
CS2_36 \ 0.55 4.2 1.1 2.7
CS2_37 \ 0.55 4.2 1.1 2.7
CS2_38 \ 0.55 4.2 1.1 2.7
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2.2. Health Indicators Construction Based on Charging Curve

The extraction of health indicators (HIs) plays a crucial role in data-driven battery SOH
estimation methods, transforming raw data into meaningful features that can be used by
machine learning. Since the SOH estimation model requires the input of multidimensional
features, the constructed HIs need to accurately describe the battery SOH [31]. Figure 2
shows the charging current, voltage, and temperature curves of the B07 battery over time
in different cycles. From Figure 2, it can be seen that as the SOH degrades, the current,
voltage, and temperature curves gradually shift to the left, while the CC charging time
becomes shorter and the CV charging time becomes longer. Therefore, HIs extraction can
be performed based on changes in the position of the curves.

Based on the charging curves trend, 12 health indicators were extracted [32], catego-
rized into four types: (1) time and time ratio of different charging stages: CC charging
stage time F1, CV charging stage time F2, their ratio F3, and total charging time F4; (2) the
integration of current curves in different charging stages over time: CC charging stage
current integration F5, CV charging stage current integration F6, and total charging stage
current integration F7; (3) the integration of temperature curves in different charging stages
over time: CC charging stage temperature integration F8, CV charging stage temperature
integration F9, and total charging stage temperature integration F10; (4) the maximum slope
of the curve: the maximum slope of the charging voltage curve F11 and the maximum slope
of the charging current curve F12. Taking the B07 battery as an example, these features were
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standardized (as shown in Equation (16) in Section 3.4) to conform to a normal distribution.
The processed data curves are shown in Figure 3.
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Since the CALCE dataset did not measure actual temperature, health indicators for
types 1, 2, and 4 were extracted in CALCE. Taking the CS2_37 battery as an example, the
processed data curves are shown in Figure 4.
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2.3. Feature Analysis Based on GRA

Figures 3 and 4 illustrate the distinct changing trends of various health indicators,
alongside evident autocorrelation, posing challenges in discerning the relationship between
HIs and SOH. Grey relational analysis [33] is a multivariate correlation analysis method
based on grey system theory and can be used to measure the degree of correlation between
various variables. Employing GRA to analyze and select the pre-extracted health indicators
aids in identifying crucial features, reducing data dimensions, and enhancing model
performance. Table 2 outlines the steps of GRA, and Figure 5 shows the analysis results.

Table 2. The GRA procedure.

GRA Algorithm Process

Step 1: For a given dataset, define the reference sequence Y = {y (k)|k = 1, 2, . . . , n}, with n
denoting the length of the sequence; and define the comparative sequence
Xi = {xi(k)|i = 1, 2, . . . , d}, with d denoting the number of feature sequences.
Step 2: Dimensionless normalize the dataset: xi(k) =

xi(k)−mean(xi)
max(xi)−min(xi)

.

Step 3: Calculate the relational coefficients: ξi(k) =
min

i
min

k

∣∣∣∣y(k)−xi(k)
∣∣∣∣+ρ·max

i
max

k

∣∣∣∣y(k)−xi(k)|∣∣∣∣y(k)−xi(k)
∣∣∣∣+ρ·max

i
max

k

∣∣∣∣y(k)−xi(k)
∣∣∣∣ , where ρ

is the identification coefficient, ρ ∈ (0, 1), and ρ is 0.5 in this paper.
Step 4: Calculate the relational grade r, which is defined as the mean value of ξi(k):

ri =
n
∑

i=1
ξi(k)/n.

Step 5: Sort the features by relational grade, and automatically select the top K features as model
inputs; K is set to 5 in this paper.
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The relational grade value of GRA approaching 1 indicates a higher degree of correla-
tion. As can be seen from Figure 5, the relational grade values of F2, F5, F7, F8, and F10
of B07, and F1, F3, F4, F5, and F7 of CS2_37 all surpass 0.9, while the remaining values
are either less than or equal to 0.82. Consequently, these health indicators were chosen for
estimating the SOH of B07 and CS2_37.

3. SOH Estimation Model Based on Fennec Fox Optimization Algorithm–Mixed
Extreme Learning Machine
3.1. Extreme Learning Machine

Extreme learning machine (ELM) is a type of single hidden layer feedforward neural
network (SLFNN) algorithm [34]. It comprises an input layer, a hidden layer, and an output
layer, as depicted in Figure 6. During training, only the weights and biases connecting the
input layer and the hidden layer require random initialization, while the weights of the



Batteries 2024, 10, 87 7 of 22

output layer can be computed directly without iterative optimization such as backpropaga-
tion. ELM demonstrates the ability to swiftly handle large-scale aging data with simple
hyperparameter configurations, enabling precise real-time estimation of SOH even with
limited data.
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Given a training set of N samples, E = {(Xi, yi)|i = 1, 2, · · · , N, Xi ∈ Rn, yi ∈ Rm}, where
Xi =

[
xi1, xi2, . . . , xin]

T ∈ Rn is the input for the i-th sample, yi =
[
yi1, yi2, . . . , yim]

T ∈ Rm is the
i-th sample label. The output of an ELM with K hidden nodes can be defined as follows:

Y =
k

∑
j=1

β jg
(
ωj · Xi + bj

)
i = 1, 2, · · · , N (2)

where ωj =
[
ω1j,ω2j, . . . , ωnj

]
is the combined weight between the j-th hidden layer neuron

and the input layer,bj is the bias of the j-th hidden layer neuron, g
(
ωj · Xi + bj

)
is the

activation function, and β j =
[
β j1, β j2, · · · , β jm]

T represents the combined weight between
the j-th hidden layer neuron and the output layer. Equation (2) can be expressed in matrix
form as follows:

Y = Hβ (3)

where Y = (y1,y2, . . . , yN), β =
(

β1, β2, · · · , βk)
T and

H =

 g(ω1 · x1 + b1) · · · g(ωk · xk + bk)
...

. . .
...

g(ω1 · xN + b1) · · · g(ωk · xN + bk)

 (4)

Neural networks adapt the weights and biases between neurons according to training
data, while in the ELM training process, since the input weights of hidden layers ωj and
the bias bj are randomly assigned, the output matrix H of the hidden layer can be derived.
The solving process can be transformed into a linear parameter solving process, wherein
only the output weights β need to be calculated, based on Equation (3), and the solving
process can be defined as follows:

β = H+Y (5)

where H+ is the Moore–Penrose generalized inverse matrix of H.

3.2. Mixed Extreme Learning Machine

The extreme learning machine based on the radial basis function (ELM-RBF) utilizes
RBF as the basis function in the hidden layer. This allows for better handling of nonlinear
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problems while maintaining the rapid training characteristics of ELM [35]. The output of
the j-th hidden layer neuron can be represented as follows:

φj(Xi) = φ
(
µj, σj, Xi

)
= exp

(
‖ Xi − µj ‖2

σj

)
(6)

where the center of the radial basis function µj =
[
µj1, µj2, . . . , µjn]

T and radius σj are
randomly initialized, and the output of ELM-RBF with K hidden nodes can be defined as
follows:

Y =
k

∑
j=1

β jexp

(
‖ Xi − µj ‖2

σj

)
i = 1, 2, · · · , N (7)

To better capture the characteristics of the input data, this paper integrates ELM and
ELM-RBF to formulate a mixed hidden layer neuron output. This is achieved by employing
both the sigmoid activation function and RBF, with the weighted output controlled by a
mixed parameter α, resulting in the mixed extreme learning machine (MELM). The output
of the j-th hidden layer neuron can be represented as follows:

f j(Xi) = αg
(
ωj · Xi + bj

)
+ (1− α)exp

(
‖ Xi − µj ‖2

σj

)
(8)

g(x) =
1

1 + e−x (9)

where g(x) represents the sigmoid activation function, α is a mixed parameter utilized
to modulate the contribution of the two parts, with a value ranging between 0 and 1.
Following the same procedure as ELM, only the output weight β needs to be solved; the
network structure of MELM is presented in Figure 7.
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3.3. Fennec Fox Optimization Algorithm

The fennec fox optimization algorithm (FFA) is a novel swarm intelligence algorithm
inspired by the predatory and evasion behaviors of the fennec fox population in nature [36].
FFA solves optimization problems by simulating these two behaviors. The algorithm
mainly consists of two stages: digging prey behavior in the sand and escaping predators.

(1) Phase1: Digging prey behavior in the sand (local search).

When hunting, the fennec fox uses its sensitive hearing to detect the position of prey
under the sand, excavate, and capture its prey. Simulating this behavior can improve the lo-
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cal search ability of FFA and bring it closer to the global optimal solution. It is assumed there
are N fennec foxes, where the position of the i-th fox is denoted as Xi = (xi1, xi2, . . . , xim),
and the fitness value in this position is Fi. A local search is performed on the neighborhood
with Xi as the center and radius R. The first phase position update model is as follows:

xP1
i,j = xi,j + (2 · r− 1) · Ri,j (10)

Ri,j = α ·
(

1− t
T

)
· xi,j (11)

Xi =

{
XP1

i , FP1
i < Fi

Xi, else
(12)

where XP1
i represents the position of the i-th fennec fox based on the first phase update,

xP1
i,j represents the position of its j-th dimension, and FP1

i is the fitness value of XP1
i . Ri,j is

the neighborhood radius of xi,j, t is the iteration counter, T represents the total number of
iterations, r is a random number in the interval [0, 1], and α is a constant set to 0.2.

(2) Phase2: Escaping predators (global search).

When encountering the pursuit of predators, the fennec fox can escape the pursuit of
predators with its remarkable speed and abrupt changes in direction. The escape strategy of
the fennec fox serves as the foundation for global searching. This escape strategy enhances
the exploration ability of FFA, enabling it to skip out of the local optimal area and identify
the global optimal area. The second phase position update model is as follows:

Xrand
i : xrand

i,j = xk,j, k ∈ {1, 2, . . . , N}, i = 1, 2, . . . , N (13)

xP2
i,j =


xi,j + r ·

(
xrand

i,j − I · xi,j

)
, Frand

i < Fi

xi,j + r ·
(

xi,j − xrand
i,j

)
, else

(14)

Xi =

{
XP2

i , FP2
i < Fi

Xi, else
(15)

where Xrand
i represents the target position of the i-th fennec fox escaping, xrand

i,j denotes

its position in the j-th dimension, and Frand
i is the fitness value at that position. XP2

i is the
position of the i-th fennec fox based on the second phase update, xP2

i,j denotes its position

in the j-th dimension, and FP2
i is the fitness value at that position. r is a random number

between [0, 1], and I is a random number selected from the set {1, 2}. Based on the above
behaviors of the fennec fox population, the FFA flowchart is shown in Figure 8.

3.4. FFA-MELM

The number of hidden layer neurons n and the mixed parameter α are critical param-
eters affecting the performance of MELM. Insufficient neurons can result in underfitting
and inability to capture complex data relationships, while excessive numbers may lead
to overfitting, increasing the training time. The value of α also impacts the accuracy and
generalization of MELM. FFA is a novel global optimization algorithm that offers distinct
advantages in optimizing MELM hyperparameters, thus effectively improving model
performance. The process of the FFA-MELM is depicted in Figure 9.
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The steps of FFA-MELM are listed below:

(1) Data preprocessing: Standardize the features of the sample data according to Equation
(16), ensuring that data conform to the standard normal distribution N(0, 1). The
preprocessed data can then be divided into training and test samples.

x∗ =
x− µ

σ
(16)

where x represents the raw sample data, x∗ represents the preprocessed sample data, µ is
the mean value of all sample data, and σ is the standard deviation of all sample data.
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(2) Feature analysis and automatic feature selection: The features of the sample data
are analyzed using GRA to determine their importance. The top K features are then
selected as inputs for the SOH estimation model.

(3) Set the model parameters: In the model, the number of fennec fox populations is set
to 100, the position dimension is set to 2, the total number of iterations is set to 50, the
hidden layer neurons n in MELM are set to [2, 50], the mixed parameter α is set to (0,
1), and the optimized fitness function is defined as follows:

MSE =
1
N

N

∑
i
(ŷi − yi)

2 (17)

where ŷi and yi are the estimated and actual values of SOH for the i-th training sample,
respectively, and N is the number of training samples.

(4) Random initialization of population position: Each fennec fox corresponds to a set
of spatial position vectors (n, α). Randomly initialize the position of the fennec fox
population based on the value range of n and α defined in step 3.

(5) MELM hyperparameter optimization: Utilize FFA to optimize the number of hidden
layer neurons and mixed parameters of MELM.

(6) Set termination condition: If the total number of iterations is reached, terminate the
algorithm and output the global optimal position parameters (nbest, αbest).

(7) Establish the optimal model: Based on the parameters (nbest, αbest), establish the final
MELM estimation model and output the estimated SOH.

4. Experiment and Analysis
4.1. SOH Estimation Accuracy Experiment

B05, B06, B07, B18, B34, B55, B45, and B31 from the NASA dataset were selected as
experimental subjects. The first 70% of the battery cycle data was used as training data,
and the remaining data were used for testing to assess the accuracy and reliability of the
proposed method. The results and errors of SOH estimation for B05, B06, B07, and B18 are
shown in Figure 10.

Figure 10 shows that the FFA-MELM method significantly outperforms MELM and
ELM in estimating the SOH decay curve of B05, B06, B07, and B18 under mild operating
conditions, with an estimation error basically within 1%. Furthermore, it also achieves a
satisfactory curve-fitting effect in the capacity regeneration area.

For batteries subjected to complex operating conditions, temperature variations can
influence the chemical reaction rate inside the battery, potentially leading to damage to
the materials within. High discharge rates result in increased heat generation inside the
battery, leading to the thickening of the SEI film and accelerated battery aging. The SOH
estimation experiments of B34, B55, B45, and B31 under complex operating conditions are
shown in Figure 11.
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Figure 10. SOH estimation experiments of different methods under mild operating conditions.
Estimation results: (a) B05; (c) B06; (e) B07; (g) B18. The estimation error of the test data: (b) B05;
(d) B06; (f) B07; (h) B18.

Figure 11 indicates that B34 and B55 display increased nonlinearity under complex
operating conditions, characterized by larger fluctuations in the capacity decay curve. The
ELM model estimation results prove inaccurate; however, FFA-MELM accurately captures
the SOH decay trend with maximum estimation errors within 2% and 3%, respectively,
exhibiting the best fitting effect. Regarding B45 operating at low temperatures and slower
discharge rates and B31 operating at high temperatures and faster discharge rates, FFA-
MELM also demonstrates superior performance, with maximum errors within 1%.

To comprehensively evaluate the SOH estimation performance of the proposed method,
three different indicators were employed in the experiment, namely mean absolute error
(MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE). The
model’s smaller MAE and RMSE indicate fewer prediction errors and a better fit to the
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actual SOH. To address the sensitivity of RMSE to outliers, MAPE is utilized for auxiliary
evaluation. The equations for these indicators are as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷi| × 100% (18)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 × 100% (19)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (20)

where yi and ŷi represent the actual and predicted values of the i-th sample, respectively,
and N is the number of samples. Table 3 presents the performance metrics for SOH
estimation.

Table 3. Performance metrics of different methods.

No. Method MAE(%) RMSE (%) MAPE (%)

B05
FFA-MELM 0.26 0.42 0.39

MELM 0.40 0.67 0.59
ELM 0.66 0.97 0.98

B06
FFA-MELM 0.44 0.71 0.69

MELM 1.15 1.27 1.84
ELM 1.49 1.68 2.33

B07
FFA-MELM 0.28 0.36 0.38

MELM 0.43 0.67 0.59
ELM 1.15 1.37 1.57

B18
FFA-MELM 0.88 1.12 1.26

MELM 1.10 1.36 1.59
ELM 1.03 1.59 1.46

B34
FFA-MELM 0.71 0.82 1.07

MELM 1.29 1.52 1.96
ELM 1.86 2.39 2.80

B55
FFA-MELM 1.13 1.37 2.24

MELM 1.31 1.65 2.58
ELM 1.47 1.89 2.89

B45
FFA-MELM 0.49 0.59 1.54

MELM 0.62 0.79 1.97
ELM 0.65 0.90 2.07

B31
FFA-MELM 0.23 0.26 0.27

MELM 0.59 0.69 0.70
ELM 0.73 1.00 0.86

AVG
FFA-MELM 0.55 0.71 0.98

MELM 0.86 1.08 1.48
ELM 1.13 1.47 1.87

Table 3 shows that FFA-MELM surpasses MELM and ELM under both mild and
complex operating conditions. For eight batteries, the average MAE of FFA-MELM is 0.55%,
which is 0.31% and 0.58% lower than MELM and ELM, respectively. Additionally, the
average RMSE is 0.71%, representing a decrease of 0.37% and 0.76% compared to MELM
and ELM, respectively. Moreover, the average MAPE is 0.98%, showcasing a reduction of
0.5% and 0.89% in comparison to MELM and ELM, respectively. Although the evaluation
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indicators for B34 and B55 batteries operating under complex conditions are slightly higher
than those of other batteries, the estimation errors remain within a stable range.
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Based on the analysis above, it is evident that the proposed FFA-MELM estimation
method effectively addresses the issues of inadequate fitting ability and challenges in the
hyperparameter optimization of ELM. The method accurately captures the declining trend
of battery SOH and adapts well to the phenomenon of capacity regeneration during aging.
FFA-MELM achieves more precise SOH estimation compared to ELM and demonstrates
robust adaptability and stability under complex operating conditions.

4.2. SOH Estimation Experiments with Different Starting Points for Testing

To investigate the impact of the training set size on model estimation accuracy, batteries
B05, B06, B07, B18, B34, B55, B45, and B31 from the NASA dataset were selected for
experimentation. The first 60%, 50%, 40%, and 30% of the battery cycle data were utilized
as the training data, and the remaining data as the testing data. The experiment to estimate
SOH begins from different starting points (SP) to verify the robustness of the proposed
method. The estimation results are shown in Figure 12, and the performance metrics are
presented in Table 4.

Table 4. Performance metrics of different starting points for testing.

No. Training
Data (%)

Starting
Point MAE (%) RMSE (%) MAPE (%)

B05

60 100 0.31 0.48 0.44
50 84 0.36 0.69 0.51
40 67 0.59 0.92 0.82
30 50 2.17 2.36 2.94

B06

60 100 0.44 0.70 0.67
50 84 0.50 1.10 0.73
40 67 0.60 1.14 0.86
30 50 1.45 1.90 2.02

B07

60 100 0.31 0.39 0.42
50 84 0.46 0.73 0.60
40 67 0.78 1.05 1.01
30 50 2.44 2.80 3.07

B18

60 79 0.79 1.11 1.11
50 66 0.85 1.13 1.20
40 53 0.95 1.18 1.30
30 40 1.21 1.70 1.60

B34

60 118 0.77 0.89 1.16
50 97 1.12 2.08 1.66
40 78 0.90 2.06 1.31
30 59 0.77 2.00 1.09

B55

60 61 1.20 1.39 2.35
50 51 1.11 1.49 2.17
40 41 1.48 1.97 2.86
30 31 1.19 1.72 2.31

B45

60 46 0.50 0.62 1.56
50 38 0.44 0.56 1.39
40 31 0.50 0.67 1.55
30 23 0.54 0.67 1.64

B31

60 24 0.34 0.42 0.40
50 20 0.30 0.37 0.36
40 16 0.53 0.63 0.62
30 12 0.58 0.74 0.67
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As shown in Figure 12, the proposed method accurately fits the capacity decline curve
of eight batteries when the training data comprise 40% or more of the total data. Even with
only 30% training data, the proposed method is still able to fit the trend of capacity decline
well. However, there are relatively large errors observed in the capacity regeneration and
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end regions of the decay curve. This limitation may stem from the small amount of training
data available, hindering the model’s ability to accurately capture strong nonlinearities
and large fluctuations. From Table 4, it is evident that under mild operating conditions
and with 30% training data, the proposed method can still adequately reflect the trend of
battery capacity decline, despite a relatively large SOH estimation error. When the volume
of training data is 40% or greater, the average MAE, RMSE, and MAPE are 0.58%, 0.89%,
and 0.81%, respectively. These values are close to the performance achieved with 70% of
the data volume.

From Table 4, it can be seen that even under complex operating conditions and with
reduced training data, the SOH estimation error remains relatively stable. The average
MAE, RMSE, and MAPE are 0.77%, 1.14%, and 1.43%, respectively, indicating excellent
SOH estimation. It should be noted that for B45 and B31 batteries, FFA-MELM exhibits
performance comparable to that achieved with 60% of the training data, even when the
training data volume is as low as 30%. This further confirms the adaptability and robustness
of the proposed method.

Based on the above discussion, the proposed FFA-MELM method demonstrates high
accuracy, good adaptability, and robustness for estimating battery SOH. Furthermore, it
reduces the demand for training data. Even under complex operating conditions and with
limited training data, the model can still accurately reflect the overall SOH trend. As more
training data are collected, the performance of the estimation model will gradually improve.

4.3. Adaptability Experiments for Different Battery Types

To assess the adaptability and robustness of the proposed method across different types
of batteries, CS2_35, CS2_36, CS2_37, and CS2_38 from CALCE have been selected for the
experiments. The experimental setup is identical to that described in Section 4.1. Figure 13
displays the SOH estimation results and errors, and Table 5 presents the performance
metrics for different methods.

Table 5. Performance metrics of different methods for CALCE.

No. Method MAE (%) RMSE (%) MAPE (%)

CS2_35
FFA-MELM 1.22 1.84 2.80

MELM 4.17 4.98 10.26
ELM 4.79 6.94 13.31

CS2_36
FFA-MELM 1.00 1.32 2.78

MELM 5.34 7.84 23.17
ELM 3.77 5.91 16.08

CS2_37
FFA-MELM 0.99 1.34 2.44

MELM 2.69 3.52 7.10
ELM 2.17 2.89 5.96

CS2_38
FFA-MELM 1.14 1.70 2.49

MELM 2.19 3.01 5.36
ELM 2.80 3.58 5.83
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Figure 13 shows that all three methods exhibit a good fitting effect, attributed to the 
slow capacity decline curve of the CALCE dataset in the early stage. The estimation errors 
remain relatively stable. However, during the later stage of rapid decline in SOH, the FFA-
MELM method provides a superior fit for the SOH decline curve compared to MELM and 
ELM. This is particularly evident in the area of capacity regeneration, where the proposed 
method also displays the smallest estimation error. As shown in Table 5, ELM performs 
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Figure 13. SOH estimation experiments of different methods for CALCE. Estimation results:
(a) CS2_35; (c) CS2_36; (e) CS2_37; (g) CS2_38. Estimation error of the test data: (b) CS2_35; (d) CS2_36;
(f) CS2_37; (h) CS2_38.

Figure 13 shows that all three methods exhibit a good fitting effect, attributed to the
slow capacity decline curve of the CALCE dataset in the early stage. The estimation errors
remain relatively stable. However, during the later stage of rapid decline in SOH, the FFA-
MELM method provides a superior fit for the SOH decline curve compared to MELM and
ELM. This is particularly evident in the area of capacity regeneration, where the proposed
method also displays the smallest estimation error. As shown in Table 5, ELM performs
poorly on various types of batteries. Conversely, FFA-MELM achieves lower MAE, RMSE,
and MAPE values for all four batteries, each below 1.3%, 1.9%, and 2.8%, respectively.

The experimental setup for SOH estimation experiments is the same as described in
Section 4.2, with different starting points. The experimental results are shown in Figure 14,
and the performance metrics are presented in Table 6.
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Figure 14. SOH estimation results at different starting test points for CALCE: (a) CS2_35; (b) CS2_36;
(c) CS2_37; (d) CS2_38.

Table 6. Performance metrics of different starting points for testing for CALCE.

No. Training Data (%) Starting Point MAE (%) RMSE (%) MAPE (%)

CS2_35

60 530 0.87 1.57 1.86
50 443 1.52 2.27 2.97
40 355 0.88 1.54 1.61
30 266 1.01 1.60 2.09

CS2_36

60 562 1.30 1.65 3.51
50 468 2.23 2.80 6.51
40 375 1.04 1.41 2.41
30 281 2.18 3.13 5.99

CS2_37

60 584 0.99 1.42 2.21
50 486 1.08 1.73 2.68
40 389 1.16 1.62 2.38
30 292 1.54 2.03 2.77

CS2_38

60 600 0.89 1.40 1.87
50 500 1.39 1.91 2.77
40 400 0.87 1.30 1.75
30 300 1.02 1.42 1.79

AVG 1.25 1.80 2.82

Figure 14 shows that even with reduced training data, the proposed method can still
fit the battery capacity degradation trend well with high estimation accuracy. However, a
notable error is observed in the final stage of the curve, possibly due to the highly unstable
battery performance during this phase.

Table 6 demonstrates that even with reduced training data, FFA-MELM can effectively
capture crucial information regarding the decline in capacity from limited data. The
proposed method can robustly estimate SOH, as indicated by the average MAE, RMSE,
and MAPE values of 1.25%, 1.8%, and 2.82%, respectively. It is noteworthy to mention that
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reducing the training data from 50% to 40% results in a reduction in estimation error. To
delve deeper into this matter, a refinement experiment was conducted using CS2_35 as an
example. The experiment was carried out on approximately 40–50% of the data (355 and
443 cycles), with 150 experiments conducted at different starting points ranging from 325
to 475 cycles. The results of the experiment are presented in Figure 15.
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Figure 15 shows the first-order fitting lines (as shown in Equation (21)) for the perfor-
mance metrics, which indicates a decreasing trend. This suggests that the error diminishes
as the amount of data increases. The larger errors observed in individual starting estima-
tion points may be attributed to the fact that battery aging is a nonlinear system involving
complex material, chemical, and physical mechanisms. Furthermore, the fluctuation range
of the error mostly remains within 1%, indicating that the proposed method can obtain
stable estimation results at different starting cycle points.

p(x) = p1x + p2 (21)

where p(x) represents the fitting line, and p1 and p2 are the slope and intercept, respectively.

5. Conclusions

To enhance the accuracy of SOH estimation for lithium batteries, this paper proposes an
SOH estimation method based on FFA-MELM. Firstly, health indicators were extracted by
analyzing the battery charging curve. The correlation between health indicators and SOH
was analyzed using GRA. The features highly correlated with battery SOH degradation
were selected as model inputs, with SOH as the output. To address the issues of low
estimation accuracy and weak generalization in ELM, MELM was proposed in combination
with ELM-RBF. To solve the hyperparameter optimization problem of MELM, FFA was
utilized to optimize the number of hidden layer neurons and mixed parameters of MELM,
and an SOH estimation model was established for FFA-MELM. Finally, 12 batteries from
NASA and CALCE battery datasets were employed for SOH estimation experiments.
The experimental results demonstrate that the proposed method effectively improves
the accuracy of SOH estimation compared to other methods such as MELM and ELM.
Additionally, it maintains stable accuracy across different types of batteries, complex
operating conditions, and limited training data.

In this study, batteries from the NASA and CALCE datasets were selected for the
experiments. However, it did not account for the capacity degradation of lithium bat-
teries under real operating conditions of electric vehicles. To enhance the accuracy and
generalizability of SOH estimation for lithium batteries, future work will concentrate on
two aspects: (1) creating straightforward and effective feature engineering techniques to
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reduce reliance on data integrity and computational complexity; (2) developing online SOH
estimation algorithms based on real vehicle data to improve the computational efficiency
of SOH estimation.
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