Energy Storage Systems: Technologies and High-Power Applications
Abstract
:1. Introduction
2. Energy Storage Technologies
2.1. Lithium-Ion Battery
Parameters | Li-Ion Manganese | Li-Ion Cobalt | Li-Ion Phosphate |
---|---|---|---|
Specific energy density (Wh/kg) | 100–135 | 150–190 | 90–120 |
Internal resistance (mΩ) | 25–75 | 150–300 | 25–50 |
Cycle life (80% discharge) | 500–1000 | 500–1000 | 1000–2000 |
Fast charge time (Hours) | <1 | 2–4 | <1 |
Cell voltage (nominal V) | 3.8 | 3.6 | 3.3 |
2.2. Pumped Hydroenergy Storage (PHES)
2.3. Compressed Air Energy Storage (CAES)
2.4. Supercapacitor Energy Storage
2.5. Flywheel
2.6. Superconducting Magnetic Energy Storage
2.7. Comparative Analysis of Various Energy Storage Technologies
3. Energy Storage System Applications
3.1. Hybrid Energy Storage Systems
3.2. Energy Storage for Transportation Systems
3.3. Critical Loads
3.4. Pulse Load
3.5. Power Grid
3.5.1. Frequency Regulation
3.5.2. Voltage Control
3.5.3. Grid Resilience
3.5.4. Oscillation Damping
3.6. Military Applications of High-Power Energy Storage Systems (ESSs)
3.7. Industrial Peak Shaving
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
HESS | Hybrid Energy Storage System |
ESS | Energy Storage System |
RES | Renewable Energy Resource |
BESS | Battery Energy Storage System |
SEMS | Superconducting Energy Storage |
SC | Supercapacitor |
FESS | Flywheel Energy Storage System |
PHES | Pumped Hydroenergy Storage |
CAES | Compressed Air Energy Storage |
PC | Propylene Carbonate |
Li-Ion | Lithium-Ion |
PPL | Pulse Power Load |
UPS | Uninterruptible Power Supply |
EV | Electric Vehicle |
UAV | Unmanned Aerial Vehicle |
D-MPC | Dual-Model Predictive Control |
DC | Direct Current |
EMS | Energy Management System |
References
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Katsanevakis, M.; Stewart, R.A.; Lu, J. Aggregated applications and benefits of energy storage systems with application-specific control methods: A review. Renew. Sustain. Energy Rev. 2017, 75, 719–741. [Google Scholar] [CrossRef]
- Ali, Z.M.; Calasan, M.; Aleem, S.H.E.A.; Jurado, F.; Gandoman, F.H. Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review. Energies 2023, 16, 5930. [Google Scholar] [CrossRef]
- Aghmadi, A.; Hussein, H.; Polara, K.H.; Mohammed, O. A Comprehensive Review of Architecture, Communication, and Cybersecurity in Networked Microgrid Systems. Inventions 2023, 8, 84. [Google Scholar] [CrossRef]
- Kandari, R.; Neeraj, N.; Micallef, A. Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids. Energies 2022, 16, 317. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, T.; Ma, Y. An overview on microgrid technology. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 2–5 August 2015; pp. 76–81. [Google Scholar] [CrossRef]
- Aghmadi, A.; Ali, O.; Mohammed, O.A. Enhancing DC Microgrid Stability under Pulsed Load Conditions through Hybrid Energy Storage Control Strategy. In Proceedings of the 2023 IEEE Industry Applications Society Annual Meeting (IAS), Nashville, TN, USA, 29 October–2 November 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Aghmadi, A.; Ali, O.; Hussein, H.; Mohammed, O.A. Dynamic Pulsed Load Mitigation in PV-Battery-Supercapacitor Systems: A Hybrid PI-NN Controller Approach. In Proceedings of the 2023 IEEE Design Methodologies Conference (DMC), Bath, UK, 14–15 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Mendis, N.; Muttaqi, K.M.; Perera, S. Management of Low- and High-Frequency Power Components in Demand-Generation Fluctuations of a DFIG-Based Wind-Dominated RAPS System Using Hybrid Energy Storage. IEEE Trans. Ind. Appl. 2013, 50, 2258–2268. [Google Scholar] [CrossRef]
- Wasim, M.S.; Habib, S.; Amjad, M.; Bhatti, A.R.; Ahmed, E.M.; Qureshi, M.A. Battery-Ultracapacitor Hybrid Energy Storage System to Increase Battery Life Under Pulse Loads. IEEE Access 2022, 10, 62173–62182. [Google Scholar] [CrossRef]
- Sherrill, S.A.; Banerjee, P.; Rubloff, G.W.; Lee, S.B. High to ultra-high power electrical energy storage. Phys. Chem. Chem. Phys. 2011, 13, 20714–20723. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, M.; Mohammed, O. Energy Storage Technologies for High-Power Applications. IEEE Trans. Ind. Appl. 2015, 52, 1953–1961. [Google Scholar] [CrossRef]
- Fu, Q.; Fu, C.; Fu, P.; Deng, Y. Energy Storage Technology Used in Smart Grid. J. Physics Conf. Ser. 2021, 2083, 032067. [Google Scholar] [CrossRef]
- Ise, T.; Kita, M.; Taguchi, A. A Hybrid Energy Storage with a SMES and Secondary Battery. IEEE Trans. Appl. Supercond. 2005, 15, 1915–1918. [Google Scholar] [CrossRef]
- Östergård, R. Flywheel Energy Storage a Conceptual Study. 2011. Available online: http://www.teknat.uu.se/student (accessed on 6 March 2024).
- Ribeiro, P.; Johnson, B.; Crow, M.; Arsoy, A.; Liu, Y. Energy storage systems for advanced power applications. Proc. IEEE 2001, 89, 1744–1756. [Google Scholar] [CrossRef]
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Wei, P.; Abid, M.; Adun, H.; Awoh, D.K.; Cai, D.; Zaini, J.H.; Bamisile, O. Progress in Energy Storage Technologies and Methods for Renewable Energy Systems Application. Appl. Sci. 2023, 13, 5626. [Google Scholar] [CrossRef]
- Wang, B.; Fan, H.; Li, Z.; Feng, G.; Han, Y. An Ultra-Local Model-Based Control Method With the Bus Voltage Supervisor for Hybrid Energy Storage System in Electric Vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 12, 461–471. [Google Scholar] [CrossRef]
- Yuming, C.; Peng, J.; Gaojun, M.; Yao, W.; Tiantian, L. Optimal Capacity Configuration of Hybrid Energy Storage System Considering Smoothing Wind Power Fluctuations and Economy. IEEE Access 2022, 10, 101229–101236. [Google Scholar] [CrossRef]
- Li, J.; Yao, F.; Yang, Q.; Wei, Z.; He, H. Variable Voltage Control of a Hybrid Energy Storage System for Firm Frequency Response in the U.K. IEEE Trans. Ind. Electron. 2022, 69, 13394–13404. [Google Scholar] [CrossRef]
- Parsa, S.M.; Norozpour, F.; Shoeibi, S.; Shahsavar, A.; Aberoumand, S.; Afrand, M.; Said, Z.; Karimi, N. Lithium-ion battery thermal management via advanced cooling parameters: State-of-the-art review on application of machine learning with exergy, economic and environmental analysis. J. Taiwan Inst. Chem. Eng. 2023, 148, 104854. [Google Scholar] [CrossRef]
- Xu, J.; Cai, X.; Cai, S.; Shao, Y.; Hu, C.; Lu, S.; Ding, S. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy Environ. Mater. 2023, 6, e12450. [Google Scholar] [CrossRef]
- Rouholamini, M.; Wang, C.; Nehrir, H.; Hu, X.; Hu, Z.; Aki, H.; Zhao, B.; Miao, Z.; Strunz, K. A Review of Modeling, Management, and Applications of Grid-Connected Li-Ion Battery Storage Systems. IEEE Trans. Smart Grid 2022, 13, 4505–4524. [Google Scholar] [CrossRef]
- Bindra, A. Electric Vehicle Batteries Eye Solid-State Technology: Prototypes Promise Lower Cost, Faster Charging, and Greater Safety. IEEE Power Electron. Mag. 2020, 7, 16–19. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I. A review of cathode and anode materials for lithium-ion batteries. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Zhuang, W.; Lu, S.; Lu, H. Progress in Materials for Lithium-ion Power Batteries. In Proceedings of the International Conference on Intelligent Green Building and Smart Grid (IGBSG), Taipei, Taiwan, 23–25 April 2014; IEEE: New York, NY, USA, 2014; pp. 1–2. [Google Scholar]
- Xiaopeng, C.; Weixiang, S.; Tu, V.T.; Zhenwei, C.; Ajay, K. An overview of lithium-ion batteries for electric vehicles. In Proceedings of the 2012 10th International Power & Energy Conference (IPEC), Ho Chi Minh, Vietnam, 12–14 December 2012; IEEE: New York, NY, USA, 2012; pp. 230–235. [Google Scholar]
- Diouf, B.; Pode, R. Potential of lithium-ion batteries in renewable energy. Renew. Energy 2015, 76, 375–380. [Google Scholar] [CrossRef]
- Saini, V.K.; Seervi, A.; Kumar, R.; Sujil, A.; Mahmud, M.A.; Al-Sumaiti, A.S. Cloud Energy Storage Based Embedded Battery Technology Architecture for Residential Users Cost Minimization. IEEE Access 2022, 10, 43685–43702. [Google Scholar] [CrossRef]
- Wu, C.; Lu, S.; Xue, F.; Jiang, L.; Chen, M. Optimal Sizing of Onboard Energy Storage Devices for Electrified Railway Systems. IEEE Trans. Transp. Electrification 2020, 6, 1301–1311. [Google Scholar] [CrossRef]
- Maletić, F.; Deur, J.; Erceg, I. A Multitimescale Kalman Filter-Based Estimator of Li-Ion Battery Parameters Including Adaptive Coupling of State-of-Charge and Capacity Estimation. IEEE Trans. Control. Syst. Technol. 2022, 31, 692–706. [Google Scholar] [CrossRef]
- Yao, W.; Wang, K.; Sun, J. Study of Li-ion Battery Exchange Stations in Future Power System. In Proceedings of the 2022 9th International Conference on Power Electronics Systems and Applications (PESA), Hong Kong, 20–22 September 2022; pp. 1–5. [Google Scholar]
- Görtz, J.; Aouad, M.; Wieprecht, S.; Terheiden, K. Assessment of pumped hydropower energy storage potential along rivers and shorelines. Renew. Sustain. Energy Rev. 2022, 165, 112027. [Google Scholar] [CrossRef]
- Kocaman, A.S.; Modi, V. Value of pumped hydro storage in a hybrid energy generation and allocation system. Appl. Energy 2017, 205, 1202–1215. [Google Scholar] [CrossRef]
- Ichimura, S. Utilization of cross-regional interconnector and pumped hydro energy storage for further introduction of solar PV in Japan. Glob. Energy Interconnect. 2020, 3, 68–75. [Google Scholar] [CrossRef]
- Olabi, A.; Wilberforce, T.; Ramadan, M.; Abdelkareem, M.A.; Alami, A.H. Compressed air energy storage systems: Components and operating parameters—A review. J. Energy Storage 2020, 34, 102000. [Google Scholar] [CrossRef]
- Bazdar, E.; Sameti, M.; Nasiri, F.; Haghighat, F. Compressed air energy storage in integrated energy systems: A review. Renew. Sustain. Energy Rev. 2022, 167, 112701. [Google Scholar] [CrossRef]
- Nozari, M.H.; Yaghoubi, M.; Jafarpur, K.; Mansoori, G.A. Development of dynamic energy storage hub concept: A comprehensive literature review of multi storage systems. J. Energy Storage 2022, 48, 103972. [Google Scholar] [CrossRef]
- Subramanian, S.; Johny, M.A.; Neelanchery, M.M.; Ansari, S. Self-Discharge and Voltage Recovery in Graphene Supercapacitors. IEEE Trans. Power Electron. 2018, 33, 10410–10418. [Google Scholar] [CrossRef]
- German, R.; Hammar, A.; Lallemand, R.; Sari, A.; Venet, P. Novel Experimental Identification Method for a Supercapacitor Multipore Model in Order to Monitor the State of Health. IEEE Trans. Power Electron. 2015, 31, 548–559. [Google Scholar] [CrossRef]
- Prasad, R.; Kothari, K.; Mehta, U. Flexible Fractional Supercapacitor Model Analyzed in Time Domain. IEEE Access 2019, 7, 122626–122633. [Google Scholar] [CrossRef]
- Srinivasan, V.; Weidner, J.W. Mathematical Modeling of Electrochemical Capacitors. J. Electrochem. Soc. 1999, 146, 1650–1658. [Google Scholar] [CrossRef]
- Abu Sayem, M.; A Hannan, M.; Ansari, M.N.M.; Al-Shetwi, A.Q.; Muttaqi, K.M. Effect of activation temperature on the performance of Chitosan-based activated carbon for super-capacitor application. In Proceedings of the 2022 IEEE Industry Applications Society Annual Meeting (IAS), Nashville, TN, USA, 29 October–2 November 2023; pp. 1–8. [Google Scholar]
- Zhou, Y.; Huang, Z.; Li, H.; Peng, J.; Liu, W.; Liao, H. A Generalized Extended State Observer for Supercapacitor State of Energy Estimation With Online Identified Model. IEEE Access 2018, 6, 27706–27716. [Google Scholar] [CrossRef]
- Bellache, K.; Camara, M.B.; Dakyo, B. Supercapacitors Characterization and Modeling Using Combined Electro-Thermal Stress Approach Batteries. IEEE Trans. Ind. Appl. 2018, 55, 1817–1827. [Google Scholar] [CrossRef]
- Krishnan, G.; Das, S.; Agarwal, V. An Online Identification Algorithm to Determine the Parameters of the Fractional-Order Model of a Supercapacitor. IEEE Trans. Ind. Appl. 2019, 56, 763–770. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Abdelkareem, M.A.; Ramadan, M. Critical Review of Flywheel Energy Storage System. Energies 2021, 14, 2159. [Google Scholar] [CrossRef]
- Vasconcelos, H.; Moreira, C.; Madureira, A.; Lopes, J.P.; Miranda, V. Advanced Control Solutions for Operating Isolated Power Systems: Examining the Portuguese islands. IEEE Electrification Mag. 2015, 3, 25–35. [Google Scholar] [CrossRef]
- Zhai, D.; Yao, L.; Liao, S.; Xu, J.; Mao, B.; Xie, B. Modeling and Control of Flywheel Energy Storage System. In Proceedings of the 2023 6th International Conference on Electronics Technology (ICET), Chengdu, China, 12–15 May 2023; pp. 1289–1293. [Google Scholar]
- Zhao, P.; Wang, M.; Wang, J.; Dai, Y. A preliminary dynamic behaviors analysis of a hybrid energy storage system based on adiabatic compressed air energy storage and flywheel energy storage system for wind power application. Energy 2015, 84, 825–839. [Google Scholar] [CrossRef]
- Gao, H.; Li, W.; Cai, H. Distributed control of a flywheel energy storage system subject to unreliable communication network. Energy Rep. 2022, 8, 11729–11739. [Google Scholar] [CrossRef]
- Zhang, T.L.; Zhou, Q.; Mu, S.; Li, H.; Li, Y.J.; Wang, J. Voltage-Based Segmented Control of Superconducting Magnetic Energy Storage for Transient Power Fluctuation Suppression in Island DC Microgrid. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Nguyen, L.N.; Schillig, J.B.; Cheetham, P.; Kim, C.H.; Nguyen, D.N.; Pamidi, S. Superconducting Magnetic Energy Storage for Pulsed Power Magnet Applications. IEEE Trans. Appl. Supercond. 2023, 33, 1–6. [Google Scholar] [CrossRef]
- Vyas, G.; Dondapati, R.S. Feasibility of Supercritical Hydrogen for cooling Superconducting Magnetic Energy Storage (SMES) Devices. In Proceedings of the 2021 International Conference on Simulation, Automation & Smart Manufacturing (SASM), Mathura, India, 20–21 August 2021; pp. 1–3. [Google Scholar]
- Sun, Q.; Lv, H.; Wang, S.; Gao, S.; Wei, K. Optimized State of Charge Estimation of Lithium-Ion Battery in SMES/Battery Hybrid Energy Storage System for Electric Vehicles. IEEE Trans. Appl. Supercond. 2021, 31, 1–6. [Google Scholar] [CrossRef]
- Hernando, C.; Munilla, J.; García-Tabarés, L.; Pedraz, G. Optimization of High Power SMES for Naval Applications. IEEE Trans. Appl. Supercond. 2023, 33, 1–5. [Google Scholar] [CrossRef]
- Viswanathan, V.; Mongird, K.; Franks, R.; Li, X.; Sprenkle, V.; Baxter, R. 2022 Grid Energy Storage Technology Cost and Performance Assessment. 2022. Available online: https://www.energy.gov/eere/analysis/2022-grid-energy-storage-technology-cost-and-performance-assessment (accessed on 6 March 2024).
- Dong, Z.; Cong, X.; Xiao, Z.; Zheng, X.; Tai, N. A Study of Hybrid Energy Storage System to Suppress Power Fluctuations of Pulse Load in Shipboard Power System. In Proceedings of the 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 23–26 November 2020; pp. 437–441. [Google Scholar]
- Steurer, M.; Andrus, M.; Langston, J.; Qi, L.; Suryanarayanan, S.; Woodruff, S.; Ribeiro, P.F. Investigating the Impact of Pulsed Power Charging Demands on Shipboard Power Quality. In Proceedings of the 2007 IEEE electric ship technologies symposium, Arlington, VA, USA, 21–23 May 2007. [Google Scholar]
- Mitra, S.K.; Karanki, S.B. An SOC Based Adaptive Energy Management System for Hybrid Energy Storage System Integration to DC Grid. IEEE Trans. Ind. Appl. 2022, 59, 1152–1161. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, X.; Hu, W.; Wang, Y.; Zong, Y.; Huang, C.; Ni, F. Dual Model Predictive Controlled Hybrid Energy Storage System for Naval DC Microgrids. IEEE Trans. Transp. Electrification 2022, 9, 156–168. [Google Scholar] [CrossRef]
- Fang, J.; Tang, Y.; Li, H.; Li, X. A Battery/Ultracapacitor Hybrid Energy Storage System for Implementing the Power Management of Virtual Synchronous Generators. IEEE Trans. Power Electron. 2017, 33, 2820–2824. [Google Scholar] [CrossRef]
- Roy, P.; He, J.; Liao, Y. Cost Minimization of Battery-Supercapacitor Hybrid Energy Storage for Hourly Dispatching Wind-Solar Hybrid Power System. IEEE Access 2020, 8, 210099–210115. [Google Scholar] [CrossRef]
- Ravada, B.R.; Tummuru, N.R. Control of a Supercapacitor-Battery-PV Based Stand-Alone DC-Microgrid. IEEE Trans. Energy Convers. 2020, 35, 1268–1277. [Google Scholar] [CrossRef]
- Abadi, S.A.G.K.; Habibi, S.I.; Khalili, T.; Bidram, A. A Model Predictive Control Strategy for Performance Improvement of Hybrid Energy Storage Systems in DC Microgrids. IEEE Access 2022, 10, 25400–25421. [Google Scholar] [CrossRef]
- Liu, X.; Suo, Y.; Zhang, Z.; Song, X.; Zhou, J. A New Model Predictive Current Control Strategy for Hybrid Energy Storage System Considering the SOC of the Supercapacitor. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 11, 325–338. [Google Scholar] [CrossRef]
- Behera, M.K.; Saikia, L.C. A Novel Resilient Control of Grid-Integrated Solar PV-Hybrid Energy Storage Microgrid for Power Smoothing and Pulse Power Load Accommodation. IEEE Trans. Power Electron. 2022, 38, 3965–3980. [Google Scholar] [CrossRef]
- Behera, P.K.; Pattnaik, M. Coordinated Power Management of a Laboratory Scale Wind Energy Assisted LVDC Microgrid With Hybrid Energy Storage System. IEEE Trans. Consum. Electron. 2023, 69, 467–477. [Google Scholar] [CrossRef]
- Luo, Y.; Fang, S.; Kong, L.; Niu, T.; Liao, R. Dynamic power management of Shipboard Hybrid Energy Storage System under Uncertain Navigation Conditions. IEEE Trans. Transp. Electrification 2023. [Google Scholar] [CrossRef]
- Li, J.; Han, Y.; Zhou, S.; Li, Z.; Fan, H.; Wang, B. Improved Linear Active Disturbance Rejection Control with Dynamic Event-triggered Mechanism for Hybrid Energy Storage System. IEEE Trans. Transp. Electrification 2023. [Google Scholar] [CrossRef]
- Pasupuleti, S.S.; Tummuru, N.R.; Misra, H. Power Management of Hybrid Energy Storage System Based Wireless Charging System With Regenerative Braking Capability. IEEE Trans. Ind. Appl. 2023, 59, 3785–3794. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, H.; Ge, Y.; Liao, H.; Luo, J.; Gao, S.; He, Z. Joint Sizing Optimization Method of PVs, Hybrid Energy Storage Systems, and Power Flow Controllers for Flexible Traction Substations in Electric Railways. IEEE Trans. Sustain. Energy 2023, 15, 1210–1223. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Lin, C.-H.; Chang, C.-H.; Liu, H.-D.; Chen, C.-C. A Novel A Novel Hybrid Energy Storage System with an Adaptive Digital Filter−Based Energy Management Strategy for Electric Vehicles. IEEE Trans. Transp. Electrification 2023. [Google Scholar] [CrossRef]
- Lai, J.; Chen, M.; Dai, X.; Liu, L.; Zhao, N. Power Flow Optimization and Control Strategy for Energy Router in Dual Mode Traction Power Supply System. IEEE Trans. Intell. Transp. Syst. 2023, 24, 12284–12293. [Google Scholar] [CrossRef]
- Mehraban, A.; Farjah, E.; Ghanbari, T.; Garbuio, L. Integrated optimal energy management and sizing of hybrid battery/flywheel energy storage for electric vehicles. IEEE Trans. Ind. Informatics 2023, 19, 10967–10976. [Google Scholar] [CrossRef]
- Gao, P.; Li, Y.; Yao, W.; Zheng, X.; Zhang, C. Optimization of Hybrid Energy Storage System Sizing With Considering Energy Management Strategy for High-Power Pulsed Load in Aircraft. IEEE Trans. Veh. Technol. 2023, 72, 4525–4537. [Google Scholar] [CrossRef]
- Han, Y.; Li, J.; Wang, B. Event-Triggered Active Disturbance Rejection Control for Hybrid Energy Storage System in Electric Vehicle. IEEE Trans. Transp. Electrification 2022, 9, 75–86. [Google Scholar] [CrossRef]
- Lahyani, A.; Venet, P.; Guermazi, A.; Troudi, A. Battery/Supercapacitors Combination in Uninterruptible Power Supply (UPS). IEEE Trans. Power Electron. 2013, 28, 1509–1522. [Google Scholar] [CrossRef]
- Tao, H.; Duarte, J.L.; Hendrix, M.A.M. Line-Interactive UPS Using a Fuel Cell as the Primary Source. IEEE Trans. Ind. Electron. 2008, 55, 3012–3021. [Google Scholar] [CrossRef]
- Binduhewa, P.J. Uninterruptible power supply for short-time power back-up using ultracapacitors. In Proceedings of the 2011 IEEE 6th International Conference on Industrial and Information Systems (ICIIS), Kendy, Sri Lanka, 16–19 August 2011; IEEE: New York, NY, USA, 2011; pp. 551–556. [Google Scholar]
- Aamir, M.; Kalwar, K.A.; Mekhilef, S. Review: Uninterruptible Power Supply (UPS) system. Renew. Sustain. Energy Rev. 2016, 58, 1395–1410. [Google Scholar] [CrossRef]
- Hamidi, S.A.; Ionel, D.M.; Nasiri, A. 3 Batteries and Ultracapacitors for Electric Power Systems with Renewable Energy Sources. In Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS®; Taylor & Francis Group: Abingdon, UK, 2017. [Google Scholar]
- Nadeem, F.; Hussain, S.M.S.; Tiwari, P.K.; Goswami, A.K.; Ustun, T.S. Comparative review of energy storage systems, their roles, and impacts on future power systems. IEEE Access 2019, 7, 4555–4585. [Google Scholar] [CrossRef]
- Amiryar, M.E.; Pullen, K.R. A Review of Flywheel Energy Storage System Technologies and Their Applications. Appl. Sci. 2017, 7, 286. [Google Scholar] [CrossRef]
- Fan, X.; Liu, X.; Hu, W.; Zhong, C.; Lu, J. Advances in the development of power supplies for the Internet of Everything. InfoMat 2019, 1, 130–139. [Google Scholar] [CrossRef]
- Falahi, M.; Butler-Purry, K.L.; Ehsani, M. Reactive Power Coordination of Shipboard Power Systems in Presence of Pulsed Loads. IEEE Trans. Power Syst. 2013, 28, 3675–3682. [Google Scholar] [CrossRef]
- Grid Energy Storage, U.S. Department of Energy Report. 2013. Available online: https://energy.gov/oe/downloads/grid-energy-storage-december-2013 (accessed on 2 March 2024).
- Tan, K.M.; Babu, T.S.; Ramachandaramurthy, V.K.; Kasinathan, P.; Solanki, S.G.; Raveendran, S.K. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. J. Energy Storage 2021, 39, 102591. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Loh, P.C.; Lee, T.-L.; Chandorkar, M. Advanced Control Architectures for Intelligent Microgrids—Part II: Power Quality, Energy Storage, and AC/DC Microgrids. IEEE Trans. Ind. Electron. 2012, 60, 1263–1270. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Vasquez, J.C.; Matas, J.; de Vicuna, L.G.; Castilla, M. Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization. IEEE Trans. Ind. Electron. 2011, 58, 158–172. [Google Scholar] [CrossRef]
- Mohd, A.; Ortjohann, E.; Schmelter, A.; Hamsic, N.; Morton, D. Challenges in integrating distributed Energy storage systems into future smart grid. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics (ISIE 2008), Cambridge, UK, 30 June–2 July 2008; pp. 1627–1632. [Google Scholar]
- Eyer, J.; Corey, G. SANDIA REPORT Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide A Study for the DOE Energy Storage Systems Program. Available online: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online (accessed on 6 March 2024).
- Sihler, C.; Miri, A. A Stabilizer for Oscillating Torques in Synchronous Machines. IEEE Trans. Ind. Appl. 2005, 41, 748–755. [Google Scholar] [CrossRef]
- Neely, J.C.; Byrne, R.H.; Elliott, R.T.; Silva-Monroy, C.A.; Schoenwald, D.A.; Trudnowski, D.J.; Donnelly, M.K. Damping of inter-area oscillations using energy storage. In Proceedings of the IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; IEEE: New York, NY, USA, 2013; pp. 1–5. [Google Scholar]
- Lucchese, F.C.; Canha, L.N.; Brignol, W.S.; Rangel, C.A.S.; Hammerschmitt, B.K.; Castro, C.C. A Review on Energy Storage Systems and Military Applications. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Torino, Italy, 1–4 September 2020; IEEE: New York, NY, USA, 2020; pp. 1–5. [Google Scholar]
- Catenaro, E.; Rizzo, D.M.; Onori, S. Framework for energy storage selection to design the next generation of electrified military vehicles. Energy 2021, 231, 120695. [Google Scholar] [CrossRef]
- Zhu, B.; Lu, J.; Zhang, X.; Ma, T.; Dai, Y. A Novel Hybrid Energy Storage System for Large Shipborne Electromagnetic Railgun. IEEE Trans. Plasma Sci. 2021, 49, 2420–2427. [Google Scholar] [CrossRef]
- Mamun, A.-A.; Liu, Z.; Rizzo, D.M.; Onori, S. An Integrated Design and Control Optimization Framework for Hybrid Military Vehicle Using Lithium-Ion Battery and Supercapacitor as Energy Storage Devices. IEEE Trans. Transp. Electrif. 2018, 5, 239–251. [Google Scholar] [CrossRef]
- Frankforter, K.J.; Tejedor-Tejedor, M.I.; Anderson, M.A.; Jahns, T.M. Investigation of Hybrid Battery/Ultracapacitor Electrode Customization for Energy Storage Applications with Different Energy and Power Requirements Using HPPC Cycling. IEEE Trans. Ind. Appl. 2019, 56, 1714–1728. [Google Scholar] [CrossRef]
- He, L.; Jiang, X.; Tang, C.; Liu, Y.; Wu, Y.; Weilin, L. Energy Management Strategy of Composite Energy Storage System With Airborne High-power Pulse Load. In Proceedings of the 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 16–19 December 2023; pp. 219–224. [Google Scholar]
- Wang, W.; Liu, H.; Lin, W.; Chen, Y.; Yang, J.-A. Investigation on Works and Military Applications of Artificial Intelligence. IEEE Access 2020, 8, 131614–131625. [Google Scholar] [CrossRef]
- Rahman, A.; Kim, J.; Hossain, S. Recent advances of energy storage technologies for grid: A comprehensive review. Energy Storage 2021, 4, e322. [Google Scholar] [CrossRef]
- Martins, R.; Hesse, H.C.; Jungbauer, J.; Vorbuchner, T.; Musilek, P. Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications. Energies 2018, 11, 2048. [Google Scholar] [CrossRef]
- Bereczki, B.; Hartmann, B.; Kertesz, S. Industrial Application of Battery Energy Storage Systems: Peak shaving. In Proceedings of the 2019 7th International Youth Conference on Energy (IYCE), Bled, Slovenia, 3–6 July 2019; pp. 1–5. [Google Scholar]
- Abbas, A.; Halbe, S.; Chowdhury, B. Comparison of Peak Demand Shaving Potential of Demand Response and Distributed Energy Storage in Residential Buildings. In Proceedings of the SoutheastCon 2019, Huntsville, Alabama, 11–14 April 2019; pp. 1–6. [Google Scholar]
- Barzkar, A.; Hosseini, S.M.H. A novel peak load shaving algorithm via real-time battery scheduling for residential distributed energy storage systems. Int. J. Energy Res. 2018, 42, 2400–2416. [Google Scholar] [CrossRef]
- Engels, J.; Claessens, B.; Deconinck, G. Optimal Combination of Frequency Control and Peak Shaving With Battery Storage Systems. IEEE Trans. Smart Grid 2019, 11, 3270–3279. [Google Scholar] [CrossRef]
- Li, X.; Cao, X.; Li, C.; Yang, B.; Cong, M.; Chen, D. A Coordinated Peak Shaving Strategy Using Neural Network for Discretely Adjustable Energy-Intensive Load and Battery Energy Storage. IEEE Access 2019, 8, 5331–5338. [Google Scholar] [CrossRef]
- Kein, H.C.; Huoy, L.B.; Yun, S.L.; Jianhui, W.; Li, W. The State-of-the-Arts of Peak Shaving Technologies: A Review. In Proceedings of the International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Kuching, Malaysia, 4–7 October 2020; pp. 162–166. [Google Scholar]
Energy Storage Technologies | Power Density (W/kg) | Energy Density (Wh/kg) | Efficiency (%) | Lifetime (Cycles) | Advantages | Drawbacks | Energy Capital ($/kWh) |
---|---|---|---|---|---|---|---|
Li-ion battery | 1500–10,000 | 200–500 | 85–95 | 500–1000 | High energy density, widely used | Limited cycle life, potential safety concerns | 600–2500 |
Flywheel | 1000–2000 | 20–80 | 90 | 10 k–100 k | Rapid response, long cycle life | Limited energy density, high upfront cost | 2000–5000 |
Supercapacitor | >100,000 | 2.5–15 | 95–98 | >125 k | High power density, fast charge/discharge | Lower energy density compared to batteries | 100–400 |
Superconducting magnetic (SEMS) | 1000–4000 | 0.2–2.5 | 95–99 | >125 k | Extremely high power density, fast response | High initial cost, complexity, cryogenic cooling | 200–500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghmadi, A.; Mohammed, O.A. Energy Storage Systems: Technologies and High-Power Applications. Batteries 2024, 10, 141. https://doi.org/10.3390/batteries10040141
Aghmadi A, Mohammed OA. Energy Storage Systems: Technologies and High-Power Applications. Batteries. 2024; 10(4):141. https://doi.org/10.3390/batteries10040141
Chicago/Turabian StyleAghmadi, Ahmed, and Osama A. Mohammed. 2024. "Energy Storage Systems: Technologies and High-Power Applications" Batteries 10, no. 4: 141. https://doi.org/10.3390/batteries10040141
APA StyleAghmadi, A., & Mohammed, O. A. (2024). Energy Storage Systems: Technologies and High-Power Applications. Batteries, 10(4), 141. https://doi.org/10.3390/batteries10040141