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Abstract: As a superior solution to the developing demand for energy storage, lithium-ion batteries
play an important role in our daily lives. To ensure their safe and efficient usage, battery management
systems (BMSs) are often integrated into the battery systems. Among other critical functionalities,
BMSs provide information about the key states of the batteries under usage, including state of
charge (SOC) and state of health (SOH). This paper proposes a data-driven approach for the joint
online estimation of SOC and SOH utilizing multi-task learning (MTL) approaches, particularly
highlighting cross-stitch units and cross-stitch networks. The proposed model is able to achieve an
accurate estimation of SOC and SOH in online applications with optimized information sharing
and multi-scale implementation. Comprehensive results on training and testing of the model are
presented. Possible improvements for future work are also discussed in the paper.

Keywords: SOC; SOH; online state estimation; deep learning; multi-task learning

1. Introduction

As public awareness about environmental protection grows, society has pivoted its
attention to technologies and applications of clean, renewable energy. This shift in focus has
greatly accelerated the development of energy storage technologies, which are essential for
the storage and exploitation of renewable energy sources, e.g., solar and wind. Among the
rapidly evolving landscape of energy storage technologies, lithium-ion batteries have stood
out with their high energy density and high power density [1]. These characteristics have
made them ideal for powering diverse applications ranging from portable electronics [2] to
electric vehicles [3], power grid systems, and even aerospace applications. To ensure the
safe and efficient usage of lithium-ion batteries, a so-called battery management system
(BMS) is often integrated, especially in larger battery systems. A BMS is a sophisticated
electronic system that manages the usage of the corresponding battery system. It performs
multiple critical functionalities including monitoring the voltage, current, and temperature
of the cells in the battery pack. Furthermore, it is also responsible for cell balancing,
which equalizes the charge across the cells to prevent accelerated aging or failure due to
imbalanced cell states. Another fundamental role of BMSs is safety protection, where the
BMS prevents the battery system from hazardous failures by monitoring faulty usage, such
as overcharging, deep discharging, and overheating. Beyond these functionalities, as well
as serving as the foundation of them, BMS provides valuable information about the critical
states of the cells [4]. An accurate estimation of these internal states is closely related to the
efficiency and longevity of the batteries, where state of charge (SOC) and state of health
(SOH) are considered to be the two key states [5].

SOC serves as an indicator of the remaining charge in a battery relative to its total
capacity, which is defined as follows:

SOC =
Q
C

(1)
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where Q stands for the residual charge quantity that can be taken from the battery at the
moment, and C stands for the capacity of the battery, which is the charge quantity that
can be taken when the battery is fully charged. This measure is similar to a fuel gauge but
for batteries, providing a quantifiable metric to assess how much electric charge is stored
at any given moment relative to the battery’s current maximum capacity. However, in
contrast to a fuel gauge, the SOC cannot be determined with a simple measurement. SOC
estimation plays a crucial role not only in the optimized management of usage profiles with
the prediction of the remaining runtime but also underpins safety protection functionalities
by offering a direct metric for the battery system to stay in the appropriate operation
window. Therefore, an accurate estimation of SOC ensures efficient and safe utilization, as
well as an optimized lifespan of the battery.

SOH is another key state that represents the overall health condition of a battery. The
definition of SOH can either be based on the capacity or the internal resistance of the
battery [6]:

SOHC =
Cactual
Crated

(2)

SOHR =
Ractual − REOL
Rrated − REOL

(3)

where Cactual and Crated are the current actual capacity and the rated capacity of the battery,
Ractual , REOL and Rrated stand for the current internal resistance, the end-of-life internal
resistance and the rated internal resistance. In this paper, the capacity-based definition of
SOH is used. SOH provides a deep insight into the remaining useful life of a battery. An
accurate SOH estimation ensures the reliability and economy of the corresponding energy
storage system by monitoring the health conditions of each individual cell, thus preventing
unexpected failures and optimizing the lifecycle cost of the batteries. Understanding
SOH allows for optimized battery usage, ensuring a durable and safe operational life of
the battery.

Estimation algorithms of SOC and SOH can generally be classified into three basic cat-
egories: direct measurements, model-based approaches, and data-driven approaches [7,8].
Of course, sometimes a hybrid of the three basic approaches is also applied [9,10]. As the
name indicates, direct measurement approaches aim at determining the states through
parameters directly derived from measurements without algorithms. For the determination
of SOC, frequently applied direct measurement approaches include coulomb counting
and open-circuit voltage-based (OCV-based) estimation [11,12]. The coulomb counting
method, also known as Ampere-hour counting, calculates the integral of the current over
time and divides it by the reference capacity to get the change in SOC. This method is
simple to implement but has several critical drawbacks. The reference capacity and the
initial SOC must be known. Furthermore, this method is prone to error because of the
integral operation of the current measurement. The quantization method also plays an
important role since, in real applications, unlike in the ideal situation, the current value
between two sampled time steps might not be constant. As for OCV-based SOC estimation,
the underlying idea is that the OCV of a battery cell is a non-linear function of SOC [11].
With a pre-built OCV-SOC lookup table saved in the BMS, it is possible to look up the
corresponding SOC value based on the current OCV. Although this method is also simple to
implement, it is usually not possible to obtain the OCV with an adequate relaxation period
in real-world applications. Furthermore, some types of cells may have a flat OCV curve
or a hysteresis in the OCV curve, which further weakens the feasibility of this method.
To determine SOH via direct measurement, either the current capacity or the internal
resistance can be measured. However, to measure the full usable capacity of a battery, a
full discharge is needed, which is often not the case in real applications. The same goes
for an internal resistance measurement, which requires an impedance measurement or a
pulse-based measurement.
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Model-based battery state estimation approaches determine the states indirectly based
on parameterized battery models and algorithms [13,14]. The fundamental principle
of model-based approaches is to make predictions using the battery model and then
adjust the predictions with the help of measurements. There exist different kinds of
models that are used for model-based state estimation, such as empirical models [15]
and electrochemical models [16], but the most popular model is the equivalent circuit
model because it represents a balance between simplicity and accuracy [14]. A variety of
algorithms have been applied by researchers to this topic, including filter-based methods
like the Kalman filter (KF) [17], particle filter [18], extended Kalman filter (EKF) [19–21], and
unscented Kalman filter (UKF) [22–24] and observer-based methods like the Luenberger
observer [25], sliding mode observer [26], and H-infinity observer [27]. Because of the
great correlation between SOC and SOH, they are also often estimated together. If the
estimation of SOC and SOH is carried out in one extended model, then the setup is called
joint estimation [28,29]. However, such a setup increases the computational cost due to
the increasing matrix size, and it implements the update of SOC and SOH at the same
time scale. Conversely, if the estimation of SOC and SOH is done in two separate models
and connected, then the setup is called dual estimation or co-estimation [30,31]. Such a
setup keeps the matrix size small and enables the possibility of treating the estimated
states in different time scales, which is much more efficient since the change in SOH is
much less dynamic than the change in SOC. However, an accurate model-based state
estimation requires a well-parameterized model and large computing resources for an
online application [32]. In-depth domain knowledge about the electrical, thermal, and aging
behavior of the studied battery is the premise for a model-based battery state estimation,
which, together with the complex filtering algorithms, keeps the implementation of model-
based approaches complicated.

With the development of modern artificial intelligence technology and the availability
of data, more and more researchers are pivoting to data-driven approaches for battery
state estimation, hoping to find a solution to the aforementioned problems of direct mea-
surement and model-based approaches. As the name indicates, data-driven approaches
utilize models that try to capture the intricate relationships and patterns of the target
problem by learning from historical or real-time data. The overall workflow of data-driven
approaches includes data collection, data preprocessing, model development, and model
deployment [33]. A large amount of data is usually the premise for data-driven approaches
so that the trained model can achieve adequate generalization abilities. For that, researchers
can design the tests and do the measurements themselves, which allows for tailoring the
data to their specific needs and conditions and bringing novelty to the research as well.
An alternative would be using public datasets available online [34], which could save
time and resources and facilitate comparisons. A variety of methods have been applied
to data-driven battery state estimation approaches [13,33], including traditional machine
learning methods [35,36], fuzzy logic methods [37], shallow neural networks [38,39], and
deep learning models [40–45]. Ref. [40] proposed a deep neural network for SOC estimation
and tested the performance with respect to different numbers of precedent time steps and
different temperature conditions, where the mean squared error (MAE) is generally under
2%. Ref. [42] proposed a convolutional neural network (CNN) for SOC estimation and
studied the influence of different time horizons and sampling rates, together with added
noise as data augmentation, where the MAE on the test cycle ranged from 0.36% to 3.12%.
Ref. [41] utilized a recurrent neural network (RNN) with long short-term memory (LSTM)
layers for SOC estimation with different time depths and different temperature conditions,
where the MAE on the test set ranged from 0.573% to 2.088%. Ref. [44] proposed a gated
recurrent unit-convolutional neural network (GRU-CNN) network architecture for SOH
estimation using charging data, which achieved an MAE of 1.03% on the NASA dataset
and 0.62% on the Oxford dataset. Ref. [45] utilized a deep CNN to estimate the capacity
online using partial charge data, which achieved an RMSE of 1.477% on the NASA cells.
Ref. [43] proposed a snapshot-based LSTM-based RNN to trace the SOH of electric vehicle
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batteries using partial cycling data with an average root mean square error (RMSE) lower
than 2.46%.

Similar to those mentioned in the model-based approach, several joint or dual estima-
tion setups also exist for data-driven approaches. Ref. [5] estimated SOC and the capacity
dually with a hybrid machine learning framework consisting of a Gaussian process re-
gression method and a convolutional neural network. With the assistance of fiber sensor
measurements, the proposed model achieved an RMSE of 0.0064 Ah on the estimated
capacity based on the estimated SOC and an RMSE of 0.62% on SOC estimation with
updated capacity and fiber sensor measurements. Ref. [46] utilized a nonlinear state space
reconstruction-long short-term memory neural network for dual estimation of SOC and
SOH on lithium-ion battery packs of electric vehicles. Their proposed model consists of
two LSTM neural network estimators for SOC and SOH, respectively, and achieved an
RMSE of within 1.3% for SOC estimation and 2.5% for SOH estimation. Ref. [47] proposed
a novel SOC-SOH estimation framework for joint estimation of SOC and SOH during the
charging phase, consisting of encoders and decoders for charging and SOH. The proposed
framework was able to achieve an MAE of 0.362% for SOC estimation and an MAE of 0.41%
for SOH estimation on the test set.

Compared with joint model-based estimation of SOC and SOH, significantly less
work has been done for joint data-driven estimation. However, prior knowledge tells us
that when we estimate SOC and SOH at the same time, these two states are dependent
on each other, especially SOC on SOH. There should be some shared information about
the two states, which can be captured by a neural network and thus benefit the model.
A deep learning paradigm of this type is called multi-task learning (MTL), which has
been successfully applied across a variety of applications of machine learning [48,49], such
as natural language processing [50] and computer vision [51]. Research has shown that
applying MTL techniques brings improved learning efficiency, better generalization, less
risk of overfitting, and higher resource efficiency to deep learning models [48,49]. There
have also been several applications of MTL to batteries [52–54]. However, to the best of
our knowledge, there is still no precedent work applying MTL to the joint estimation of
SOC and SOH, the two most important states of a battery cell. Furthermore, we deem
the implementation of such joint estimation of SOC and SOH much more meaningful
for real-world applications if the model allows for an online estimation, meaning the
estimation is causal and conducted in real time based solely on historical and current
information without interrupting the normal usage of the battery. Therefore, in this paper,
we propose a novel data-driven approach for joint SOC and SOH online estimation of
lithium-ion batteries utilizing multi-task learning. The proposed model takes the differing
time scales in the dynamics of SOC and SOH into consideration, delivering accurate
estimation results. It is suitable for online applications through synchronous sequence-to-
sequence implementation.

The rest of this paper is structured as follows: Section 2 introduces the proposed model
with the applied methodology explained in detail; Section 3 displays the acquired results of
the proposed model under different experiments, which are then analyzed and interpreted
in Section 4. Finally, Section 5 summarizes the achieved results of this paper and gives a
short outlook of our future work.

2. Methodology
2.1. Multi-Task Learning

Typically, multi-task learning in deep learning can be categorized into two kinds: hard
parameter sharing and soft parameter sharing, as shown in Figure 1 [48].

Hard parameter sharing, the most common strategy in MTL, primarily involves
sharing the bottom hidden layers between all tasks while each task keeps several task-
specific layers to itself [48]. In hard parameter sharing, tasks share the same layers for the
representation of fundamental features. This architecture significantly reduces the risk of
overfitting and increases the generalization ability of the model across different tasks by
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learning the more general representation. Hard parameter sharing is resource-efficient
in parameter usage because of the reduction in the total number of parameters in the
model. This approach is simple and easy to implement at the same time. However, such an
architecture forces the same basic feature representation on all tasks, which is only optimal
if all the tasks are closely related. The lack of flexibility also inevitably leads to limited
performance. Conversely, soft parameter sharing allows each task to have its own model
and parameter set. Instead of directly sharing the bottom layers, soft parameter sharing
encourages the models to learn the shared information by regularizing the parameters
of different tasks [48]. This method brings great flexibility into the model as each task is
allowed to keep the task-specific information while benefiting from the sharing between
different tasks. It is especially useful when a balance needs to be reached between learning
tasks specifically and collectively. Of course, such an architecture is typically more resource-
intensive and complex regarding the model and training procedures. Furthermore, finding
the right degree of parameter sharing across the tasks is a challenging task in itself. Thus,
we combine the principles of both hard and soft parameter sharing, which is tailored for
our task of joint SOC and SOH estimation, aiming for an efficient, flexible model with
simple training procedures and an optimized extent of information sharing across the two
tasks. Figure 2 displays the architecture of the proposed model, which will be explained in
detail in the rest of this section.

Task A

Shared
layers

Task B

… …

Task-specific 
layers

(a) Hard parameter sharing

Task A

Constrained 
layers

Task B

… …

Task-specific 
layers

(b) Soft parameter sharing

Figure 1. The two basic types of MTL.
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Figure 2. Overview of the proposed model’s architecture.
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2.2. Model Overview

As shown in Figure 2, the proposed model consists of a shared bottom layer for both
tasks and one task-specific tower for each task. The shared bottom layer is a shared LSTM
layer, and both towers consist of one task-specific LSTM layer and four fully connected
(FC) layers. The model takes measurement sequences, including voltage, current, and
temperature, as input and outputs the estimated SOC sequence and SOH sequence. At time
step k, the input of the model is defined as xk = [Uk, Ik, Tk], and the output is defined as
yk = [ ˆSOCk, ˆSOHk]. In addition, the task-specific LSTM for SOH estimation is initialized
using the battery’s initial SOH of the time sequence modulated by two FC layers, which
makes the model’s estimation possible at any life stage of the battery cell. The task-specific
layers, or the towers of both tasks, are aligned and connected with the so-called cross-stitch
units [55]. Take the cross-stitch unit α1 for example, this takes the output of the two task-
specific LSTM layers as input, and the output will be fed to the next layer of each task. The
underlying assumption of the proposed model is that the fundamental battery dynamics for
estimating SOC and SOH should be the same. However, from the fundamental dynamics
to the high-level output of SOC and SOH, the intermediate features of both tasks should
have less and less shared information. The use of a shared LSTM layer underpins the model
with a common representation that captures the fundamental battery dynamics intrinsic to
both SOC and SOH. This shared representation leverages the intrinsic connection between
SOC and SOH by sharing the underlying temporal patterns and dependencies to both
tasks. At the same time, cross-stitch units are introduced to enable the flow of the shared
information from one task to another while keeping the unique information of each task to
itself, offering the necessary flexibility to tailor the model to the unique aspects of each task.
As will be elucidated in the rest of the section, the cross-stitch units are trainable, meaning
the parameters will be updated during model training to optimize the performance of
the model, and the model can determine to what extent the sharing will be itself. The
introduction of the cross-stitch units ensures that while the model benefits from a shared
understanding of fundamental battery behavior, it also retains the capacity to adapt to the
specific nuances and requirements of each task individually. The shared LSTM layer and
the two task-specific LSTM layers are used to capture the shared and task-specific temporal
features for SOC and SOH estimation, and the FC layers will map the temporal features to
the corresponding SOC and SOH of each time step.

2.3. Long Short-Term Memory

In the field of deep learning, RNNs are often used for time series processing, while
common feedforward neural networks take only the current input data as the model’s
input, RNNs take the input data of the current time step and the output of the previous
time step as the model’s input so that they can learn the temporal dynamic behavior of
the input sequence. As a refined RNN model, LSTM [56] introduces a gate mechanism
into its architecture. This mechanism is used to manage the information flow within the
unit, determining which information should be retained and which should be discarded,
ensuring the key information from earlier in the sequence is not lost. This innovation effec-
tively addresses the shortcomings of vanilla RNN, particularly its struggle with capturing
long-term dependencies. By doing so, LSTM enhances the network’s ability to process
longer sequences and convey the entire sequence’s information with greater precision. At
the same time, LSTM also solves the problem of vanishing gradient with vanilla RNNs.
Figure 3 shows the internal structure of a single LSTM unit [57].

In Figure 3, ct, ht, ft, it, c̃t, and ot stand for cell state, hidden state, forget gate, input
gate, cell gate, and output gate, respectively, at time step t. At each time step, the LSTM
unit takes three inputs: cell state from previous moment ct−1, hidden state from previous
moment ht−1, and input data of current moment xt. At the same time, it produces two
outputs: cell state of current moment ct and hidden state of current moment ht. The
mapping equations are written as follows:
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it = σ(Wixt + Uiht−1 + bi) (4)

ft = σ(Wf xt + U f ht−1 + b f ) (5)

ot = σ(Woxt + Uoht−1 + bo) (6)

c̃t = σ(Wg xt + Ught−1 + bg) (7)

ct = ft ⊙ ct−1 + it ⊙ c̃t (8)

ht = ot ⊙ tanh(ct) (9)

Equation (8) displays how the current cell state ct is updated: it is a combination of
the previous cell state after the forgetting and the current input information after selection.
With the current cell state ct, the current hidden state can be calculated with the selection
by the output gate as in Equation (9). Because of the advantages of LSTM, it is used to
capture the temporal features in our work.

ct−1

σ σ tanh σ

+

tanh

ht−1

xt

ct

ht

ft it 𝒄t ot

Figure 3. Internal structure of an LSTM unit.

2.4. Cross-Stitch Unit

Cross-stitch units and cross-stitch networks were first proposed in computer vision
in order to learn an optimal combination of shared and task-specific representations [55].
In essence, a cross-stitch unit is a matrix with trainable coefficients that describe the
contribution of one task to another. In the case of n tasks, a cross-stitch unit would have the
structure as shown in Figure 4.

Task 1 α11 α12    ···    α1n

Task 2

Shared
Task 1

Shared
Task 2

Input features Output featuresCross-stitch unit

… …

Task n
Shared
Task n

α21 α22    ···    α2n

αn1 αn2    ···    αnn

…

Figure 4. Cross-stitch unit for n tasks.
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The cross-stitch unit receives input features from n tasks and then linearly combines
them using the cross-stitch coefficients. If we denote the input features of the i-th task as xi
and the output combined features for the i-th task as x̃i, then the forward pass process can
be written as follows: 

x̃1
x̃2
...

x̃n

 =


α11 α12 · · · α1n
α21 α22 · · · α2n

...
...

. . .
...

αn1 αn2 · · · αnn




x1
x2
...

xn

 (10)

where αij represents the contribution of features from task j to task i. As mentioned above,
the coefficients of the cross-stitch unit are trainable, meaning they will converge to the
optimized extent of sharing across the tasks to ensure the best performance of the model.
If we denote the total loss of the network as L, then the backpropagation process can be
written as follows: 

∂L
∂x1
∂L
∂x2
...

∂L
∂xn

 =


α11 α21 · · · αn1
α12 α22 · · · αn2

...
...

. . .
...

α1n α2n · · · αnn




∂L
∂x̃1
∂L
∂x̃2
...

∂L
∂x̃n

 (11)


∂L

∂α11
∂L

∂α12
· · · ∂L

∂α1n
∂L

∂α21
∂L

∂α22
· · · ∂L

∂α2n
...

...
. . .

...
∂L

∂αn1
∂L

∂αn2
· · · ∂L

∂αnn

 =


∂L
∂x̃1
∂L
∂x̃2
...

∂L
∂x̃n

[x1 x2 · · · xn
]

(12)

In our case, we have a two-task scenario. IF we denote the two tasks as A and B,
respectively, then the i-th cross-stitch unit used here can be written as:

αi =

[
αi

AA αi
AB

αi
BA αi

BB

]
(13)

For simplicity, we refer to αAA and αBB as non-sharing coefficients, and refer to αAB
and αBA as sharing coefficients.

2.5. Multi-Scale Online Estimation

In general, time-series processing tasks can be categorized into sequence-to-class and
sequence-to-sequence [58]. Different types of sequence processing require different types
of implementation. As indicated by its name, sequence-to-class means the model takes
a sequence of data as input and produces the classification result of the sequence. For
example, tasks like sentiment analysis. For the implementation of a sequence-to-class task,
the model should read the whole input sequence data before making the final decision. As
for sequence-to-sequence, there are two ways to implement this approach: asynchronous
sequence-to-sequence and synchronous sequence-to-sequence. Both take a sequence of
data as input but produce a sequence as output as well. Synchronous sequence-to-sequence
is often used in sequence labeling tasks like part-of-speech tagging and named entity
recognition. At each time step, the model’s current output is considered as a part of the
output sequence. In the case of synchronous sequence-to-sequence, the input and output
sequences are of the same length. Conversely, synchronous sequence-to-sequence, often
in the form of an encoder–decoder model, is widely used in tasks like text translation.
The input sequence is fed into the encoder model, and the output is then passed into the
decoder part to generate the output sequence. As is intuitive in real-world applications, the
length of the input and output sequence is usually different. In the scenario of battery state
estimation, it is usually expected that the model can output the real-time estimation of the
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current time step, especially for SOC estimation tasks. Furthermore, in real applications,
the length of the input sequence, namely the running duration of the estimation system,
is usually unknown. In other words, a model that is only able to produce the estimation
results after the whole input sequence is completely taken is not of much use in real-world
applications. Therefore, the proposed model is implemented as synchronous sequence-to-
sequence. Figure 5 is a schematic diagram of such an implementation. At time step k, the
LSTM layers take xk = [Uk, Ik, Tk] as input, the output of which will then be fed into the
fully connected layers to map into the output of the current time step yk = [ ˆSOCk, ˆSOHk].
In other words, the elements of the output sequence Y = [y1, y2, y3, ..., yT ] and the input
sequence X = [x1, x2, x3, ..., xT ] are one-to-one in time steps. The output of each time
step is also causal in this case, meaning it only takes past and current input information
into consideration.

LSTMs LSTMs LSTMs ……

M
o
d
el

FC Layers

O
u
tp
u
t

Se
q
u
en

ce
In
p
u
t

Se
q
u
en

ce

Figure 5. Synchronous sequence-to-sequence implementation of the model.

In addition, as mentioned above, the change in SOC is usually much more dynamic
than that of SOH, which means while the estimation of SOC needs to be updated on a
very frequent basis, the estimation of SOH can be updated less frequently in order to save
computation effort without causing much inaccuracy in the results. Consequently, we
introduce a multi-scale temporal architecture into our model: the shared bottom layer and
the tower of SOC estimation are implemented with a sampling period of 1 s, while the
tower of SOH estimation is implemented with a sampling period of 3600 s. This multi-scale
temporal architecture allows for an efficient allocation of computational resources. By
setting a higher sampling rate for SOC estimation, the model is capable of capturing the
rapid fluctuations and providing real-time updates, which is crucial given the dynamic
nature of SOC changes. In contrast, the significantly lower sampling rate for the SOH
estimation tower fits the relatively slow process of battery aging, allowing the model to
reach a balance between optimized computational effort and long-term accuracy.

2.6. Dataset and Preprocessing

Data are the foundation of a successful machine learning model. In a typical BMS, the
directly measured data include current, voltage, and temperature. For SOC estimation,
it is more meaningful to focus on short-term dynamic data, while for SOH estimation,
long-term aging data are the main focus. Therefore, cyclic aging data is usually used
for the training of SOH estimation models in research, while SOC estimation models are
usually trained on battery data under dynamic load profiles because of the fast-changing
nature of SOC and the practicality compared to real-world scenarios [34]. Consequently,
the appropriate training data for a joint SOC and SOH estimation model are expected
to contain dynamic load profiles as well as long-term aging. Battery cells can come in
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different shapes, e.g., cylindrical [59], prismatic [60], and pouch cells [61]. Cylindrical
cells are the most widely used shape for lithium-ion batteries because of the advantages
of a large amount of experience in their manufacture and a good lifespan. Common
cylindrical cell sizes include 18650, 21700, and 26650, where the first two digits denote the
diameter of the cylindrical cell and the following two digits denote its length. As one of
the most common sizes of cylindrical cells, 18650 cells have not only been used in various
applications of lithium-ion batteries but also are often chosen for the development of novel
cell chemistry [62]. Therefore, in order to meet the requirements of the training of our joint
SOC and SOH estimation model and present it in the case of the most commonly used
type of lithium-ion batteries for a convincing result, we utilize our previously published
open-source dataset [7]. The dataset is comprised of thirty LG 18650HE4 lithium-ion battery
cells, whose specifications are displayed in Table 1.

Table 1. LG 18650HE4 cell specifications.

Parameter Data

Nominal Capacity 2.5 Ah
Nominal Voltage 3.6 V

Charging Cutoff Voltage 4.2 V
Discharging Cutoff Voltage 2.5 V

Max. Charging Current 4 A
Max. Discharging Current 20 A

The whole dataset covers the cyclic aging scenarios with a variety of stress factors:
temperatures of 23 ◦C, 25 ◦C, and 45 ◦C, depths of discharge (DODs) of 30%, 70%, and 100%,
and mean SOCs of 35%, 50%, and 65%. The batteries were tested with a Neware battery
tester with a voltage limit of 10 V and a current range of ±10 A. To control the ambient
temperature, a Memmert oven and a Binder temperature chamber were used. Two out
of the thirty cells were aged using dynamic profiles under room temperature 23 ◦C and a
mixture of DODs, which are used for the training, validation, and testing of the proposed
model. As shown in Figure 6, the used dataset is divided into two parts: dynamic cycling
and checkup tests. For the dynamic cycling part, the used load profiles were generated from
the federal urban driving schedule (FUDS) using the so-called random pulse method [63].
This method segments the FUDS cycle into small pieces and then concatenates the pieces
into our desired load profile stochastically, which ensures that the generated profiles are
dynamic and have the same intrinsic features as the original FUDS cycle. At the same time,
the generated cycles of different DODs are constructed differently due to the stochastic
concatenation, which brings more diversity into the dataset. The generated dynamic cycles
cover different cycles of 25%, 50%, 75%, 80%, and 95% DOD. Capacity tests are interspersed
in the dynamic cycling around every ten equivalent full cycles (EFCs). The cyclic aging
is regularly interrupted by a set of checkup tests. The checkup tests consist of a capacity
test, an OCV measurement, a modified hybrid pulse power characterization (HPPC), and
an extra dynamic cycling part for validation purposes, which has a different pattern to
that of the cyclic aging data. The reference SOC is calculated using coulomb counting. The
reference SOH is calculated using the capacity test data and then interpolated over the
whole dataset based on EFCs. It is worth mentioning that because of test device logging
errors, the dynamic cycles of 25% DOD were poorly sampled, which caused a great error in
the calculation of the reference SOC. Therefore, this small part of the data was deprecated.
For further details of the dataset, please refer to [7].
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Figure 6. Demonstration of dataset samples.

To ensure a constant sampling rate, the raw dynamic cycling data was resampled
with a sampling rate of 1 Hz. Afterward, the resampled dataset was split randomly into
training, validation, and test sets in the ratio of 6:2:2. The training set is used for the learning
of the model, namely updating the model’s parameters to minimize the loss. However,
each trained model is subject to one set of hyperparameters, which is why the validation
set is required to test the model’s performance during training in order to fine-tune the
model’s hyperparameters. It also offers a metric to prevent overfitting during the training
phase. After the training and fine-tuning are done, the test set is used to test the best
model’s performance. The test set should be completely independent and not used in
the training or validation process so that it can provide an unbiased evaluation of the
final model’s generalization ability on the target tasks in real-world scenarios. After the
data split was done, a sliding window approach was used as data augmentation for the
training set. Subsets of the original time-series data were created by sliding a fixed-size
window over the dataset, which significantly increased the available amount of training
data. It also provided a more comprehensive view of the time series, which improved the
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model’s robustness to different patterns in the data. The window size was set to 24 h, with
the overlap ratio being 0.5. Min-max normalization was applied to the dataset, adjusting
the measurements of different scales to the same scale. In our work, the input data was
normalized into the range [0, 1] using the following formulas [64]:

xstd =
x − xmin

xmax − xmin
(14)

xscaled = xstd · (max − min) + min (15)

where x is the original value of a feature, xmin is the minimum value of the feature, xmax
is the maximum value of the feature, max and min are the expected range, and xscaled is
the normalized value of the feature. Implementing normalization as preprocessing has
many benefits: it adjusts the scales of different features into the same range so that each
feature contributes approximately proportionately to the network; it can also improve the
network’s performance and accelerate the convergence of the network during training [65].
It is worth mentioning that the validation data and test data should be normalized using
the minimum and maximum feature values from the training set so that no information
leakage happens.

3. Results

The exact architecture specifications of the proposed model are displayed in Table 2.

Table 2. Network architecture specifications.

Layer Input Size Output Size

Shared LSTM 3 256
Task-Specific LSTM (both) 256 256

FC Layer 1 (both) 256 256
FC Layer 2 (both) 256 128
FC Layer 3 (both) 128 64
FC Layer 4 (both) 64 1

For the training of the model, a loss function needs to be designed. In this work, we
mainly exploited the mean squared error (MSE) between the estimates and ground-truth
values of SOC and SOH. The calculation of MSE is defined as follows:

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2 (16)

During the training, assisting loss terms to penalize large changing rates and non-
monotonicity of the estimated SOH were experimented with as well. However, no evident
improvement was found. The applied batch size varies from 4 to 8 and 16 because of the
limited GPU memory. However, for a fair comparison of the following results, the same
number of iterations was applied, namely 4500. The training process integrates automatic
fine-tuning of the learning rates using the open-source hyperparameter optimization frame-
work Optuna [66] and the use of the early stopping technique, which is why sometimes
the actual number of trained iterations is slightly less than 4500. For the evaluation of the
results, mean absolute error and root mean square error were used, which are defined
as follows:

MAE(y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi| (17)

RMSE(y, ŷ) =

√
1
n

n

∑
i=1

(yi − ŷi)2 (18)
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MAE averages every sample point equally, offering an intuitive and understandable
metric, especially since both SOC and SOH are in the range of [0, 1]. RMSE is more sensitive
to outliers since the square operation amplifies their influence.

3.1. Loss Weighting

As mentioned above, the loss function consists of the MSE of SOC estimation and SOH
estimation. However, the change in the estimated SOC and SOH have different ranges,
and the difficulty that the model has in learning the two tasks is also different. Therefore,
finding a good way to balance the loss in both tasks is crucial. We experimented with in
total three different weighting methods for the loss function, namely empirical weighting,
uncertainty weighting, and dynamic weight average (DWA).

3.1.1. Empirical Weighting

The most intuitive way for loss weighting would be to observe the values of both losses
and try to balance them with a weight hyperparameter. We call this approach empirical
weighting. In this case, the loss function can be written as follows:

L = LSOC + w · LSOH (19)

The empirical weighting method is straightforward to implement using the predefined
hyperparameter only and offers explicit and manual control over the influence of each
task. However, since the weight is fixed during training, it cannot adapt to changes in
task-learning dynamics. We experimented with different weight hyperparameters and
compared the results. The weight hyperparameter w = 5 evidently offers advantages over
the other candidates.

3.1.2. Uncertainty Weighting

Uncertainty weighting was first proposed by [67]. The authors introduced the concept
of homoscedastic task uncertainty as a metric for loss weighting. The derived loss function
is as follows:

L =
1

2σ2
SOC

LSOC +
1

2σ2
SOH

LSOH + log σSOC + log σSOH (20)

where σ is the model’s observation noise parameter of either task and is learnable during
training. With this method, the weights are adjusted automatically. The log terms can also
be seen as regularization terms: without the log terms, the model will automatically only
focus on the easier task to minimize the loss and ignore the other. In other words, the
regularization terms make it possible for the weight hyperparameter in empirical weighting
to become trainable. However, this approach is much more complex to implement than
empirical weighting, as it involves the learning of extra parameters.

3.1.3. Dynamic Weight Average

Ref. [68] proposed the weighting scheme dynamic weight average. The loss weighting
is updated from iteration to iteration based on the rate of change of the loss for each task.
The given formulas are as follows:

wk(t − 1) =
Lk(t − 1)
Lk(t − 2)

(21)

λk(t) =
Ke

wk(t−1)
T

∑
i

e
wi(t−1)

T

(22)

where k ∈ {SOC, SOH}, wk is the calculated relative descending rate, T controls the
softness of the weighting, and K controls the sum of the weights. DWA continuously
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updates the weights based on real-time training dynamics. The slower the loss in one
task decreases, the larger the portion that task will be assigned during the next iteration.
However, due to the highly dynamic changes in weightings, oscillations in learning and
potentially unstable training dynamics might be introduced.

We experimented with the aforementioned three weighting methods with the same
model architecture and hyperparameters, using in all cases the training paradigm of end-
to-end training, which will be explained later in this section. The MAE and RMSE of the
estimation results are shown in Table 3. On all metrics, empirical weighting shows the
smallest error. Taking the simple implementation of this method into consideration, all
later training and results are based on the weighting method of empirical weighting with
w = 5.

Table 3. Results with different weighting methods.

Weighting Method SOC SOH
MAE [%] RMSE [%] MAE [%] RMSE [%]

Empirical Weighting 0.743 0.961 0.062 0.080
Uncertainty Weighting 1.470 1.777 0.177 0.204

Dynamic Weight Average 1.107 1.407 0.119 0.151

3.2. Training Paradigm

The cross-stitch units are interpretable: the linear combination of the task-specific
features means information sharing between the two tasks. When it comes to the training
of such networks, an intuitive question would be: is it better to train the model with cross-
stitch units integrated from the beginning so that the layers have better expression ability,
or should we let the towers of both tasks first learn their own task-specific representations
and then add cross-stitch units to combine them [55]? We experimented with both training
paradigms, namely end-to-end training and fine-tuning with cross-stitch units. In end-to-
end training, we directly train both towers jointly with cross-stitch units from scratch, where
the cross-stitch units function more like a medium for the information flow between both
tasks. The two towers are less distinct since they are trained to serve both tasks from the
beginning. In fine-tuning with cross-stitch units, we first train both towers separately, then
add cross-stitch units for fine-tuning. Here, the cross-stitch units carry more responsibility
in combining the features since both towers focus more on their own tasks. For a fair
comparison, we kept the number of total iterations the same. We trained the model end-to-
end for 4500 iterations. For the second training paradigm, we first pre-trained the model
without cross-stitch units for 1341 iterations, then fine-tuned the model for the rest of
the iterations. Three test case examples of the model’s performance under both training
paradigms are shown in Figure 7. Table 4 displays the model’s performance on the whole
test set. In general, the fine-tuned model displays better results in SOC estimation and
the RMSE in SOH estimation, while the end-to-end trained model displays lower MAE in
SOH estimation, which means the SOH estimation of the fine-tuned model is slightly less
accurate than that of the end-to-end trained model but with fewer outliers. However, since
the difference in the error is negligible, it is safe to conclude that the training paradigm of
fine-tuning with cross-stitch units brings better performance to the proposed model.

Table 4. Results with different training paradigms.

Training Paradigm SOC SOH
MAE [%] RMSE [%] MAE [%] RMSE [%]

End-to-End Training 0.743 0.961 0.062 0.080
Fine-Tuning with Cross-Stitch Units 0.554 0.759 0.063 0.078

Separate (Single-Task Model) 1.324 1.717 0.147 0.185
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Figure 7. Estimation results under three test cases (test case 1: row 1–2; test case 2: row 3–4; test
case 3: row 5–6). Columns from left to right: SOC estimation of the end-to-end trained model,
SOH estimation of the end-to-end trained model, SOC estimation of the fine-tuned model, and
SOH estimation of the fine-tuned model. Odd-numbered rows show the plots of ground truths
and estimates of each test case. Even-numbered rows show the plots of the absolute error of the
estimations of the corresponding test case.

The learning processes of the four cross-stitch units with both training paradigms
are shown in Figure 8. Note that αi

AA and αi
BB are the non-sharing coefficients and were

initialized as 1, while αi
AB and αi

BA are the sharing coefficients and were initialized as
0. The greater the absolute values of the sharing coefficients, the stronger the sharing
between both tasks. An absolute value of zero of a sharing coefficient means that there
is no information shared for the corresponding tasks at the corresponding layer. As can
be seen from the plots, the sharing takes place to a larger extent in the fine-tuned model
than in the end-to-end trained model. As mentioned above, the underlying reason is that
the cross-stitch units in the end-to-end trained model function more as a medium to allow
for the information flow between the two towers during the training, while those in the
fine-tuned model aim at combining the task-specific features of the pre-trained towers. In
other words, in the fine-tuned model, the cross-stitch units are required to have greater
sharing coefficients, while the existence of cross-stitch units itself is already sufficient in the
end-to-end trained model for an optimized performance. Generally, it can also be observed
that the absolute values of the sharing coefficients tend to decrease as the cross-stitch units
get closer to the final output layers, which is intuitive since the higher the level of features,



Batteries 2024, 10, 171 16 of 23

the less shared information there is. Furthermore, it can be observed that αi
AB is usually

greater than αi
BA in the sense of absolute value, which complies with our prior knowledge

as well: the determination of SOC is more dependent on SOH than the determination of
SOH on SOC. The four αi

AA in the end-to-end trained model turned out to be updated to
significantly greater than 1. We assume that this functions as compensation for the learning
rate of the SOC tower.
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Figure 8. Learning processes of the cross-stitch units. Left column: end-to-end trained; right column:
fine-tuned with cross-stitch units. From top to bottom: α1, α2, α3, α4.
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3.3. Comparison with Single-Task Model

In addition, we trained a single-task model with the same architecture but with-
out sharing for comparison. The single-task model consists of two completely separate
networks, one for SOC estimation and one for SOH estimation. For simplicity, the two sub-
networks were encapsulated in one training process, but of course with different learning
rates. The same number of iterations is kept as well. The performance of the single-task
model is shown in Table 4. The MAE and RMSE of both SOC and SOH estimations are
more than doubled than those of the fine-tuned model. The isolation of the two estimation
towers in the single-task model significantly decreases the neural network’s performance,
considering the single-task model has exactly the same architecture as the multi-task model
except for one extra LSTM layer to account for the shared LSTM layer in the multi-task
model. Furthermore, we compared the training process of the single-task model and the
end-to-end trained multi-task model, as shown in Figure 9. The single-task model reached
convergence at around 1950 iterations, while the proposed model reached convergence
at around 450 iterations already. Therefore, it can be concluded that the introduction of
cross-stitch units accelerates the training of the neural network.
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Figure 9. Training processes of multi-task model and single-task model.

3.4. Generalization Test on SOC Estimation

Although the SOH of every sample in the dataset is different, the SOCs of the samples
share a similar pattern of changes. In order to test how the model generalizes on the task of
SOC estimation, the aforementioned extra dynamic cycling part for validation purposes
in each checkup test is used. These extra dynamic cycles were constructed differently
to those in the training set and thus are eligible to test the model’s generalization ability.
However, these cycles are not sufficiently long to display an evident aging effect of the cells.
Therefore, they were only used for the test of SOC estimation.

Figure 10 displays the generalization test results under three test cases, in which in
test case 1, the cell has an almost full SOH, while in test cases 2 and 3, the cell has aged
significantly. As shown in the figures, the single-task model displays the largest estimation
error in all three test cases, which becomes more evident as the SOH decreases. All three
models are able to converge to an accurate SOC estimation rapidly at the beginning of
the inference, which should be attributed to the capability of the LSTM layers. It can be
observed that the error is generally higher in the lower SOC range, which is possibly caused
by the accumulation of estimation errors during the partial dynamic profiles. Nonetheless,
the proposed model under both training paradigms is able to maintain its accuracy in these
cases. Table 5 shows the MAE and RMSE of SOC estimation, respectively, for the end-
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to-end trained model, the cross-stitch units fine-tuned model, and the single-task model.
Not surprisingly, the cross-stitch units fine-tuned model showed the best performance
on both metrics, where the error itself is also relatively low considering the test profiles
include a variety of dynamic partial cycles and charging cases and, therefore, have high
complexity. The results show that the proposed model under both training paradigms is
able to generalize not only on the SOH estimation task but also on the SOC estimation task.
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Figure 10. Generalization test results under three test cases (test case 1: row 1; test case 2: row 2; test
case 3: row 3). Left column: comparison between the ground-truth values and estimations; right
column: comparison between absolute errors.

Table 5. Generalization test on SOC estimation.

Training Paradigm SOC
MAE [%] RMSE [%]

End-to-End Training 0.924 1.560
Fine-Tuning with Cross-Stitch Units 0.786 1.270

Separate (Single-Task Model) 1.690 2.355
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4. Discussion
4.1. Model

The proposed model lies within the framework of multi-task learning, combining
the principles of hard parameter sharing and soft parameter sharing. To capture the
fundamental battery dynamics, a shared bottom layer is utilized for both tasks. For the
learning of the task-specific features, two towers, namely task-specific layers for SOC and
SOH, are established. Cross-stitch units are introduced in the model to enable information
sharing between the two towers, which simply carry out a linear combination and can be
updated during the training. To the best of our knowledge, this is the first attempt to apply
multi-task learning to joint SOC and SOH estimation. The proposed model utilizes LSTM
layers, a refined type of RNN, to capture the temporal features of the time series, which
further enables the possibility of an online application of the model with synchronous
sequence-to-sequence implementation. The model can process the initial SOH information
and use it to initialize the SOH tower, meaning it is able to function at any given life stage
of the battery cell. It is especially practical for real-world application cases where the real
SOH can be calibrated from time to time via complete discharging. Due to the separate
tower structure, the proposed model is able to carry out SOC and SOH estimation tasks
in different time scales by updating the towers with different frequencies. To sum up, the
proposed model achieves information sharing between the two tasks with a minimized
cost in resources and is perfectly designed for real-world application scenarios.

4.2. Training

For the training of the model, dynamic aging profiles from our previously published
open-source dataset are used [7]. For multi-task learning models, the weighting of the
loss terms is especially important for a balanced, optimized training of the tasks. In this
work, three different weighting methods are mentioned and tested. Although the most
straightforward approach, namely empirical weighting, shows the best performance, it
is possible that with skillful tuning and more effort invested, other more sophisticated
weighting methods could outperform the empirical weighting method. Two different
training paradigms have been presented in this paper, namely end-to-end training and first
pre-training then fine-tuning with cross-stitch units. The focus of the cross-stitch units’ role
is different in the two cases: the cross-stitch units can either function more as a medium for
information flow or be more responsible for combining task-specific features. The results
have shown that the model performs better when the cross-stitch units are only used for
fine-tuning after the two towers have learned the task-specific representations explicitly in
a separate way. The evolution of the cross-stitch units during training also complies with
our prior knowledge.

4.3. Performance

Test results of the proposed model under the two training paradigms and a corre-
sponding single-task model are presented in the paper. Results show that the proposed
model outperforms the traditional single-task model without information sharing and is
able to generalize on different SOCs and SOHs. However, we noticed a great challenge
during evaluation: even though the two tasks are implemented in different time scales to
account for the difference between the dynamics of SOC and SOH, the estimated SOH still
displays a high degree of fluctuation, which decreases the accuracy. We assume that this is
caused by the mutual influence of how the SOH changes and by how much: unlike SOC,
SOH decreases monotonically most of the time and often slowly and in a much smaller
range. Different attempts have been made to overcome the problem. First, we tried to
rescale the range of the output SOH, which reduces the error in SOH estimation but with the
cost of increasing the error in SOC estimation. We also tried to apply a filtering algorithm
as postprocessing of the output. However, no significant improvement was observed due
to the restriction of causality for the online estimation system. Nonetheless, we believe
there will be an appropriate approach to deal with such differences in dynamics during
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training or as postprocessing that is able to further improve the model’s performance. This
will be further investigated in the future.

5. Conclusions

In this paper, we proposed for the first time a deep learning model for joint online
estimation of SOC and SOH of lithium-ion batteries utilizing multi-task learning. More
specifically, the proposed model combines the principles of hard parameter sharing and a
simple soft parameter sharing approach, namely cross-stitching. With the cross-stitch units,
the model is able to learn the optimal extent of information sharing between both tasks dur-
ing the training. The proposed model is able to achieve an accurate estimation of SOC and
SOH in online applications. In addition, the feature of multi-scale estimation is introduced
in the implementation of the model, aiming for a resource-efficient system. During the
work, we have established that it is particularly difficult to overcome the problems caused
by the difference in SOC and SOH dynamics. In addition to more advanced weighting
methods for the design of the loss function, it would be meaningful to explore transforms
of the model’s input and output and tricks for the training of the model as well in order to
achieve a dynamic SOC estimation and a smooth SOH estimation simultaneously. Postpro-
cessing methods to filter the estimated SOH is also a possible way forward if causality is
ensured. To date, all the data for training, validation, and testing have been acquired at
room temperature; it would be beneficial to generalize the model on different temperatures.
In conclusion, we believe our work is a meaningful attempt at data-driven joint estimation
of SOC and SOH, and we hope more future work will be done within its scope.
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