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Rechargeable batteries, particularly lithium-ion batteries (LiBs), have emerged as the
cornerstone of modern energy storage technology, revolutionizing industries ranging from
consumer electronics to transportation [1,2]. Their high energy density, long cycle life,
and rapid charging capabilities make them indispensable for powering a wide array of
applications, with electric vehicles (EVs) standing out as one of the most transformative
domains. The rise of EVs represents a pivotal shift in the automotive industry, driven by
the urgent need to mitigate climate change and reduce greenhouse gas emissions.

Conventional internal combustion engine vehicles are major contributors to air pol-
lution and greenhouse gas emissions, exacerbating the global climate crisis. Conversely,
EVs offer a cleaner and more sustainable alternative, leveraging LiBs to propel a greener
transportation revolution [3]. EVs powered by LiBs offer a promising solution to decar-
bonize transportation, reducing reliance on fossil fuels and mitigating the adverse impacts
of vehicle emissions on human health and the environment [4]. In this context, the intersec-
tion of lithium-ion batteries, electric vehicles, and greenhouse gas emissions embodies a
transformative synergy with profound implications for global sustainability.

Despite significant growth in the usage of lithium-ion batteries in EVs worldwide,
this expansion is not without its challenges. The continuous demand for LiBs is antici-
pated to precipitate global environmental and supply chain concerns regarding critical
raw materials [2,5]. The critical materials essential for LiBs, including cobalt, lithium,
nickel, graphite, and manganese, are finite resources primarily mined in limited regions
worldwide. This reliance on scarce resources coupled with the inevitable proliferation of
battery waste poses formidable challenges for the future of electric mobility. The increasing
demand for LiBs highlights the urgent need for effective battery management strategies to
mitigate environmental and supply chain concerns while optimizing battery performance
and lifespan, and understanding their degradation [6,7]. Improved battery management
not only enhances the efficiency and longevity of EV batteries, but also facilitates their
safe integration into secondary applications and promotes recycling and reuse, thereby
minimizing the environmental footprint of spent EV batteries [8–11].

In response to these challenges, we have undertaken an exploration of the recent
advances and future trajectories of battery management in electric vehicles within this
Special Issue. This issue was crafted to provide the scientific community with up-to-date
insights into the latest advancements and prospects regarding various facets of lithium-ion
batteries. Researchers were invited to contribute original research articles as well as review
papers for inclusion in the Special Issue titled “Battery Management in Electric Vehicles:
Current Status and Future Trends”.

This Special Issue presents seven research papers [12–18] and three critical reviews [19–21],
meticulously scrutinized through peer review processes. These publications span a spec-
trum of EV battery advancements, encompassing fundamental studies of batteries to the
application of neural network modeling and machine learning to optimize battery per-
formance. Ren et al. [12], for instance, proposed a deep learning neural network and
fine-tuning-based transfer learning strategy to accurately estimate the state of health of
batteries, thereby ensuring reliable and safe operating conditions for EVs. In another study,
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artificial neural network modeling was employed to forecast thermal and electrical perfor-
mances using an innovative cooling method [13], suggesting that direct cooling surpasses
conventional air cooling and indirect cooling methods for developing next-generation
thermal management techniques for high-power density batteries [13,22]. Conversely,
Juan et al. [14] employed a hybrid methodology, combining simulation and reinforcement
learning, to address the orienteering problem and optimize battery management under
dynamic routing conditions.

To address prolonged recharging times and the limited availability of recharging
stations for electric vehicles, the practice of battery sharing or swapping was introduced [15].
This initiative has garnered support from key industrial players such as Eni in Italy and
Shell in the UK. It was concluded that battery swapping holds promise in alleviating traffic
congestion and mitigating environmental impact. Iterative nonlinear fuzzy modeling of
lithium-ion batteries was also employed to enhance their efficiency and ensure proper
management [16].

The imperative to explore potential strategies for reusing, remanufacturing, or recy-
cling batteries at the end of their lifecycle prompted an investigation into the structural
optimization of battery module cases [17]. This study presents an approach aimed at
enhancing the design and construction of protective housing/cases for electric vehicles,
ensuring compliance with safety and reliability standards throughout various stages, from
initial design to impact. Furthermore, the parametric evaluation of thermal behavior for
different lithium-ion battery chemistries was showcased [18], revealing the potential of
NMC (LiNixMnyCo1-x-yO2) chemistry in future applications for lower-cost and higher-
specific-energy batteries for EVs.

Complementing the research papers, three review articles focusing on wireless charging,
battery packing design, and battery management are featured in this Special Issue [19–21].
Ghazizadeh et al.’s [19] review offers a comprehensive analysis of the factors influencing
the efficiency of wireless charging for EV batteries, including coil designs and compensation
techniques. Likewise, the second review [20] delves into the core challenges confronting
battery thermal management systems within EVs, proposing innovative design approaches
for battery packing to enhance efficiency and longevity. Finally, the third review [21] serves
as a comprehensive roadmap to the latest technological advancements propelling EVs
into the future, providing a panoramic view of innovations in storage technology, battery
management systems, and power electronics, with a particular emphasis on charging
strategies, methods, algorithms, and optimizations. This review encapsulates the dynamic
landscape of EV technology, offering insights into the advancements shaping the vehicles
of tomorrow.
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