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Abstract: Accurately estimating the capacity degradation of lithium-ion batteries (LIBs) is crucial
for evaluating the status of battery health. However, existing data-driven battery state estimation
methods suffer from fixed input structures, high dependence on data quality, and limitations in
scenarios where only early charge–discharge cycle data are available. To address these challenges,
we propose a capacity degradation estimation method that utilizes shorter charging segments for
multiple battery types. A learning-based model called GateCNN-BiLSTM is developed. To improve
the accuracy of the basic model in small-sample scenarios, we integrate a single-source domain
feature transfer learning framework based on maximum mean difference (MMD) and a multi-source
domain framework using the meta-learning MAML algorithm. We validate the proposed algorithm
using various LIB cell and battery pack datasets. Comparing the results with other models, we
find that the GateCNN-BiLSTM algorithm achieves the lowest root mean square error (RMSE) and
mean absolute error (MAE) for cell charging capacity estimation, and can accurately estimate battery
capacity degradation based on actual charging data from electric vehicles. Moreover, the proposed
method exhibits low dependence on the size of the dataset, improving the accuracy of capacity
degradation estimation for multi-type batteries with limited data.

Keywords: lithium-ion battery; capacity degradation; convolutional neural network; data-driven;
transfer learning; partial charging segments

1. Introduction

Lithium-ion batteries (LIBs) are widely used in electric vehicles and energy storage
systems due to their high energy density, low self-discharge rate, long service life, high
reliability, and high safety. LIBs are easily affected by factors such as the charging and
discharging cycle, temperature changes, fluctuations, and stress in different operating
conditions, resulting in continuous battery degradation [1]. Therefore, it is necessary to
accurately and real-time estimate the capacity of lithium batteries to provide safer and
more reliable energy for electric vehicles (EVs), smart grids, and other applications. This
will enhance the stability and manageability of the energy system while maximizing the
utilization of battery capacity. State of health (SOH) is a widely accepted indicator of battery
life degradation, providing insight into the extent of degradation in a battery’s current
maximum discharging capacity compared to its factory-rated capacity [2]. SOH directly
impacts battery performance and usable lifespan. Currently, three common methods are
employed for SOH estimation: electrochemical mechanism-based estimation, equivalent
circuit model (ECM)-based estimation, and data-driven methods. The electrochemical
model (EM) is a mechanistic approach that simulates battery chemical reactions to charac-
terize battery performance [3,4]. EM offers strong interpretability in describing external
battery characteristics. However, EM relies on certain parameters that are challenging to
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measure or identify, such as electrode materials and electrolyte chemistry. Consequently,
the model may not accurately capture battery aging behavior [5]. In contrast to the EM, the
ECM method offers an alternative approach that is not reliant on the internal chemistry
of a battery. By using essential electrical components, such as resistance, capacitance, and
inductance, the ECM method constructs a circuit model capable of describing the battery’s
external characteristics. Through the amalgamation of this model with substantial state
data and the application of circuit analysis, the ECM method proves to be a powerful tool
for accurately identifying the health state of a battery [6]. ECM is computationally efficient,
making it the primary battery model employed for online capacity estimation in battery
management systems (BMSs) for EVs. However, its accuracy is frequently hindered by the
performance of model parameterization.

The data-driven approach offers a solution to the limitations of the aforementioned
methods, as it does not heavily rely on parameters. This approach does not require an
understanding of the internal principles of the battery or the construction of a physical
battery model [7]. This method relies on collected battery aging data to extract and analyze
information related to battery capacity degradation, enabling the estimation of the SOH for
LIBs [8,9]. Since pure data-driven methods for capacity estimation lack transparency and
interpretability [10], embedding physical or domain knowledge into the development of
machine learning models has received more attention [11,12]. The use of a physics-informed
neural network (PINN) is a classic method in this type of solution. It can fully integrate
the physical characteristics of the problem into the loss function, thereby improving the
generalization performance of data-driven models by utilizing data and mathematical
operators based on underlying physical principles. Wen et al. [13] proposed a semi-physical
and semi-empirical dynamic model to capture the capacity degradation of batteries, and
based on this, they introduced a PINN to fuse the prior information of the dynamic model
with the information extracted from monitoring data. Hofmann et al. combined simulated
data generated by the pseudo-2-dimensional (P2D) model with real-world data for data-
driven model training to reduce the computational cost of traditional physical and chemical
models [14].

Data-driven methods can be broadly categorized into feature-based models and
learning-based models. The accuracy of SOH estimation in feature-based models heav-
ily relies on the extraction of relevant features. By employing correlation analysis, more
features can be incorporated, leading to more accurate capacity estimation. One promi-
nent feature-based method is incremental capacity curve analysis (ICA), which effectively
quantifies battery capacity loss [15,16]. The ICA method is derived from the voltage differ-
ential capacity and extracts the incremental capacity (IC) curve from the discharging and
charging phases. Zhang et al. [17] extracted peak values from the discharge IC curve for
SOH estimation, while Li et al. [18] extracted the peak and its position from the charging
IC curve as the health characteristics. Although IC analysis can explain the aging behavior
inside the battery, it needs to be differentiated to filter the data, which increases the dif-
ficulty of data processing [19]. In addition, the noise in the data point is easily enlarged,
resulting in a decrease in estimated accuracy. For the feature selection level, Li et al. [20]
extracted the features of the IC curve while taking the proportion of the constant current
(CC) mode, the equal voltage drop, and the sample entropy of the discharge voltage as
health features. Wang et al. [21] extracted three health features under CC-CV charging and
CC discharge modes: the time corresponding to the same charging voltage interval, the
time corresponding to the same discharge voltage interval, and the time corresponding to
the same discharge temperature change.

The learning-based model aims to simplify or eliminate the feature extraction process
by directly inputting a certain length of charging segment data as model input [22], mainly
using a convolutional neural network (CNN) for feature extraction. Yang et al. [23] used
the CNN to extract the SOH index and the change in capacity between two consecutive
charge–discharge cycles (∆SOH) and used the random forest algorithm to obtain the final
capacity degradation estimation result. The correlation of features has a great influence on
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the accuracy of the model. Sun et al. [24] introduced an attention mechanism, by giving
important feature weights, so that the key features in the input sequence that have a greater
impact on the output results.

However, the existing data-driven methods are mostly based on feature extraction un-
der relatively ideal conditions in the laboratory (the peak value of the IC curve, the voltage
interval corresponding to the peak value, etc.), or the complete external characteristic curve
(voltage, current, etc.) is used as the input of the data-driven model. Although this can
achieve good results, it has certain limitations in real vehicle applications. First of all, the
EVs are usually not fully charged and discharged, and the charging behaviors are complex
and random. Secondly, in actual use and battery experiments, there are problems such as
long experimental time, high cost, and difficulty in obtaining labels [25,26]. Furthermore,
the effectiveness of the data-driven method depends on a substantial volume of historical
data, which can be challenging to obtain in BMSs of EVs in practical conditions. Therefore,
there is significant research value in developing a capacity estimation model that is suitable
for real-world scenarios and can accurately predict capacity degradation using a limited
amount of data.

For this issue, research on capacity estimation based on incomplete fragment inputs
has shown great research value. For example, Tian et al. [27] used a small portion of the
charging curve as input to estimate the complete charging curve and then used the predicted
charging curve as an input feature for capacity estimation. In addition, Zhang et al. [28]
introduced shapelets to further partition the charging segments based on the extraction of
short charging segments and used the MRMR algorithm to find the optimal shapelet as
the model input, in order to greatly reduce the input volume of the model. For relatively
fixed fragment inputs, the model can learn the mapping relationship between features and
capacity degradation well.

Considering that the state of charge (SOC) at the beginning (end) of charging is not
fixed in actual vehicle operation scenarios, this article uses fixed charging segments and
random charging segments as inputs for research. In addition, this paper introduces a
flexible and robust data-driven method capable of achieving accurate estimation of battery
capacity degradation across diverse battery datasets, even with limited samples available.
The overall framework of this method is illustrated in Figure 1.

In this method, a learning-based capacity estimation model is first created using a
gated convolutional and bi-directional long short-term memory hybrid neural network
(GateCNN-BiLSTM). The CNN is used to capture the advanced spatial features of the
battery sequence [29], and the bi-directional long short-term memory (BiLSTM) neural
network is used to extract the positive and negative context information of the battery
sequence [30]. The gating mechanism can suppress noise information and enhance the
sensitivity of the network to important features, thereby improving the generalization
ability of the network. The model can use easily measured data (such as voltage and
current) recorded in any short charging time to estimate the current battery capacity state.
Secondly, based on the learning-based model, combined with the capacity estimation
framework of single-source domain and multi-source domain migration, the model also
shows excellent performance under a very small amount of data.

In summary, the main contributions of this paper include the following three points:

• The proposed model has a flexible input and output structure and can accurately
estimate the current capacity state based on short charging data segments. This
method does not depend on the laboratory aging test environment of the complete
charge and discharge cycle and avoids the problem that the existing data-driven
methods need to perform artificial feature extraction. Therefore, this method has wide
applicability in actual vehicle charging scenarios.

• Through the verification of different LIB aging datasets, it is proved that the learning-
based model is robust to datasets of various battery types and charge–discharge
conditions. In the case of random charging segment input, the minimum root mean



Batteries 2024, 10, 187 4 of 32

square error (RMSE) and mean absolute error (MAE) of the capacity estimation results
are 0.384% and 0.339%, respectively.

• The transfer learning framework proposed in this study shows good results in the
case of a very small amount of data, which significantly improves the training speed
and stability. It overcomes the problem of the capacity label being difficult to obtain
and the labeling cost being high in practical applications, and it further enhances the
robustness and versatility of the method.
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The remaining sections of this paper are organized as follows: Section 2 presents the
lithium battery dataset used in this study. Section 3 introduces the basic estimation model
for lithium battery capacity degradation estimation, focusing on the utilization of partial
charging segments as input and discussing different output structures. In Section 4, we
propose a transfer learning framework that combines the basic capacity degradation esti-
mation model with small-sample learning to enhance the model’s generalization capability
in scenarios with limited samples. Section 5 presents the experimental results and analysis.
Finally, Section 6 concludes the paper.
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2. Lithium-Ion Battery Dataset
2.1. Battery Cell Dataset

The datasets involved in this study include battery cell data obtained in the laboratory
and battery pack data collected for EVs. The battery cell datasets were obtained from the
aging experiments conducted by Professor Dai Haifeng’s team at Tongji University [31]
and the University of Maryland [32]. Table 1 displays the information regarding battery
cell data. The Tongji University dataset is divided into three subsets, namely NCA battery,
NCM battery, and NCA+NCM battery, based on the distinct positive electrode materials
used in the batteries. The University of Maryland dataset comprises CS2 and CX2 batteries,
both of which utilize LiCoO2 as the cathode material.

Table 1. Overview of battery cell data.

Battery
Type

Rated Capacity
(Ah)

Temperature
(◦C)

Charging
Protocol

Cut-Off Voltage
(V)

Charging/Discharging Rate
(C)

NCA 3.5 25/35/45 CC-CV 2.65–4.2 0.25/1, 0.5/1, 1/1
NCM 3.5 25/35/45 CC-CV 2.5–4.2 0.5/1

NCA+NCM 2.5 25 CC-CV 2.5–4.2 0.5/1, 0.5/2, 0.5/4
CS2_ 1.1 20/25 CC-CV 2.7–4.2 1
CX2_ 1.35 25/35/45/55 CC-CV 2.7–4.2 0.5

In the dataset of Tongji University, the battery cells are labeled as CYX-Y/Z, with
X representing the temperature, Y representing the charging current, and Z representing
the discharge current based on the charge–discharge cycle conditions. In this study, the
input for the battery capacity estimation model consists of current, voltage, and charging
capacity. These three data features are derived from measured data, enabling end-to-end
capacity estimation encompassing data acquisition, processing, model establishment, and
final health state estimation. To address variations in data sampling caused by experimental
design and test environment, linear interpolation is applied. This ensures that all charge
and discharge cycle data are uniformly converted into time series data with a consistent
1 s time interval. Additionally, the capacity label’s maximum value in each dataset is
normalized to achieve data uniformity.

The model training utilized datasets from NCA, NCM, and NCA + NCM batteries,
which were further evaluated using transfer learning to enhance the generalizability of the
proposed method. Figure 2 illustrates the evolution of voltage, current, and capacity during
charging across different cycle periods. It is evident that distinct variations exist in charging
voltage, current, and capacity for different aging states at the same charging duration.
Moreover, throughout the entire charging cycle, these three variables display noticeable
differences in their respective time series. This observation signifies the significance of
utilizing the time series of charging voltage, current, and capacity as crucial features for
accurately estimating battery capacity degradation.
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2.2. Battery Pack Dataset

Based on the previous research [33], we extracted the charging segments from Jan-
uary to November 2020 from the EV operation data. Figure 3 illustrates that SOC of the
battery pack varies at the beginning and end of charging, contrasting with controlled
charging and discharging experiments conducted in laboratory settings. The charging
behavior of the user shows great randomness. Therefore, it is of great significance to extract
the random segments of the charging data as the input of the battery charging capacity
estimation model.
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The health status of the battery is greatly affected by the environment and load
conditions, making battery degradation a highly dynamic process. Generally, capacity
degradation and resistance increase are two indicators used to assess the health status of
LIBs. In this study, the capacity degradation trend of the battery is quantified through
the maximum charging capacity observed in each charging cycle. Additionally, a capacity
degradation rate is defined to further characterize the degradation process:

RateC =
Cc

Crate
× 100% (1)

where Cc is the current maximum rechargeable capacity of the battery; Crate is the rated
charge capacity of the battery.

In actual EV operation conditions, it is not always possible to meet the full charging,
so the ampere-hour integral method is used to update the battery SOC in real time by
recording the amount of electricity accumulated during the charging process [34]. If the
initial SOC of a charging segment is SOCs, the terminated SOC of the segment SOCe is

SOCe = SOCs +
1

Cc

∫ e

s
η I(t)dt (2)

In the formula, η is the coulombic efficiency, η = 1 in the charging process; I(t) is the
current value at time t. An inverse transformation of the above formula is performed to
obtain the maximum available capacity Cc:

Cc =

∫ e
s η I(t)dt

SOCe − SOCs
(3)

The data collected by the EV are not continuous, so the integral of the Equation (3)
needs to be transformed into a discrete form:

Cc =

e
∑
s

η I∆t

SOCe − SOCs
=

e
∑
s

η I∆t

∆SOC
(4)
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Currently, SOC update algorithms are typically internally set by the BMS. The accuracy
of SOC collection can significantly impact capacity calculation results. To minimize this
impact, this study follows the methodology presented in references [34,35] and increases
the charging duration to enable the battery capacity estimation model to fully learn the
information. As shown in Figure 3, the random charging behavior of electric vehicles results
in unequal changes in SOC (∆SOC) during each charging cycle. Equation (4) demonstrates
that the accuracy of Cc is heavily influenced by ∆SOC. The smaller the ∆SOC, the greater
the impact of SOC accuracy on Cc. Therefore, this paper introduces ∆SOC as a constraint:

∆SOC = SOCe − SOCs ≥ 10% (5)

In order to mitigate battery instability at a low SOC and minimize the impact of small
current at a high SOC, it is recommended to set the SOC of the charging segment between
25% and 95%.

In addition, temperature is one of the main factors affecting the current available
capacity of the battery. Specifically, in the low-temperature environment, the lithium-ion
activity in the battery is low, while in the high-temperature environment, the lithium-ions
react faster between the electrodes [36]. Therefore, based on the capacity value at 25 ◦C,
the corresponding temperature influence coefficient is obtained by referring to the initial
capacity values of the battery cell at different temperatures (0 ◦C, 10 ◦C, 25 ◦C, 45 ◦C). The
relationship between temperature and influence coefficient is as follows:

δ(i) = −6.667× 10−7T(i)3 − 2.600× 10−5T(i)2 + 1.047× 10−3T(i) + 0.968 (6)

CT = Cinitial × δ (7)

In Equations (6) and (7), T(i) is the average temperature of the battery pack in the i-th
charge–discharge cycle; δ(i) is the temperature influence coefficient of the i-th cycle, Cinitial
is the calculated initial capacity, and CT is the capacity after temperature correction. The
corrected capacity value of the real vehicle battery pack is shown in Figure 4.
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The linear regression method is one of the common methods for fitting measurement
parameters [37]. However, the degradation process of the battery is nonlinear, so it is
obviously difficult to ensure accuracy and robustness by using only linear regression
methods. The locally weighted linear regression (LWLR) algorithm not only retains the
simplicity of linear least squares regression, but also has the wide applicability of nonlinear
regression. It adapts to the nonlinear relationship of data by fitting a local linear regression
model around each data point. Therefore, in this paper, we use the LWLR algorithm to
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perform autoregressive processing on the battery capacity, and we use the goodness of fit
R2 to evaluate the results. The fitting results are shown in Figure 5. Through calculation, it
can be found that the R2 of the LWLR method is 0.847, while the R2 of linear regression is
only 0.440. Therefore, the LWLR method can better cope with the nonlinear characteristics
of battery capacity degradation and improve the accuracy of capacity evaluation.
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3. Capacity Degradation Estimation Model Based on Partial Short Segments
3.1. Input and Output Structure

For the estimation of capacity degradation, under the premise of the complete charge
and discharge hypothesis, feature extraction is more convenient, and the method of bat-
tery capacity estimation based on charge and discharge characteristics is also more ma-
ture [38,39]. However, the charging and discharging behavior of the battery during the
vehicle operation conditions has a certain complexity and randomness. Considering that
the battery is usually only partially charged in the application and/or charged at a higher
current, it does not meet the conditions of complete charging and discharging in many
cases [40].

Therefore, this paper designs two different input structures for comparison, as shown
in Figure 6. In structure 1 of Figure 6a, the fixed segment of the charging data is selected as
the input, and the period is the initial 1200 s of the charging data (about 14% of the whole
charging segment). In structure 2 of Figure 6b, the random segment of the charging data is
selected as the input, which makes the input more flexible and allows end-to-end capacity
degradation estimation.
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For the selection of random segments, in the battery experimental data in Section 2.1, it
is observed that during the battery aging process, there is a significant mapping relationship
between the current maximum available capacity of the battery and the voltage, current,
and charging capacity during the charging process. Therefore, 1200 s of data are randomly
selected from the voltage, current, and charging capacity of the charging section as the
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input variables of the capacity estimation model. These input variables are organized into
a 1200 × 3 matrix, where each column corresponds to one of the three variables (voltage,
current, charging capacity). Therefore, the input of the model can be represented by the
following matrix:

Minput =



V1 I1 Qc
1

V2 I2 Qc
2

. . .
Vi Ii Qc

i
. . .

VL IL Qc
L

 (8)

where Vi, Ii, and Qc
i are the voltage, current, and charging capacity of the input data at the

i-th second, respectively.
The current output can be expressed as follows:

RateC =
fGateCNN(Minput)

Crate
(9)

where Crate is the rated charging capacity of the battery; fGateCNN is the parameterized
function of the GateCNN model.

3.2. GateCNN-BiLSTM Model

To improve the applicability of the battery capacity estimation model in practical
applications, this paper introduces a deep learning model GateCNN-BiLSTM based on
a gated convolutional and bi-directional long short-term neural network. The model
structure is shown in Figure 7.
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Based on the feature extraction of traditional convolutional networks, this paper draws
on the gated recurrent unit (GRU) [41–43], and introduces a gating mechanism. This gating
mechanism can dynamically adjust the activation state of the network according to the
current input data, suppress noise information, and enhance the sensitivity of the network
to important features, thereby improving the generalization ability of the network. We
combine it with CNN so that it can automatically extract information-rich features from
large-scale charging data.

Traditional recurrent neural network (RNNs) and long short-term memory (LSTM)
networks are unidirectional, which means that they can only capture the historical in-
formation of time series while ignoring the future information in time series. To obtain
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more complete time series information, we introduce a BiLSTM network. The network is
improved based on the LSTM network.

As shown in Figure 8, the hidden layer of the BiLSTM neural network consists of
two independent LSTM hidden layers. The forward layer is used to capture the historical
information of the time series data, and the reverse layer is used to capture the future
information of the time series data. Therefore, compared with the one-way LSTM neural
network, the BiLSTM network can simultaneously mine the past and future information of
time series data, thereby improving the utilization of data.
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The input data are first initialized by two convolutional layers to extract local features.
The output of the convolutional layer passes through a gated recurrent layer, and the output
of the recurrent layer is processed by a fully connected layer.

The convolutional layer is used to convolve the input sequence and extract features
from the sequence. The one-dimensional convolutional layer consists of N parallel W-
dimensional convolutional kernels, where N and W are hyperparameters. Firstly, the
number of types of input features is F, and the length of input segments is L. We fill
(w − 1)/2 zero vectors before and after the input matrix Minput to obtain Mpadding, and the
sequence is shown in Equation (10) as follows:

Mpadding = [x1, x2, . . . , xw+F] (10)

where Mpadding ∈ RL×(w+F). It is known that the n-th convolutional kernel is
K(n) = [k1, k2, . . . , kw], and the sequence y(n) is output after convolution with the n-th
convolutional kernel, as shown in Equation (11):

y(n) = K(n) ∗Mpadding + b(n) (11)

where b(n) is the bias vector, ∗ is the convolution operation, y(n) ∈ R5, and y(n)i is

y(n)i =
w

∑
j=1

k(n)i · x(i+j−1) + b(n) (12)

The final output sequence is

yconv = [y(1), y(2), . . . , y(n)]
T

(13)
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The activation function is a key element in the gated CNN because it is responsible for
introducing nonlinearity, thereby increasing the capacity of the model. The model uses two
commonly used neural network activation functions, ReLU and Tanh.

The gating layer is used to filter redundant feature information and reduce model
complexity. The output results are as follows:

ygate = Tanh(y(1)conv)⊗ ReLU(y(2)conv) (14)

where y(1)conv and y(2)conv are two independent convolutional layers; ⊗ represents the element-
by-element product of the matrix; ygate is the output sequence of the gating layer. After
maximum pooling of the gating layer, ymaxpool is exported and imported into BiLSTM. For
BiLSTM, xl,t is the input at time t of the l-th layer, and hl,t−1 is the output at the time t-1.
The BiLSTM module consists of a forward layer and a reverse layer. The outputs of the

forward layer
−→
hl,t and the reverse layer

←−
hl,t are

−→
hl,t = fBiLSTM(

−→
hl,t−1, xl,t) (15)

←−
hl,t = fBiLSTM(

←−
hl,t−1, xl,t) (16)

In Equations (15) and (16), fBilSTM is the BiLSTM algorithm.
According to the output of the forward layer and the reverse layer, the output of the

BiLSTM network layer at the moment can be obtained as follows:

hl,t = δ(
−→
hl,t,

←−
hl,t) (17)

In Equation (17), δ(·) is a linear function for combining the forward layer and the
reverse layer.

yBiLSTM,t = [h1,t, h2,t, . . . , hL,t]
T (18)

The linear layer performs linear transformation on the input data, which can be
expressed as follows:

yout,t = W · yBiLSTM,t + b (19)

In Equation (19), W ∈ R is the weight vector of the fully connected layer, and b ∈ R is
the bias vector.

4. Capacity Estimation Method Based on Small-Sample Learning
4.1. Small-Sample Scenario Division

The blue curve in Figure 9 represents the capacity degradation curve of the target
domain. To verify the knowledge transfer performance of LIBs’ health status in the case of
small samples, the corresponding small-sample scenarios in the target knowledge domain
data are set. As shown in the red dots in Figure 9, the sample data of the target domain only
contain limited information and fail to fully carry the knowledge of the entire information
space. This means that the GateCNN-BiLSTM model cannot accurately infer the knowledge
that is not included in the complete information space. At this time, the model faces the
challenge of incomplete knowledge and needs to be solved by transfer learning. Given this
situation, the first 5%, 10%, 15%, and 20% charging cycle samples in the target domain are
selected as the training set of the target domain to study the influence of different sample
ratios on the capacity estimation results.
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4.2. Capacity Estimation Method of Single-Source Domain Migration Based on
Domain Adaptation

To improve the performance of the basic capacity estimation model when the battery
training samples are scarce, a domain adaptive transfer learning algorithm based on multi-
core maximum mean difference (MMD) is proposed. By transferring the relevant feature
knowledge of other battery datasets to the capacity estimation model, the information
deficiency caused by insufficient training data is compensated for. In addition, this method
also breaks the limitation that the training set and the test set of the neural network must
be identically distributed, and it further expands the application range of the algorithm.

The MMD-based transfer learning algorithm integrates the MMD metric into the basic
model GateCNN-BiLSTM of transfer learning to form the GateCNN-BiLSTM-MMD model.
When the basic model extracts the features of the source domain and the target domain,
the MMD is used to reduce the distribution difference between the source domain and the
target domain features, so that the basic model can learn the features of the source domain
and the target domain at the same time and realize the transfer of the source domain feature
knowledge to the target domain. The transfer learning framework based on MMD is shown
in Figure 10.
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Figure 10. Transfer learning framework based on multi-core MMD.
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The main idea of the MMD algorithm is to map the samples of the two datasets to
a high-dimensional space through a specific mapping function, that is, the reproducing
kernel Hilbert space (RKHS) [44]. In RKHS, the samples of the two datasets are separated,
and the MMD value is the Euclidean distance between the average data points in the two
datasets [45].

MMD is widely used in transfer learning algorithms to quantify the distribution
difference between the source domain and the target domain [46,47]. When MMD = 0, it
means that the distribution of the two domains is the same. On the contrary, the larger the
MMD value, the greater the distribution difference between the two domains. According
to the main idea of MMD, its definition is as follows:

MMD(X, Y) = ∥ 1
ns

ns

∑
i=1

φ(xs
i )−

1
nt

nt

∑
j=1

φ(xt
j)∥

Hk

(20)

where X and Y represent the sample space of two different distributions; xs
i and xt

j repre-
sent the samples extracted from different sample spaces; Hk represents RKHS; ns and nt
represent the number of samples; φ(·) represents the nonlinear function of data mapping
to RKHS. However, it is difficult to find a suitable mapping function, so the kernel trick is
used to deal with it. The common kernel trick is as follows:

k(xs, xt) = ⟨φ(xs) , φ(xt)
〉

(21)

Therefore, Equation (20) can be converted to:

MMD(X, Y) =
1
n2

s

ns

∑
i=1

ns

∑
j=1

k(xs
i , xs

j )−
2

nsnt

ns

∑
i=1

nt

∑
j=1

k(xs
i , xt

j) +
1
n2

t

nt

∑
i=1

nt

∑
j=1

k(xt
i , xt

j) (22)

The battery capacity estimation algorithm based on MMD transfer learning is shown
in Algorithm 1.

Algorithm 1 Domain adaptation capacity estimation based on MMD transfer learning

Input: XS =


VS

1 IS
1 QS

1
VS

2 IS
2 QS

2
...

...
...

VS
m IS

m QS
m


T

m×3

XT =


VT

1 IT
1 QT

1
VT

2 IT
2 QT

2
...

...
...

VT
n IT

n QT
n


T

n×3

Output: Capacity degradation rate Ratec

1. Normalize XS and XT

2. Divide XT into small-sample scenarios. That is, the first 20% of the samples are extracted as the target
domain training set train, and the last 80% of the samples are used as the test set test.

3. XS is used to form a source domain dataset for knowledge transfer.
4. while loss > 0.0001 do
5. Taking XS and train as inputs, the target domain feature T1 and the source domain feature T2 are

obtained by GateCNN-BiLSTM.
6. Calculate the maximum mean difference MMD(T1, T2) of the two features.
7. The final loss value loss = ℓS + ℓT + MMD(T1, T2) is calculated by superimposing the loss value

obtained by each input variable.
8. end while
9. The predicted value result = model.predict(train) is obtained and result is normalized.
10. The root mean square error (RMSE) and mean absolute error (MAE) are calculated.
11. Return RMSE, MAE, model.

In this model, the battery task dataset
{

VT
i , IT

i , QT
i
}nT

i=1 with a limited number of sam-
ples is used as the target domain dataset, and the complete battery dataset

{
VS

i , IS
i , QS

i
}nS

i=1
with different distributions from the target domain is used as the source domain dataset.
Based on the input data of the source domain and the target domain, the data characteristics
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of the source domain and the target domain are obtained through the basic GateCNN-
BiLSTM model. To measure the distribution difference between the source domain and
the target domain features, the MMD values of the source domain and the target domain
features are calculated. In addition, while calculating the MMD value, the source domain
and target domain features are used as the input of the BiLSTM model to obtain the output
values of the source domain and the target domain. Then, based on the output values of
the source domain and the target domain, the loss functions of the source domain and
the target domain are calculated by using the source domain label

{
yS

i
}nS

i=1 and the target
domain label

{
yT

i
}nT

i=1. Finally, combining these two loss functions with the MMD value,
the loss function of the GateCNN-BiLSTM-MMD model is obtained. During the model
training process, by adjusting the weight of the CNN model, the feature distribution of the
source domain will continue to approach the feature distribution of the target domain until
the two distributions are the same. Finally, the source domain features that are distributed
with the target domain are applied to the target domain model, and the migration of the
source domain features to the target domain is realized.

Due to the differences in charging conditions and battery types, the capacity degra-
dation mechanism of LIBs is not consistent, and the battery aging data do not meet the
characteristics of an independent and identical distribution. In this paper, different charging
conditions and different types of battery data are divided into different source domains,
and the target domain is established for small-sample data of specific charging conditions
and specific battery types. Finally, knowledge transfer is completed across domains based
on transfer learning modeling. The knowledge domain division methods based on differ-
ent charging conditions and battery types are shown in Tables 2 and 3, respectively. The
numbers after the symbol # represent different datasets.

Table 2. Knowledge domain division based on different charging conditions.

Battery Type Charging Protocol Temperature Charging Current Charging Voltage Capacity

Source domain NCACY45-0.55/1#28 CC-CV 45 ◦C 1.75 A 4.2 V 3.5 Ah
Target Domain NCACY35-0.5/1#1 CC-CV 35 ◦C 1.75 A 4.2 V 3.5 Ah

Table 3. Knowledge domain division based on different battery types.

Battery Type Cathode Material Temperature Charging Current Charging Voltage Capacity

Source domain NCACY45-0.5/1#1 Li(NiCoAl)O2 45 ◦C 1.75 A 4.2 V 3.5 Ah
Target Domain NCMCY45-0.5/1#27 Li(NiCoMn)O2 45 ◦C 1.75 A 4.2 V 3.5 Ah

As an index for measuring the difference in feature distribution, MMD gradually
reduces the difference in feature distribution between the source domain and target domain
by adjusting parameters in the iterative process of the model to achieve the goal of transfer
learning. This process is realized by an iterative optimization model, which makes the
model have better generalization performance and adaptability in the target domain.

4.3. Capacity Estimation Method of Multi-Source Domain Migration Based on Meta-Learning

For LIBs, a single-source domain usually can only provide limited battery capacity
degradation information, and when the distribution difference between the source domain
data and the target domain data is too large, the mobility will be low, and even negative
migration will occur in extreme cases. This has great limitations for solving the lack of
domain knowledge in the case of small samples. Therefore, this section will expand on
the differences between charging conditions and battery types. Based on the theory of
meta-learning, combined with the basic learner of GateCNN-BiLSTM for training, the
capacity estimation modeling of LIBs is completed by fusing multi-source domain data and
the knowledge transfer from multi-distributed sources.
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4.3.1. Model-Agnostic Meta-Learning

Both meta-learning and transfer learning can be applied to small-sample learning.
The difference between them is that transfer learning needs to transfer the corresponding
knowledge from the source domain to the target domain, which is highly dependent on
the source domain. If the data of the source domain and the target domain are completely
different, the effectiveness of knowledge transfer will be affected [48,49]. The essence
of meta-learning is to increase the generalization ability of the learner in multiple tasks.
Through continuous learning and adaptation of each specific task, the model network has
a certain learning ability. Even if the source task and the target task are very different, this
learning ability can also be applied to new tasks [50,51].

The model-agnostic meta-learning (MAML) algorithm is adopted to learn the general
initialization of model parameters in a set of related tasks and then fine-tune the initializa-
tion according to the data of specific tasks, thus allowing the model to quickly adapt to new
tasks with only a small amount of additional data. The dataset in each task can be divided
into a support set and a query set. The support set is used to update the parameters of a
specific model. After the update, the model obtains the corresponding loss through the
query set. Finally, the loss sum of all tasks is counted to provide gradient information for
the update of the initial parameters of the model [52].

4.3.2. An Improved Meta-Learning Method Based on Weight Guidance

The ultimate goal of the MAML algorithm is to make the initial parameters of the
model balance the learning performance of each task. It does not seek the best learning
performance of a single task, but it makes the performance of each task better and seeks the
minimum joint training loss of all tasks. This is out of generalization considerations. How-
ever, at the level of knowledge transfer, considering that there are differences between tasks,
treating the source tasks equally will inevitably lead to the problem of a low knowledge
transfer rate.

To improve the efficiency of knowledge transfer, this section improves the learning
process of MAML from the correlation between the source task and the target task and
proposes a meta-learning improvement scheme based on weight guidance. The MMD
value is used to measure the data distribution similarity between the target task and the
source task dataset, and it is multiplied by the loss as a key reference for the final parameter
update to increase the proportion of tasks with greater correlation in the meta-training
process, thereby improving the task training efficiency of MAML. Unlike the transfer
learning method in Section 4.2, the MMD here is not embedded in the loss function of the
model for iterative optimization, but as a definition of a similar correlation. It can be seen
as a measure that assigns corresponding weights to different datasets to ensure that in the
meta-learning framework, tasks that are more relevant to the test set can be considered
more pertinently when determining the initial parameters of the final model. The new
meta-training loss function is as follows:

L(θ) = ∑
Ti∼p(T)

1
MMD(TS, TT) + α

LTi ( fθ′) (23)

where 1
MMD(TS ,TT)+α

is the weight of each task, and α is a specific value; in this section,

α = 1.0× 105 to prevent the denominator from being 0. The smaller MMD(TS, TT) is, the
larger 1

MMD(TS ,TT)+α
is.

In this paper, the improved meta-learning framework is named MMD-MAML. As
shown in Figure 11, the meta-learning framework contains two loops. In the inner loop,
each task is trained to obtain the training loss of each task. In the outer loop, the loss of
all tasks is summarized, and then the gradient update is performed to obtain the optimal
parameters of the model.



Batteries 2024, 10, 187 16 of 32Batteries 2024, 10, x FOR PEER REVIEW 17 of 33 
 

. . . . . . 

Meta-training

Dataset 1

Calculate 
gradient

Update

Support set

1θ Query setCalculate 
loss

Task 1

Calculate 
gradient

Update

Support set

Query setCalculate 
loss

Inner loop

Outer loop

Meta-learner

Task n

Dataset n

nθ

Meta-test Calculate 
gradient

Update

Support set

Testing set

finalθ

Final model

MMD

. . . 
Source domain datasets

Target domain datasets

finalθ

Query setModel 
evaluation

,

'

( )

1 ( , )
( )

i

i
T p T MMD

θθ θθ β
ε∈ +

⋅ ⋅← − ∇  q
i

i test

D
D D



q
testD

s
testD

Ĉ
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Figure 11. A multi-source domain knowledge transfer framework based on weight guidance.

Through the gradient update of the inner loop and the outer loop, when the model
is learning in different tasks, the initial parameters have prior knowledge of the historical
task. When there is a new task, this prior knowledge can make the model quickly adapt to
the new task.

According to Algorithm 2, this section measures the domain of each source task and
the target task, obtains the correlation between each auxiliary task and the target task, and
converts the correlation into the weight of the task training loss to control the training
effect of each task on the target task. By changing the loss function of MAML, the direction
of updating the initial model parameters in the parameter space is controlled, that is, the
loss weight of the target task is greater than the loss weight of the source task, so that
the parameters of the initial model are updated as far as possible towards the optimal
parameter position of the target task.
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Algorithm 2 LIB capacity estimation algorithm based on MMD-MAML.

Input: Task distribution p(T); inner and outer loop steps α and β; multi-source domain migration
framework fM−M
Output: Capacity degradation rate Ratec

1. While not done do:
2. for Ti do:
3. Extract specific task Ti from task distribution p(T), and divide the dataset into support set and query set.
4. A task is iterated n times, and the support set is input for model training to obtain the corresponding

loss LTi ( fM−M(θ)).
5. The model parameters are updated by gradient descent:

θ′i = θ − α∇θLTi ( fM−M(θ))

6. Use the query set in Ti to test the accuracy of the updated model fM−M(θ′) and calculate the loss
LTi ( fM−M(θ′)).

7. end for
8. Based on all θ′i , the initial model parameters are updated:

θ ← θ − β∇θ∑Ti∼p(T) LTi ( fM−M(θ′))

9. end while
10. Return Capacity degradation estimation model Modelmeta.

4.3.3. Meta-Learning Task Division

Similar to the single-source domain small-sample migration scheme, in the multi-
source domain migration scheme, the learning task is still set based on the difference in
charging conditions and the difference in battery type. The specific division methods are
shown in Tables 4 and 5, respectively. In the tables, # 1 represents the first dataset in a large
class of batteries (NCA batteries), while * 1 and * 2 represent a small-sample scenario in a
meta-testing dataset and the corresponding remaining samples, respectively.

Table 4. Task division based on charging condition difference.

No. Charging Rate Discharge Rate Temperature Support Set Query Set

Meta-training

Task1 0.5 C 1 C 45 NCACY45-0.5/1#13 NCACY45-0.5/1#23
Task2 0.25 C 1 C 25 NCACY25-0.25/1#3 NCACY25-0.25/1#4
Task3 1 C 1 C 25 NCACY25-1/1#1 NCACY25-1/1#9
Task4 0.5 C 1 C 25 NCACY25-0.5/1#10 NCACY25-0.5/1#18

Meta-testing Tasktar 0.5 C 1 C 35 NCACY35-0.5/1#1
∗1 NCACY35-0.5/1#1

∗2

Table 5. Task division based on battery type difference.

No. Cathode Material Capacity (Ah) Charging Rate Support Set Query Set

Meta-training
Task′1 LiCoO2 1.1 0.5 C CS2_33 CS2_34

Task′2
42% Li(NiCoMn)O2
+58% Li(NiCoAl)O2

2.5 0.5 C (NCM + NCA)CY25-0.5/1#2 (NCM + NCA)CY25-0.5/1#3

Task′3 Li(NiCoAl)O2 3.5 0.5 C NCACY45-0.55/1#2 NCACY45-0.55/1#14
Task′4 LiCoO2 1.35 0.5 C CX2_35 CX2_37

Meta-testing Task′tar Li(NiCoMn)O2 3.5 0.5 C NCMCY45-05/1-#27
∗1 NCMCY45-05/1#27

∗2

Figure 12 shows the capacity degradation curve corresponding to each task dataset. It
is worth emphasizing that the similarity of capacity degradation does not directly reflect
the MMD value between knowledge domains, because MMD mainly focuses on the distri-
bution of sample features without considering label information (i.e., capacity degradation).
The features of different datasets are normalized to eliminate the influence of dimension.
Then, the training weight of each task is calculated according to Equation (23) by calculating
the MMD value of each dataset and the meta-test dataset. The smaller the MMD value
is, the closer the feature distribution of the dataset is, and the larger the corresponding
training weight is.
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Figure 13 shows the weight ratio of different tasks in the case of fixed segment input
and random segment input. It can be observed that there is a large correlation between the
dataset of training task 2 and the dataset in the target task. Therefore, when performing
the meta-training outer loop, training task 2 is given a greater weight to promote the
parameter update more inclined to adapt to the dataset of task 2. This weight-guided
meta-learning scheme helps to enhance the ability to learn the relevance of different tasks,
thereby improving the performance of the meta-learning model.
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In Section 4.2, knowledge transfer between two different battery types under the
single-source domain framework is carried out. As shown in Table 5, according to the
difference in battery type, four meta-training task datasets and one meta-testing target task
dataset are divided. The battery capacity and cathode material between each task have a
certain degree of difference, but the charging rate is uniformly selected at 0.5 C. Among
them, the support set corresponds to the first n% small-sample scenario, and the query set
corresponds to the remaining samples.

The capacity degradation curve presented by the dataset based on the difference in
battery type is shown in Figure 14. It can be seen that the battery degradation curves
corresponding to training tasks 2 and 3 show a certain similarity with the target dataset,
which also increases the possibility of the model learning common features and patterns to
a certain extent, thus improving the generalization performance on unknown tasks.
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In addition, as can be seen from Figure 15, compared with the situation based on
different charging conditions, the weight difference between training tasks based on differ-
ent battery types is not significant, and the weight of task 3 and task 1 is slightly higher
than that of other tasks, which is slightly different from the traditional MAML method’s
assumption that all task weights are consistent.
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5. Experimental Results and Analysis

To eliminate the influence of dimension, a data normalization method is used. To
prevent the model from overfitting, a regularization term and dropout layer are introduced.
At the same time, RMSE and MAE are used to evaluate the generalization performance of
the capacity estimation model.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)

2

(24)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (25)

In Equations (24) and (25), ŷi is the estimated value of capacity, yi is the true value of
capacity, and N is the number of true values.

Due to the uncertainty caused by random segments, unexpected or unwanted fluctua-
tions or changes occur in the data. Therefore, the wavelet threshold denoising method is
used to remove the interference noise in the capacity data to extract the real signal in the
data. As shown in Equations (26)–(28), the core idea of wavelet denoising is to decompose
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the signal into sub-bands of different frequencies by wavelet transform and to reduce noise
by threshold processing of these sub-bands.

x(t) = ∑j ∑k (x, ψj,k) · ψj,k(t) (26)

Dthresh = sign(Wx) · (|Wx|−λ) (27)

x̂(t) = ∑j ∑k (Dthresh, ψj,k) · ψj,k(t) (28)

where ψj,k(t) is the wavelet basis function, and in this paper, Daubechies wavelet is se-
lected; j and k represent the scale and translation parameters, respectively; Wx is the
wavelet coefficient, and Wx =

∫
x(t)ψa,b(t)dt; Dthresh is the detail coefficient after soft

threshold processing.

5.1. Capacity Estimation Results and Discussion Based on Partial Segment Input

From the Tongji University dataset, 60% was selected as the training set for model
training, 10% as the validation set for model parameter tuning, and the remaining 30% was
used as a test set to test the estimation performance of the model. Each partition of the
training set, validation set, and test set is random, and two different input structures de-
signed in Section 3.1 are used for comparison. The battery capacity degradation estimation
results based on partial segment input are shown in Figure 16.
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Figure 16. Battery capacity degradation estimation results based on partial segment input (fixed
segment input): (a) NCA + NCM battery estimation results; (b) NCA battery estimation results;
(c) NCM battery estimation results; (d) NCA + NCM battery estimation error; (e) NCA battery
estimation error; (f) NCM battery estimation error.

Compared with the CNN model, the hybrid neural network model (CNN-LSTM,
CNN-GRU) can better fit the test data. The CNN-BiLSTM network has achieved better
estimation results than the CNN-LSTM/GRU network because it can extract the time series
characteristics of the battery from the forward and backward directions. At the same time,
GateCNN combines the neural network structure of the convolutional layer and the gated
recurrent layer, which can suppress the noise information in the features and improve the
generalization ability of the network. Therefore, the basic model proposed in this paper
obtains the optimal estimation results. At the same time, to make the model training results
more stable, the instantaneous capacity appreciation caused by the experimental operation
is eliminated.
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Table 6 gives the RMSE and MAE values of the capacity estimation using different
methods when the initial fixed segment is used as the input. It can be seen that the RMSE
and MAE values of the GateCNN-BiLSTM model in the three batteries are the lowest. The
corresponding RMSE values are 0.245%, 0.161%, and 0.391%, respectively. The MAE values
are 0.201%, 0.121%, and 0.308%, respectively. This shows that the proposed model has
good robustness.

Table 6. RMSE and MAE values of different methods for capacity degradation estimation on Tongji
University datasets (Fixed segment input).

Model
NCA NCM NCA+NCM

RMSE MAE RMSE MAE RMSE MAE

CNN 2.273% 2.215% 0.506% 0.332% 2.138% 2.085%
CNN-LSTM 1.136% 1.049% 0.304% 0.197% 1.118% 1.048%
CNN-GRU 1.647% 1.568% 0.365% 0.252% 1.362% 1.311%

CNN-BiLSTM 0.669% 0.569% 0.264% 0.174% 0.690% 0.598%
GateCNN-BiLSTM 0.245% 0.201% 0.161% 0.121% 0.391% 0.308%

When random segment charging data are used as input for Tongji University data, the
variation in input features is large, which makes the data distribution more complicated, as
shown in Figure 17. Compared with the fixed segment input, the capacity estimation results
obtained by random segment input fluctuate slightly, but the relative error is within−0.05%.
According to Table 7, the maximum RMSE and MAE in the three batteries are 0.623% and
0.594%, respectively.
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Figure 17. Battery capacity degradation estimation results based on partial segment input (random 
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Figure 17. Battery capacity degradation estimation results based on partial segment input (random
segment input): (a) NCA + NCM battery estimation results; (b) NCA battery estimation results;
(c) NCM battery estimation results; (d) NCA + NCM battery estimation error; (e) NCA battery
estimation error; (f) NCM battery estimation error.

The above results show that the output results of the GateCNN-BiLSTM model pro-
posed in this paper show great stability on the datasets of these three different batteries,
whether there is a fixed segment or random segment input. It is further proved that the
GateCNN-BiLSTM model has strong robustness and generalization performance and can
flexibly and accurately estimate the capacity degradation of battery cells.
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Table 7. RMSE and MAE values of different methods for capacity degradation estimation on Tongji
University datasets (Random segment input).

Model
NCA NCM NCA+NCM

RMSE MAE RMSE MAE RMSE MAE

CNN 2.030% 1.860% 1.245% 1.119% 2.837% 2.488%
CNN-LSTM 1.409% 1.329% 0.893% 0.849% 2.209% 1.920%
CNN-GRU 1.761% 1.729% 1.011% 0.945% 2.045% 2.005%

CNN-BiLSTM 0.857% 0.794% 0.696% 0.682% 1.535% 1.482%
GateCNN-BiLSTM 0.398% 0.339% 0.384% 0.374% 0.623% 0.594%

To validate the proposed model on capacity degradation in other public datasets, the
University of Maryland datasets were used, specifically the CS2_35, CS2_36, and CS2_37
datasets. Figure 18 displays the results of the comparison of the proposed model to other
contrastive models, under the condition of fixed initial short input segments. The proposed
model achieved the best estimation results across all three battery datasets.
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Table 8 presents the capacity degradation estimation errors of different data-driven 
models that rely on fixed segment input obtained from the University of Maryland da-
tasets. The GateCNN-BiLSTM model exhibits the lowest RMSE and MAE for estimated 
capacity, which are 1.292% and 0.996%, respectively. The average RMSE and MAE are 
1.551% and 1.196%. The proposed model outperforms all other models on all datasets, 
indicating its superior estimation accuracy and robustness. 

  

Figure 18. Battery capacity degradation estimation results based on partial segment input (fixed
segment input): (a) CS2_35 battery estimation results; (b) CS2_36 battery estimation results; (c) CS2_37
battery estimation results; (d) CS2_35 battery estimation error; (e) CS2_36 battery estimation error;
(f) CS2_37 battery estimation error.

Table 8 presents the capacity degradation estimation errors of different data-driven
models that rely on fixed segment input obtained from the University of Maryland datasets.
The GateCNN-BiLSTM model exhibits the lowest RMSE and MAE for estimated capacity,
which are 1.292% and 0.996%, respectively. The average RMSE and MAE are 1.551% and
1.196%. The proposed model outperforms all other models on all datasets, indicating its
superior estimation accuracy and robustness.

Figure 19 illustrates the capacity estimation results of different models for University
of Maryland datasets when subjected to random fragment input scenarios. By employing
gating mechanisms to select feature information from random fragment input, the proposed
model exhibits greater stability and closely approximates the actual capacity curve.
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Table 8. RMSE and MAE values of different methods for capacity degradation estimation on Univer-
sity of Maryland datasets (Fixed segment input).

Model
CS2_35 CS2_36 CS2_37

RMSE MAE RMSE MAE RMSE MAE

CNN 3.271% 2.485% 3.746% 2.894% 3.482% 2.700%
CNN-LSTM 2.598% 2.219% 2.678% 2.159% 2.867% 2.302%
CNN-GRU 2.763% 2.182% 2.828% 2.393% 3.070% 2.567%

CNN-BiLSTM 2.337% 1.929% 2.466% 1.978% 2.658% 2.118%
GateCNN-BiLSTM 1.292% 0.996% 1.492% 1.150% 1.869% 1.443%
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be attributed to the better mapping relationship between the health characteristics and 
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Figure 19. Battery capacity degradation estimation results based on partial segment input (random
segment input): (a) CS2_35 battery estimation results; (b) CS2_36 battery estimation results; (c) CS2_37
battery estimation results; (d) CS2_35 battery estimation error; (e) CS2_36 battery estimation error;
(f) CS2_37 battery estimation error.

Additionally, Table 9 indicates that the proposed model achieves lower capacity
estimation errors when subjected to random fragment input scenarios. Furthermore, it
can be observed that the model performs marginally better on the CS2_35 battery dataset,
compared to other datasets, under both input structures. This superior performance may
be attributed to the better mapping relationship between the health characteristics and
capacity of this dataset.

Table 9. RMSE and MAE values of different methods for capacity degradation estimation on Univer-
sity of Maryland datasets (Random segment input).

Model
CS2_35 CS2_36 CS2_37

RMSE MAE RMSE MAE RMSE MAE

CNN 3.925% 3.402% 4.396% 3.674% 4.312% 3.919%
CNN-LSTM 3.420% 2.976% 3.676% 3.065% 3.424% 2.859%
CNN-GRU 3.691% 2.980% 3.822% 3.257% 3.778% 3.156%

CNN-BiLSTM 3.078% 2.745% 3.241% 2.875% 2.917% 2.316%
GateCNN-BiLSTM 2.275% 1.826% 2.449% 2.088% 2.632% 2.202%

Next, the data of the actual vehicle battery pack are used to verify the applicability of
the battery capacity degradation evaluation model in practical applications. The results are
shown in Figure 20. The estimated value is very close to the target value. The maximum
relative error based on the fixed short segment input is 0.944%, and the RMSE is 0.540%,
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respectively. The maximum relative error based on random short segment input is 0.998%,
and RMSE is 0.761%, respectively. Therefore, the model proposed in this paper shows
excellent accuracy and practical application in solving the problem of battery pack capacity
degradation estimation.
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5.2. Analysis and Discussion of Capacity Estimation Results Based on Small-Sample Learning
5.2.1. Single-Source Domain Migration Method Based on Domain Adaptation

In this section, the transfer learning model based on domain adaptation is used to
estimate the capacity of different small-sample scenarios, and the influence of different
sampling ratios is discussed. Figures 21 and 22 show the battery capacity estimation results
and errors for Tongji University data in the case of using the first n% continuous samples,
and n is taken as 5, 10, 15, and 20. It can be seen that in the case of only extracting the first
n% of continuous samples, the model may rely too much on this part of the data, resulting
in a weak generalization ability of the entire dataset. As the sample size increases, the
generalization ability of the model on subsequent data may be affected due to the lack of
follow-up information learning, resulting in a slower decline in error.

For the two migration schemes, with the increase in the sample size of the target
dataset, there are also some differences in the model error based on the difference in charg-
ing conditions and the difference in battery types. For the migration scheme based on the
difference in charging conditions, by performing migration learning on the same battery
datasets of two different charging conditions, the model may more easily learn common pat-
terns and features, because the datasets between the two charging conditions come from the
same battery type. Therefore, as the sample size of the target data collection increases, the
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model may converge faster, and the accuracy will increase faster. For the migration schemes
of different battery types, although the datasets under the same charging conditions have
certain similarities, the model needs to adapt to the differences between different battery
types, which may lead to more challenges in the learning and generalization process of the
model. Therefore, as the sample size of the target data collection increases, the accuracy of
the model may grow more slowly, because the model requires more data to better adapt to
the differences between different batteries.
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The MMD transfer learning algorithm proposed in this paper belongs to the feature-
based transfer learning algorithm. In addition, there are also instance-based and parameter-
based transfer learning algorithms. In this section, the MMD-based feature transfer learning
algorithm, the instance-based transfer learning algorithm, and the parameter-based transfer
learning algorithm are compared on the same GateCNN-BiLSTM model to verify the
effectiveness of the MMD feature transfer learning algorithm. For the instance-based
transfer learning method, the classic TrAdaBoost algorithm [53] is selected. The main idea
of this method is to select samples similar to the target domain from the source domain,
re-weight them, and then add the weighted samples to the target domain training set to
assist in the training of the target domain model. For the parameter-based transfer learning
method, the Finetune algorithm is selected, which is also a classical algorithm [54]. The
core idea of this method is as follows: firstly, the neural network is trained by using the
source domain data with sufficient samples, then some parameters of the network are
frozen, and finally the network is retrained by using the target domain training set with
limited samples. In this way, the migration of source domain model parameters to the
target domain model is realized.

Figure 21 shows the estimation results of capacity degradation based on the difference
in charging conditions when extracting the first 20% of the samples. To better evaluate
the performance of each transfer learning algorithm, Table 10 gives the RMSE and MAE
values of each transfer learning algorithm for capacity degradation estimation. Among the
three transfer learning algorithms, the MMD-based method has better accuracy, and the
minimum RMSE and MAE are 1.558% and 1.318%, respectively.

Table 10. Comparison of evaluation indices of different transfer learning methods.

Small-Sample Scenario Input Features
Estimated Error

GateCNN-BiLSTM

Base Model TrAdaBoost Finetune MMD

RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Charging condition

difference
Fix 2.772% 2.549% 2.378% 1.567% 2.550% 2.108% 1.558% 1.318%

Random 3.179% 2.265% 3.214% 2.209% 4.226% 2.978% 2.094% 1.328%

Battery type difference Fix 3.137% 2.743% 2.861% 2.378% 3.662% 3.225% 1.841% 1.395%
Random 3.095% 2.419% 3.171% 2.639% 3.526% 2.866% 2.356% 1.838%

In the case of capacity degradation estimation with battery type differences, as depicted
in Figure 23c,d, the knowledge transfer performance in the later stages of battery aging is
relatively poor. This can be attributed to significant changes in the degradation mechanism
of different batteries during the later stages of their lifespan. Consequently, the samples
in the source domain struggle to effectively assist in training during the training process.
According to the results presented in Table 10, knowledge transfer based on battery type
differences does not yield better estimation performance improvements compared to those
based on differences in operating conditions. This suggests that the sample disparities
caused by battery type outweigh the differences between charging conditions.

In the case of using the first 20% of the charging cycle as the target domain dataset,
the neural network model lacks complete knowledge expression ability due to the absence
of late aging information about the battery in the training data. This indicates that a data-
driven model without the inclusion of a transfer learning algorithm cannot construct an
accurate capacity degradation estimator solely based on a small amount of early cycle data
from the battery charging condition.

It is important to highlight that the TrAdaBoost and Finetune methods did not yield
satisfactory results. This can be attributed to significant distribution differences between the
source domain data and the target domain data. TrAdaBoost attempts to address this issue
by re-weighting certain source domain data and incorporating them into model training
alongside the target domain data. On the other hand, the Finetune algorithm fine-tunes a
model trained on source domain data using a small amount of target domain training data to
better adapt to the target domain’s characteristics. Both of these transfer learning algorithms
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heavily rely on the similarity between the source and target domain data. However, in the
capacity estimation study conducted here, there is a transfer between different datasets,
resulting in substantial distribution differences between the source and target domain
data. These significant distribution disparities greatly impact the performance of these two
transfer learning algorithms, making it challenging to achieve the desired outcomes.
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5.2.2. Multi-Source Domain Migration Method Based on Meta-Learning

To verify the effectiveness of the improved MMD-MAML framework based on weight
guidance proposed in this paper, the Reptile [55] and MAML methods are selected for
comparison. The learning mechanism of Reptile is similar to that of MAML, as it focuses on
improving the direction of gradient descent for model parameters. However, as mentioned
earlier, the single-source domain transfer learning method tends to exhibit deviations in
the later stages of the cycle due to differences in charging conditions and battery types.

From Figure 24, it is evident that the capacity degradation estimation results achieved
through multi-source domain transfer learning are significantly superior to those of single-
source domain transfer. This improved performance effectively compensates for the errors
in the later stages of the cycle. The reason behind this improvement is that MAML leverages
its ability to comprehensively learn the knowledge expression of lithium-ion battery capac-
ity degradation across multiple tasks. By dividing various charging conditions or battery
types into source tasks and conducting meta-training, MAML can acquire the domain
knowledge necessary for the target task. Additionally, the initial model parameters are
tested using new small-scale data. Based on this, we introduce MMD to enhance MAML,
considering the relevance of tasks, with the aim of further improving the accuracy of
the model.
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Table 11 presents the capacity estimation results for different charging conditions
and battery types using the first 20% sample condition. In a comparison with the MAML
and Reptile frameworks, it can be concluded that the capacity estimation results obtained
by the MMD-MAML framework under different charging conditions closely align with
the actual curve. Additionally, the RMSE and MAE values for MMD-MAML reach the
minimum values, which are 0.254% and 0.157%, respectively. Compared to the single-
source domain migration scheme, the estimation curve of the MMD-MAML framework
better approximates the actual value in the later stages of battery capacity degradation.
Despite the lack of post-cycle data in the input sample of the target task, the model can still
learn the post-capacity-degradation pattern of the target battery through training on the
source task, resulting in improved capacity estimation performance.

Table 11. Comparison of different multi-source domain transfer learning methods.

Small-Sample Scenario Input Features
Estimated Error

GateCNN-BiLSTM-
Reptile

GateCNN-BiLSTM-
MAML

GateCNN-BiLSTM-
MMD-MAML

RMSE MAE RMSE MAE RMSE MAE
Charging condition difference Fix 1.223% 0.875% 0.678% 0.515% 0.254% 0.157%

Random 1.635% 1.466% 1.086% 0.928% 0.386% 0.275%

Battery type difference Fix 1.928% 1.871% 1.381% 1.303% 0.758% 0.678%
Random 2.133% 2.066% 1.579% 1.522% 0.987% 0.941%

Regarding battery type differences, when considering the input features, the utiliza-
tion of fixed segments as input yields the lowest RMSE and MAE for the estimated capacity,
which are 0.758% and 0.678%, respectively. The variation in degradation mechanisms
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among different cathode materials is more significant compared to that of charging con-
ditions. Consequently, the RMSE and MAE obtained using corresponding fixed short
segment input increased by 198.42% and 221.85%, respectively. Similarly, the RMSE and
MAE obtained using corresponding random short segment input increased by 155.70% and
242.18%, respectively. The meta-learning-based knowledge transfer method serves as an
active training mechanism. Hence, even if the meta-testing task lacks sample data for a spe-
cific interval, the meta-learning method can actively learn the capacity degradation patterns
across various batteries and aging intervals during the learning process of multiple source
tasks. Although the capacity degradation estimator’s estimation error may increase in the
later stages of the cycle, it is significantly reduced compared to the single-source domain
method. Overall, the estimator provides a better fit for the battery’s capacity degradation.

6. Conclusions

This paper presents a novel learning-based approach for estimating the capacity degra-
dation of lithium-ion batteries (LIBs). We introduce a hybrid neural network, GateCNN-
BiLSTM, which combines gated convolutional and bi-directional long short-term memory,
to establish a data-driven basic model. To address scenarios with limited previous charge
and discharge cycle data, we develop a learning framework that combines single-source
domain and multi-source domain transfer learning. This framework is applied to estimate
the capacity degradation of LIBs and is validated using various aging datasets of different
LIB types. The research findings are summarized as follows:

The GateCNN-BiLSTM basic model demonstrates the ability to capture advanced
spatial features and forward–reverse time features of battery sequence data, enabling com-
prehensive feature extraction. By utilizing voltage and current data recorded during a
short charging period, the model accurately estimates the current battery capacity state.
Compared to traditional data-driven models, it achieves higher accuracy in battery ca-
pacity estimation across multiple battery datasets, even with random fragment inputs,
the average root mean square error (RMSE) and mean absolute error (MAE) are 0.468%
and 0.436% respectively. For vehicle battery pack capacity degradation estimation, the
maximum relative error and RMSE for battery charging capacity estimation based on fixed
short segment inputs are 0.944% and 0.540%, respectively. For charging capacity estimation
based on random short segment inputs, the maximum relative error and RMSE are 0.998%
and 0.761%, respectively. These results highlight the model’s wide applicability in capacity
estimation for different battery types, without relying on a fixed input structure. Further-
more, considering the uncertainties in charging and discharging behavior in EVs, the model
accurately estimates battery capacity degradation using short charging segment data.

In addressing the challenge of limited data in practical applications, we compare our
transfer learning method with other approaches and find that the single-source domain
feature transfer learning method based on maximum mean difference (MMD) effectively
transfers battery health state information from a source domain with sufficient data to a
target domain. This solves the problem of limited generalization in small-sample scenar-
ios. By dividing the knowledge domain into charging condition difference and battery
type difference, we analyze the variation in battery capacity estimation results based on
different proportions of continuous charging samples. As the sample size increases, the
capacity estimation error decreases, albeit at a slower rate. For the first 20% of the samples,
the lowest RMSE and MAE are 1.558% and 1.318%, respectively. This indicates that our
method significantly reduces the dependence of data-driven models on historical data
quantity, improving the model’s performance even with limited data. Multi-task learning
is implemented using the multi-source domain meta-learning MAML algorithm. By incor-
porating MMD to measure the correlation between the source task and the target task, the
efficiency of meta-training is enhanced, compensating for any deviation in single-source
domain knowledge transfer during the later stages of capacity degradation. This leads to
more accurate and efficient capacity degradation estimation. In the future, with further
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optimization, we anticipate that the proposed battery capacity estimation method can be
applied in cloud-based or vehicle-mounted battery management systems (BMSs).
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