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Abstract: Lithium-ion batteries are widely used in electric vehicles and renewable energy storage
systems due to their superior performance in most aspects. Battery parameter identification, as
one of the core technologies to achieve an efficient battery management system (BMS), is the key to
predicting and managing the performance of Li-ion batteries. However, due to the complex chemical
reactions and thermodynamic processes inside lithium-ion batteries, coupled with the influence of the
external environment, accurate identification of lithium-ion battery parameters has become an urgent
problem to be solved. In addition, data-driven parameter identification can enable battery models to
better understand battery behavior, which is one of the focuses of future research. For this reason,
this paper comprehensively reviews the application of data-driven parameter identification methods
in different scenarios. Firstly, the research briefly explains the working principle of lithium-ion
batteries and the key parameters affecting their performance. Secondly, this paper deeply discusses
data-driven methods for parameter identification, which are widely used nowadays, and provides
improvement ideas to address the shortcomings of traditional methods. Finally, the paper discusses
the challenges faced by parameter identification technology for lithium-ion batteries and envisages
future prospects.

Keywords: battery management system; data-driven method; lithium-ion battery; parameter
identification

1. Introduction

With the increasing installed capacity of new energy and the increasing popularity of
electronic equipment, the rational use of large-scale integrated energy storage battery cells
has become a current trend, and lithium-ion batteries are widely used because of their stable
performance, long life, low pollution, and fast charging speed [1,2]. According to a white
paper, the total shipment of lithium-ion batteries in the world in 2023 will be 1202.6 GW·h,
a year-on-year increase of 25.6%. Global shipments of lithium-ion batteries are expected
to reach 1926.0 GW·h by 2025 [3], so research on lithium-ion batteries is becoming more
significant as the use of lithium-ion batteries increases worldwide.

At present, lithium-ion batteries are one of the main energy sources for electrochemical
energy storage power stations and new energy vehicles, but due to the complex operating
conditions of lithium-ion batteries, it is necessary to establish an effective battery man-
agement system (BMS) to monitor the batteries continuously. As an integrated electronic
system, in addition to effectively monitoring the health and safety of the battery and en-
suring its optimal performance, its key responsibilities also include calculating the main
parameters such as voltage, current, temperature, state of charge (SOC), and state of health
(SOH) of the battery [4,5], as well as protecting the battery from overcharge, overdischarge,
abnormal temperature, and short circuits and implementing functions such as data logging
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and fault diagnosis, etc. In addition, advanced BMS may also include thermal management,
energy optimization, and research on battery charging and discharging strategies [6–8].
While battery model parameter identification plays a crucial role in realizing efficient
battery management systems, traditional battery parameter identification methods often
rely on complex empirical models or electrochemical models (EM), which require a large
amount of experimental data and computational time. The empirical model is often called
Equivalent Circuit Model (ECM) [9,10], and the basic idea is to use electrical characteristics
of circuit components to describe the characteristics of electrochemical systems; in other
words, it can describe batteries with voltage sources, resistors, and capacitors based on the
circuit. ECM has fewer parameters and a simpler structure than other models, so it is the
most widely used battery model in BMS. In another aspect, electrochemical models are
mainly divided into pseudo two-dimensional (P2D) models, single particle (SP) models,
and enhanced single particle (ESP) models [11,12]. In recent years, some researchers have
also reviewed the methods of battery parameter identification. Barcellona et al. [13] and
Madani et al. [14] have comprehensively summarized different models and parameter
identification techniques for lithium-ion batteries.

However, with the rise of artificial intelligence technology, especially the rapid de-
velopment of deep learning, data-driven parameter identification methods provide new
research ideas for battery management. And most of the existing research focuses on
specific types of data-driven identification methods, lacking a comprehensive comparison
and in-depth analysis. In particular, how to effectively improve the accuracy of tradi-
tional physical models and rationally use flexible data-driven models to adapt complex
and diverse battery application scenarios have become urgent problems to be solved. In
addition, with the development of battery requirements in the direction of higher energy
density, longer life, and lower cost, more new battery types and application scenarios have
emerged; therefore, the parameter identification methods are also facing new challenges
and requirements. In view of this, this paper aims to systematically analyze and compare
the existing data-driven battery model parameter identification methods while providing
optimization ideas and improvement directions for the problems existing in different iden-
tification methods. In addition, considering the latest battery technology and application
requirements, this paper also involves emerging parameter identification methods that
are in line with the current development trend of science and technology, which provides
a reference for the subsequent selection of appropriate parameter identification methods
in different scenarios and also helps to promote the development of battery technology
and BMS. Finally, this paper discusses the current challenges of parameter identification of
lithium-ion batteries and predicts possible research directions in the future.

The remaining sections are organized as follows. Section 2 introduces the basic
principles and key parameters of the battery. Section 3 explains the parameter identification
method based on least squares and its derivative algorithms and proposes modification
ideas. Section 4 presents the existing data-driven parameter identification method and
summarizes the analysis. The challenges and perspectives are provided in Section 5. The
conclusions are provided in Section 6.

2. Structural Characteristics of Lithium-Ion Batteries
2.1. Internal Mechanism of Lithium-Ion Battery

A lithium-ion battery is a type of secondary battery that typically contains two kinds
of compounds capable of embedding and detaching Li+, serving as the anode and cathode
of the battery, using the currently commercialized lithium-ion battery with graphite as the
anode and lithium cobaltate as the cathode as an example. The electrolyte adopts ethylene
carbonate (EC) and dimethyl carbonate (DMC), and the charging process is as follows:
During the charging process, the potential of the power supply forces Li+ to move from
lithium cobaltate to the cathode, passing through the electrolyte and diaphragm embedded
in graphite. The lithium-ion moves through the electrolyte to the negative electrode,
passing through the electrolyte and separator to be embedded in graphite. Simultaneously,
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electrons flow from the positive electrode to the negative electrode through an external
circuit to replenish the charge balance formed by the lithium-ions in the negative electrode.
This process is accompanied by the oxidation of Co3+ in the positive electrode material. The
discharge process is reversed; Li+ is released through an internal electrochemical drive and
moves through the electrolyte and becomes embedded in the negative electrode. Electrons
reach the positive electrode from the external circuit and trigger the reduction of high-valent
cobalt, in which the battery releases electrical energy through the external circuit to power
the device [15,16]. The basic principle is shown in Figure 1. The electrochemical reaction
equation of the lithium-ion battery during cycling is as follows:
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Anodic equation:

LiCoO2

charge
⇄

discharge
Li1−xCoO2 + xLi+ + xe− (1)

Cathode equation:

6C + xLi+ + xe−
charge
⇄

discharge
LixC6 (2)

Overall reaction equation:

LiCoO2 + 6C
charge
⇄

discharge
Li1−xCoO2 + LixC6 (3)

2.2. Basic Parameters of a Lithium-Ion Battery

In order to understand and study the performance of lithium-ion batteries, it is neces-
sary to start from the internal parameters of lithium-ion batteries, and the basic parameters
of lithium-ion batteries are as follows:

1. Open-circuit voltage

Open circuit voltage (OCV) refers to the potential difference between the positive
and negative poles of the battery when the battery is not connected to any load or power
supply [17,18], which is one of the most significant indicators of the electrochemical state
of the lithium-ion batteries, and it also plays an important role in evaluating the electrode
materials [19] and aging state [20]. Besides, there is a nonlinear relationship between the
OCV and SOC of the battery in a steady state, while different models of batteries have their
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specific SOC-OCV curves, and accurate OCV values can provide a great foundation for the
state estimation and study of optimization strategies of batteries [21].

2. Capacity

Battery capacity is one of the important indicators to measure the performance of
the battery; it represents the amount of electricity released by the battery under certain
conditions such as discharge rate, temperature, termination voltage, etc., which is generally
divided into rated capacity and actual capacity [22]. The rated capacity refers to the capacity
of the battery to work continuously for a long time under certain working conditions under
the condition of an ambient temperature of 20 ± 5 ◦C, while the actual capacity refers to the
actual amount of power that the battery can give under certain current density, termination
voltage, and other conditions. The actual capacitance will be affected by various factors
such as temperature, humidity, charge, and discharge rate during the actual use of the
battery [23,24].

3. Internal resistance

The internal resistance of a lithium-ion battery is the resistance that hinders the
passage of current during the conductive process of the battery. It is mainly divided
into ohmic resistance and polarization resistance [25], and polarization resistance can be
further classified into electrochemical polarization internal resistance and concentration
polarization internal resistance. The ohmic internal resistance is affected by the electrode
material, electrolyte, etc., resulting in continuous changes during the detection process,
and the polarization internal resistance will change to varying degrees with the process of
electrochemical reaction inside the battery, which has the dynamic characteristics of time
and current [26]. The main measurement methods of battery internal resistance include
the DC internal resistance method, AC impedance spectroscopy method, pulse discharge
method, etc.

4. State of charge

The state of charge of a battery refers to the percentage of the battery’s remaining
charge, which is usually used to express the charge level of the battery. There are many
ways to describe SOC; one that is widely used as in [27] is:

SOC(t1) = SOC(t0)−
1

Cr

∫ t1

t0

I(t)dt (4)

where the t0 and t1 is the start and end time, respectively. It is generally accepted that the
SOC = 1 when the battery is fully charged using a standard charging method. Cr is the
rated capacity of the battery. In the actual use process, the lithium-ion battery SOC will
be affected by many factors such as charge and discharge current, ambient temperature,
and self-discharge, which make it difficult to measure directly [28]. Accurate estimation of
SOC value can ensure the stable and safe operation of related equipment; therefore, the
estimation of SOC is also one of the important research directions at domestic and overseas.

5. Battery self-discharge rate

The self-discharge rate of a battery is also known as the charge retention capacity,
which refers to the ability to store power under the open-circuit voltage condition [29]. It
is seriously affected by temperature, and usually the lower the ambient temperature, the
lower the self-discharge rate. Compared with other rechargeable batteries, lithium-ion
batteries have a lower self-discharge rate, generally 2~5% at room temperature [30].

3. Parameter Identification Based on Least Squares and Its Derivative Algorithms
3.1. Least Squares

Least squares(LS) parameter identification is usually used for offline parameter identi-
fication of batteries, which is usually carried out under non-operating conditions, and its
process is similar to the optimization method. The purpose is to match the measurement
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curve with the target curve and find the optimal solution of the state parameters by solving
the minimum value of the objective function [31,32]. The flowchart of the offline parameter
identification is shown as an example in Figure 2.
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Figure 2. Flowchart of offline parameter identification.

Before the least squares method can be used to identify parameters, the battery needs
to undergo a series of tests, such as charge-discharge cycles, pulse tests, etc. Its essence is to
estimate the parameters by minimizing the sum of squares of the errors between the model
prediction output and the experimental data [33], which is simple, time-consuming, and
easy to identify [34], and the relevant algorithm process can be summarized as follows.

The mathematical model of the battery system is assumed to be:

A
(

z−1
)

Y(i) = B
(

z−1
)

X(i) + e(i) (5)

where the Y(i) and the X(i) is the output and input of the system, and the e(i) is the systematic
measurement error. The difference equation of the system is expressed as:

Y(i) =
n

∑
k=1

aiY(i − k) +
n

∑
k=1

biX(i − k) + e(i) (6)

Writing Equation (5) in least squares form can be expressed as:

Y(i) = φT(i)θ + e(i) (7)

where the model parameters vector to be estimated and the input data vector can be
expressed as follows:{

θ = [a1 a2 · · · an b1 b2 · · · bn]
T

φ(i) = [Y(i − 1)Y(i − 2) · · ·Y(i − n)X(i − 1)X(i − 2) · · · X(i − n)]T
(8)

After m observations, let the standard function J be:

J =
m

∑
i=1

(Y(i)− φ(i)Tθ)
2
= (Y − φTθ)

T
(Y − φTθ) (9)
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where φ(i)Tθ is the value predicted by the model at the ith data point by the parameter
vector θ. By minimizing the standard function J, when

∂J
∂θ

=
∂

∂θ
[(Y − φTθ)

T
(Y − φTθ)] = 0 (10)

The best parameter vector estimate that can be found is:

θ̂LS = (φT φ)
−1

φTY (11)

Then the least squares form for Y(i) can be expressed as:

Y(i) = φT(i)θ (12)

The core of the LS method to identify battery parameters aims to find a set of parame-
ters that allow the mathematical model to best fit the behavior of the actual battery, and
its advantage lies in the ability to analyze and optimize the parameters in detail without
affecting the performance of the battery; therefore it is usually used in battery performance
evaluation or the early stage of battery design [35]. However, the disadvantages of the LS
method are also very obvious in that its fixed mode cannot meet the more complex working
conditions; the identification of the parameter values cannot accurately reflect the real-time
changes of the battery, so it is only applicable to some fixed scenarios [36].

3.2. Recursive Least Squares

Recursive least square (RLS) is one of the most common estimation methods currently
in use, which is mainly suitable for the online parameter identification of batteries. The
RLS method not only reduces a large number of preliminary experiments but also largely
solves the time-varying problem of battery parameters [37]. The basic principle of online
parameter identification is to use a unified input u(t), input to the system to be identified to
generate the output y(t), and then superimpose with the measurement noise v(t) to form
the observation output Z(t), compare with the model output generated in the system model
to obtain the measurement error Z̃(t), and then import it into the identification algorithm
to correct the error through the generated parameter estimation vector. The schematic is
shown as an example in Figure 3.
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The principle of the RLS method is to add a time-varying link on the basis of the LS
method, which can update the parameter estimates in real time according to each new data
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point, reducing the calculation of a large number of datasets. The nonlinear form of the
RLS method is provided in Ref. [38], and the process evolves from Equation (11) to the
recursive form is shown as:

θ̂(i + 1) = θ̂(i) + K(i + 1)×
[
Y(i + 1)− φT(i + 1)θ̂(i)

]
e(i + 1) = Y(i + 1)− φT(i + 1)θ(i)
K(i + 1) = P(i)φ(i+1)

1+φT(i+1)P(i)φ(i+1)
P(i + 1) = P(i)− K(i + 1)φT(i + 1)P(i)

(13)

where the θ̂ is the parameter to be recognized, e is the estimated error of the system, K is
the system gain, and P is the covariance matrix. According to the formula, the RLS method
will calculate the result of the current LS according to the current new input data combined
with the data calculated at the previous moment. However, in actual calculations, there are
many areas that need to be improved in the process of parameter identification using the
RLS method. Listed below are three aspects where the RLS method needs to be improved.

1. Data saturation

In the recursive process, as the number of cycles increases, the old data will continue to
increase, and when accumulated to a certain extent, it will inevitably affect the recognition
of new data, which ultimately leads to the termination of the parameter identification
process. In order to reasonably allocate the proportion of old and new data and reduce the
influence of old data on new data, researchers added a forgetting factor on the basis of RLS
to match the parameter identification in different environments. The improved algorithm is
called Forgetting Factor Recursive Least Squares (FFRLS). The recursive principle of FFRLS
is based on Equation (13) and is shown as:

θ̂(i + 1) = θ̂(i) + K(i + 1)×
[
Y(i + 1)− φT(i + 1)θ̂(i)

]
e(i + 1) = Y(i + 1)− φT(i + 1)θ(i)
K(i + 1) = P(i)φ(i+1)

1+φT(i+1)P(i)φ(i+1)
P(i + 1) = 1

λ [P(i)− K(i + 1)φT(i + 1)P(i)]

(14)

where the λ is the forgetting factor, usually between 0.95 and 1, and different λ corresponds
to different forgetting speeds; when λ = 1, it means no forgetting, and when λ = 0, it
means all forgetting. Many scholars have tried to apply the FFRLS algorithm to different
scenarios and found that the identification results are significantly improved compared
with the traditional RLS algorithm. Xia et al. [39] used the FFRLS algorithm to continuously
update the parameters in the battery model and then used the Kalman filter to estimate
the SOC of the battery and verified the algorithm under different ambient temperatures
and driving conditions, proving that the RLS algorithm can show good adaptability and
accuracy in different scenarios. In addition, the selection of the forgetting factor in the
FFRLS algorithm is also very important; different forgetting factors will affect the time-
varying and accuracy of parameter identification. Based on this, Shi et al. [40] adjusted the
forgetting factor by using the mean square value of the difference between the battery OCV
and the terminal voltage in the sliding window mode. Lao et al. [41] proposed a variable
forgetting factor least squares method Recursive Least Squares (AFFRLS), the principle of
which is to adjust the size according to the error, and its relationship to the error can be
expressed as: {

λ(k) = λmin + (1 − λmin)
α(k)

α(k) = 2ρe2(k) (15)

where the e(k) is the measurement error, α(k) is the intermediate variable, ρ is the undeter-
mined coefficient, and its value range is within [104, 5 × 104]. The most suitable λ-value is
determined by adjusting the values of e2(k), but the convergence speed of this method is
affected by the value of ρ, so the requirements for the adjustment of the coefficients are high.
At the same time, considering the instability of the parameter results and the inaccuracy
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of the initial state, Fan et al. [42] proposed an Adaptive Forgetting Factor Recursive Least
Squares (AFFRLS) method based on Equation (15), which has both accuracy and stability,
and it can make e(k) quickly converge to the minimum value when λ is larger values, and
when e(k) is within the allowable error range, λ can rapidly approach the maximum. Its
principle can be expressed as:{

λ(k) = λmax − (λmax − λmin) · arctan(µ(k)) · π
2

µ(k) = round(
∣∣∣ e(k)

e0

∣∣∣n) (16)

where the λmax and λmin are the expected maximum and minimum values of λ, e0 is the
benchmark error. When e(k) is smaller than e0, the ratio by n exponentiation is scaled down,
so that λ can quickly close to the λmax; when e(k) is greater than e0, the ratio expands and
λ can more quickly converge to the λmin. Where the n is generally taken as 2 or 4, and the
rounding function round( ) is used to reduce the intermediate of the transition value.

2. Unequal supply and demand

When using the LS method for parameter identification, the most obvious problem
is the “inequality of supply and demand” caused by the incentive and identification
parameters. In short, the excitation provided for parameter identification is less than the
number of parameters that need to be identified. Taking the second-order RC equivalent
circuit as an example, we need to identify five parameter results by only two inputs of
voltage and current as the model excitation; in the higher order equivalent circuit, this
problem will be more obvious, and in the actual process, we also need to consider the
influence of various environmental factors, which results in a more complicated process.
Therefore, it is very important to select the appropriate excitation input in order to fully
reflect the internal characteristics of the lithium-ion battery. Considering that the parameter
discrimination ability of lithium-ion batteries is poor when the input and output data
are not suitable, Song et al. [43] found that the data selected for battery state estimation
needs to have certain adaptability, while analyzing the accuracy of single-parameter and
multi-parameter identification schemes, and verified that the recognition accuracy can be
further improved when the current excitation meets certain criteria.

3. Different time scales

The dynamic characteristics of the battery are distributed in a wide frequency range.
It contains both fast and slow response processes under the action of excitation, so the
second-order RC circuit model will set two different time constants to correspond to
different response links [44]. However, this lead to the result that the process of parameter
identification cannot be ensured to take the corresponding links of each time constant into
account at the same time, and when identifying one of the links, the other link may cause
information loss or data saturation, which will greatly affect the accuracy of parameter
identification [45,46]. In order to solve the above problems, relevant scholars propose a
multi-time scale identification method. Taking ECM as an example, the basic principle is to
apply different time constants to different time scales for identification, and its improvement
idea is shown in Figure 4.

At present, many scholars use this method to improve the accuracy of ECM. Yang
et al. [47] used a combination of the fixed memory recursive least squares method and
fading extended Kalman filter method to obtain the parameters of the fast and slow
dynamic links of the ECM, respectively, and the experimental results showed that the
method had high consistency under different working conditions. In addition, many
parameters of lithium-ion batteries change over time, so they can be improved along this
line. Based on this, Shi et al. [48] established a multiple-time scales characteristics model
for on-board lithium-ion batteries and distinguished between fast and slow changes in the
model parameters of the resistance-capacitance links. Furthermore, Zou et al. [39] proposed
a multi-time scale estimator that can adjust parameters on different time scales and verified
the effectiveness of the method in verifying SOC and SOH. In general, multi-time-scale
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identification allows the model to react sudden changes on fast time scales while adapting
to sluggish changes on slow scales. This allows the model to have better responsiveness
and flexibility while maintaining high accuracy.
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4. Data-Driven Parameter Identification
4.1. Heuristic Algorithms

Heuristic algorithms (HAs) are a kind of solution method constructed on the basis
of specific empirical rules, which are often used to solve global optimal problems [49],
but the traditional HA needs to evaluate the performance of the system by deriving
all nonlinear constraint functions when solving practical problems [50], which is a very
complex process. To solve this problem, relevant scholars have proposed meta-heuristic
algorithms (MHA). This algorithm has better global search ability and higher robust-
ness and has been effectively applied to constraint optimization problems in various
fields [51–53], so it is also suitable for parameter identification of lithium-ion batteries,
which can find the parameters closest to the actual data of the battery through iteration.
Taking the most typical Genetic Algorithms (GA) [54] and Particle Swarm Optimization
(PSO) in MHA as an example [55,56], when identifying battery parameters, the basic
principle is to setting the parameters to be identified as the initial population, setting the
error between the output of the battery model and the actual measured data as the fitness
function, by evaluating the individuals separately through the fitness function and iterating
continuously until the algorithm stop condition is satisfied, and then finding the optimal
solution and output the optimal model parameters [57]. The process of GA and PSO is
shown as an example in Figure 5.

Similar methods also include Tabu Search (TS) [58], Simulated Annealing (SA) [59], and
Ant Colony Optimization (ACO) [60]. However, when using these algorithms, researchers
have found that the convergence speed is relatively slow when used alone, and it is possible
for GA and PSO to converge in the local optimal solution before reaching their global
optimal solution. To face this problem, Srinivas et al. [61] applied adaptive probability
to the intersection and mutation links of genetic algorithms, which effectively optimized
the population diversity and convergence ability of genetic algorithms, but the method
was limited to some links of GA and did not analyze from the whole part. In order
to overcome this challenge, San et al. [62] applied adaptive links to all links of GA and
proposed an Adaptive Genetic Algorithm (AGA), which provides an improved way to solve
the identification problem of nonlinear systems. Moreover, considering that individual
algorithms have obvious advantages and disadvantages when used, in order to maximize
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the optimization ability of the algorithm, Garg H [50] proposed a PSO-GA hybrid algorithm
to deal with nonlinear problems. The basic idea is to optimize the vector by using the PSO
while using the genetic operator of GA to modify the decision vector, and it is considered as
an effective algorithm that is suitable for various optimization problems. In addition, MHA
is also suitable for model-specific optimization. Ren et al. [63] used PSO to optimize the
key parameters of the long short-term memory (LSTM) network to match the data features
of the lithium-ion battery with the network topology and experimentally verified that the
method can effectively reduce the error. Recently, Nouri et al. [64] established an intelligent
charge and discharge management system for electric vehicles and adopted a new method
combining ANN and PSO to achieve data collection under different conditions, which
greatly improved the robustness of the system.
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4.2. Kalman Filter and Its Derivative Algorithms

Kalman filtering (KF) is an algorithm capable of estimating the state of a dynamic
system from a series of noisy measurements. It was first proposed by E. Kalman in his
paper on solving the linear filtering problem, which was published in 1960 [65]. The process
mainly includes defining the equation of state and the equation of observation, initializing
the state, predicting, updating, and iterating. The schematic diagram of KF is shown as an
example in Figure 6.

EKF Most of the traditional KF algorithms are only applicable to state vectors in linear
systems and cannot deal with the nonlinear equations in battery models. In order to solve
this problem, researchers added a real-time linear Taylor approximation process to the
estimation of the previous state of the system equation in the steps of state estimation
and prediction and proposed an extended Kalman filtering (EKF) algorithm [66]. Based
on this, Plett of the University of Colorado (Boulder, CO, USA), firstly applied it to the
SOC estimation and parameter identification of lithium-ion batteries [67,68] and obtained
good results. However, considering that the monotonic EKF algorithm cannot well solve
the uncertainty and system noise of complex lithium-ion battery models, to address this
challenge, He et al. [69] proposed an adaptive extended Kalman filter (AEKF) and verified
that this algorithm can greatly improve the dependence of traditional filtering algorithms
on the battery model. At the same time, in order to reduce the error caused by incorrect
prior covariance in the EKF algorithm, Jaehyun et al. [70] also adaptively modified the
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covariance by using the AEKF method, which improves the reliability and accuracy of
the measurement process. Recently, with the gradual development of cloud platforms,
Wang et al. [71] proposed a noise matrix self-adjustment-extended Kalman filter (NMSA-
EKF) algorithm based on the powerful computing power and huge storage capacity of the
cloud platform to estimate the SOC of cloud-based discharging fragments and verified
its accuracy.
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UKF The traditional EKF only uses the first- or second-order terms of the Taylor series
to approximate the nonlinear model. In order to solve the problem that the EKF produces
a large error when facing a highly nonlinear system, Tian et al. [72] proposed unscented
Kalman filtering (UKF) to estimate the SOC of the battery and verified that the UKF can
capture the distribution characteristics of the nonlinear system through a series of carefully
selected sigma points, which improves the accuracy of prediction. At the same time, He
et al. [73] compared the EKF and UKF methods experimentally and further verified that
the UKF algorithm has high accuracy and convergence in SOC estimation. Based on this,
Meng et al. [74] proposed an adaptive unscented Kalman filter (AUKF) to adaptively adjust
the process measurement noise and noise covariance, reducing the computational burden
when updating the covariance matrix. Of course, the UKF is not without its weaknesses;
for example, in the case of high measurement noise, the UKF can lose stability and cause
divergence problems. In addition, due to the uncertainty of the battery electrochemical
model, the UKF may not be able to produce good robustness [75].

PF In 1993, Gordon et al. [76] proposed a SIS-based bootstrap nonlinear filtering
method, which laid the foundation for the particle filter (PF) algorithm. PF is also a
nonlinear state estimator based on the Bayesian model, but the algorithm eliminates the
constraint that the random quantity must meet the Gaussian distribution when solving the
nonlinear filtering problem, so it is also suitable for parameter identification of lithium-ion
battery models. Schwunk et al. [77] used PF to estimate lithium-iron phosphate batteries.
In addition, considering that the classical PF technique may have a lack of samples or a
decrease in prediction accuracy when the weight of the simulated sample is small or the
diversity of sampled particles is reduced, Li et al. [78] proposed a mutated particle filter
(MPF) algorithm for predicting the Remaining Useful Life (RUL) of the battery, which
utilizes mutated particles to search for the extended region of a priori Probability Density
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Function (PDF) thus exploring the posterior PDF more comprehensively. Other than that,
Lai [79] proposed the combination of PF and EKF, which enables the omission of calculating
the Jacobi matrix of battery model and reduces the complexity of the identification process.
At present, the research on the PF algorithm is relatively scarce, and it is still a major
challenge for battery parameter identification in practical applications. Recently, Wang
et al. [80] used PSO to solve the degradation and diversity reduction of the PF algorithm
and then proposed a double-scale dual particle filter (D-PF) method to adjust parameters in
real time during battery aging and temperature changes, which has certain practical value.

4.3. New Algorithms Based on Machine Learning

With the rapid development of machine learning and artificial intelligence technolo-
gies, it has become a research hotspot to apply these advanced methods to the field of
battery parameter identification and further optimize model performance and improve
the identification accuracy by improving algorithms and calculation strategies. These new
methods can not only process a large amount of complex data but also learn the deep
characteristics of battery behavior, which is of great significance for the development of
battery management systems in the future.

ANN The neural network (NN), also known as the artificial neural network (ANN), is
a type of machine learning algorithm that achieves learning from experience by simulating
the transmission of signals between neurons or interconnected nodes in the hierarchical
structure of the human brain [81], and its schematic diagram is shown as an example in
Figure 7. It was first proposed by neurophysiologist Warren McCulloch and mathematician
Walter Pitts in 1943 [82]. In 1986, David Rumelhart et al. used the backpropagation (BP)
algorithm to train multi-layer neural networks, which greatly improved the learning ability
of neural networks [83]. Its ability to describe nonlinear relationships between inputs
and outputs has been recognized in various fields. Related derived neural networks also
include the recurrent neural network (RNN) [84,85], the convolutional neural network
(CNN) [86,87], and long short-term memory (LSTM) [88,89], etc. Therefore, researchers
have gradually discovered the potential of ANN in the field of batteries, which can achieve
accurate estimation of various battery states without considering the internal electro-
chemical state of the battery due to the feature extraction and fitting ability of neural
networks [90,91]. Cui et al. [92] provided an introduction to the use of different types
of neural networks for estimating the SOC of lithium-ion batteries and summarized the
principles, advantages, disadvantages, and current status. Based on this, Yang et al. [93]
used the parameters obtained from the Hybrid Pulse Power Characterization (HPPC) test
to train a three-layer BP neural network to verify its accuracy in SOH estimation. How-
ever, with the increasing requirements for battery prediction accuracy, more and more
researchers are improving on classic neural network algorithms. In order to eliminate
the influence of battery degradation on the estimation accuracy of the original training
model, Kang et al. [94] proposed a new radial basis function neural network (RBFNN)
and compared it with the traditional neural network through experiments. The results
show that the model can effectively improve the accuracy of system SOC estimation and
has better robustness for different battery aging cycles, temperatures, and load curves.
In addition, in order to solve the dependence of traditional neural network systems on
Kalman filtering, Chemali et al. [95] proposed a deep feedforward neural network (DFNN),
which can directly map observable signals such as voltage and current to the battery SOC
and can learn to estimate the SOC at different ambient temperatures through learning
algorithms such as gradient descent. Recently, considering the increasing importance of
studying the thermal behavior of batteries such as temperature change and heating rate,
Pang et al. [96] integrated the positive and negative electrode surface concentrations in the
thermodynamic single event model (SPMT) as physical information into bidirectional long
short-term memory networks (BiLSTM) and constructed a new physics-based information
neural network (PINN) while verifying its effectiveness under different driving conditions
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and ambient temperatures, which opens up a new research direction for neural networks
in the field of battery state estimation.
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SVM Support Vector Machines (SVM) is also one of the most popular machine learning
algorithms, and its core idea is to find a hyperplane in the feature space based on the
principle of statistical structured risk minimization to maximize the separation of different
classes of data points. The schematic diagram of SVM is shown as an example in Figure 8.
When dealing with nonlinear problems, SVM can map data to high-dimensional spaces
through kernel functions and find separating planes in high-dimensional spaces [97].
Compared with the ANN, SVW has advantages in solving the problem of high-dimensional
data model construction under the limited samples conditions, and because of its good
generalization ability, it can perform better on small sample datasets [98]. Besides, it can
effectively deal with nonlinear problems with the help of suitable kernel functions, so
there are more scholars who have gradually have tried to use SVM for the parameter
identification of lithium-ion batteries and found that SVM has excellent performance on
battery life prediction. Based on this, Patil et al. [99] used SVM to establish a classification
and regression model for the RUL of batteries and used the Support Vector Regression
(SVR) to predict the accurate RUL of the battery. The results showed that the method could
improve the prediction accuracy and calculation speed. In addition, in order to address the
problem of long SVR training time, Hu et al. [100] used a two-step search to improve the
training efficiency of SVR, avoiding the behavior of blindly searching for parameters over a
wide range and improving the accuracy and robustness of battery SOC estimation when
using SVR under more complex working conditions. Recently, considering the problem
of data anomalies in the training of SVM models, Xiong et al. [101] proposed a weighted
least squares SVM-based method for early prediction method for the life of lithium-ion
batteries, which improved the prediction results through the error square term and weight
coefficient, and verified the effectiveness of the method through experiments. It provides a
theoretical basis for the battery system faults hierarchical management strategy.

ANN and SVM are essentially data-driven algorithms, and similar algorithms include
Gaussian regression [102,103], logistic regression [104,105], gradient enhancement algo-
rithms [106,107], and other machine learning algorithms. These algorithms show very
good adaptability in the face of nonlinearity and relative complexity and can find the
optimal model and parameters in a large amount of data. The use of appropriate learning
algorithms in the BMS is often effective in improving the performance of the battery.
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4.4. Comparison of Parameter Identification Methods

In an in-depth discussion of lithium-ion battery management and optimization strate-
gies, it is essential to fully understand and accurately identify the key parameters of the
battery. These parameters not only directly affect the performance, lifetime, and safety of
the battery but also serve as the basis for optimizing the design of the battery management
system and implementing efficient energy utilization strategies. Since different parameter
identification methods have their own unique advantages and application scenarios, choos-
ing the most appropriate method has become a prerequisite for achieving efficient battery
management. To this end, Table 1 summarizes the current parameter identification methods
for lithium-ion batteries, analyzes their disadvantages, and discusses their improvement
directions, which provides a reference for the development and optimization of battery
technology and subsequent research on parameter identification.

In addition to the improvement directions of each method discussed above, the
application scenarios of different parameter identification methods are also different. The
current application scenarios that are widely used can be summarized as small-medium
capacity battery systems mainly for portable electronic devices and electric vehicles and
large-scale battery systems used as energy storage devices in power systems. In one aspect,
regarding small-medium capacity systems, linear regression methods based on RLS and
algorithms based on KF can exert effective results, while these methods have excellent
performance in real-time monitoring and basic performance prediction and can effectively
estimate the state variables of the batteries in dynamic systems. Besides, it is also possible to
simulate the charging and discharging behavior of small-capacity batteries by establishing
smaller neural networks, which can also achieve good results. Moreover, SVM is suitable
for the case of small feature spaces, so it can effectively monitor the health condition of
small-scale batteries. In another aspect, large-scale neural networks such as LSTM have the
ability to deal with high-dimensional and high-nonlinear problems and thus can effectively
deal with richer and more complex data sets in large-scale energy storage battery systems.
In addition, heuristic algorithms such as GA and PSO are able to show better accuracy in
optimizing battery management strategies and life prediction in large-scale battery systems.
In actual use, the most appropriate parameter identification methods should be selected
according to the different battery sizes and application scenarios. If necessary, different
methods also can be used in combination to complement each other in order to maximize
the effect of each method to achieve a more efficient battery management system.
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Table 1. Summary comparison of parameter identification methods.

Algorithms Problems Improving Directions Literature

LS Cannot deal with non-linear conditions Combine with online models [31–36,108]

RLS
Data saturation Add the forgetting factor [39–42]
Unequal supply and demand Choose the right incentive [43]
Different time scales Segment at different time scales [44–48]

GA

Slower convergence Combine with local search algorithms [109]
Difficult to find the global optimal solution when
facing high-dimensional problems Combine with specific heuristic algorithms [50,110]

Higher requirements for parameterization Use adaptive parameter tuning strategies [61,62]

PSO

May fall into local optimization in solving complex
problems combine local search algorithms [111]

Convergence speed may drop when approaching
the global optimal solution Introduce a convergence factor [112]

Higher requirements for parameterization Use adaptive parameter tuning strategies [111]

EKF

Jacobi matrices increase computational complexity Combine new algorithms to simplify EKF
calculations [79,113]

Algorithm performance is more dependent on the
initial state estimate

Optimize initial state estimation by
preprocessing data or using a priori
estimation

[114]

The accuracy is affected by noise Add an adaptive mechanism to adjust the
noise [69,70]

UKF The performance depends heavily on the selection of
the Sigma point

Add an adaptive mechanism to adjust the
distribution of sigma points based on
estimated performance

[74]

PF

The reduction in diversity creates sample
impoverishment

Use resampling techniques to increase the
diversity of particles [77]

Reduction of effective particles will affect the
efficiency of the filter.

Add an adaptive mechanism adjust the
number of particles [115]

ANN

Complicated process, long time needed, large
amount of calculation Use efficient neural network architectures [84–87]

Difficult to adjust due to too many parameters
Apply automated machine—learning
frameworks or adding hyperparametric
optimization techniques

[116–119]

SVM
Higher requirements for kernel function setup Add optimization algorithms to select

parameters [120,121]

Kernel function cannot deal with non-linear
conditions

Visualization of support vectors and decision
boundaries [122]

5. Challenges and Perspectives

As one of the core industries in the current new energy field, lithium-ion batteries
have gradually revealed their key influence in many fields. With the rapid improvement
and innovation of science and technology, the demand for performance stability, safety,
and economy of lithium-ion battery continues to increase, which increases the reliance
on battery management systems. As the core components of a BMS, battery modeling
and parameter identification are important means to ensure its accuracy and reliability.
Although current researchers have achieved many important results in this field, accurate
and efficient studying of lithium-ion batteries still faces serious challenges. Therefore, this
section focuses on three aspects to look forward to the research trend of battery modeling
and parameter identification, hoping to provide more in-depth theoretical support for
battery performance optimization, service life extension, and the guarantee of safety.
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5.1. Efficient and Accurate Parameter Identification

Currently, there are relatively mature parameter identification methods for simple
ECM models such as least squares algorithms, filtering algorithms, and heuristic algorithms
such as genetic algorithms and particle swarm algorithms. However, when it comes to
higher-order or complex electrochemical models, we still need to continuously improve the
efficiency and accuracy of the model parameter identification. One approach is to apply
artificial intelligence techniques to parameter identification, such as the deep learning
models DNN, CNN, etc., which can learn from the battery operation data and reduce
the computation time while maintaining the identification accuracy. In addition, with the
development of chip technology, using emerging technologies such as cloud computing
and edge computing for parameter identification can take advantage of more powerful
computing resources and more efficient data processing capabilities while realizing the
rapid deployment of practical applications and is also gradually becoming a popular area
of current research.

5.2. Integration of Multiple Identification Methods

In practical applications, different identification methods are suitable for specific sce-
narios and requirements due to their inherent advantages and limitations. For example,
although physical model-based approaches can provide in-depth insights into the interior
of the battery, they have higher computational complexity and may not be suitable for
situations that require fast response. In contrast, data-driven approaches are more suitable
for real-time monitoring and control applications due to their lower computational require-
ments and rapid adaptability. By integrating multiple algorithms, such as combining the
accuracy of the physical models with the fast responsiveness of data-driven models, the
respective deficiencies can be complemented to a certain extent to achieve better identi-
fication results. This multi-method fusion strategy can not only improve the accuracy of
the model but also enhance the adaptability of the model to different operating conditions.
Therefore, future research will pay more attention to algorithms innovation and the de-
velopment of multi-algorithm fusion technology while strengthening the analysis of the
requirements of different application scenarios to guide the selection and optimization of
the battery parameter identification methods and further enhance the overall performance
and reliability of the battery management system.

5.3. Consideration of Multiple Categories of Influences

In the process of actual parameter identification, how to comprehensively consider
the impact of temperature changes, battery aging, and other factors on the performance of
lithium-ion batteries is also one of the challenges faced. The following are three aspects of
the current research trend:

(1) The integration of multi-physical field models

In the multi-scale model, the combination of microscopic electrochemical models
and macroscopic thermal and mechanical models can be achieved through the formation
of multi-scale, multi-physical field comprehensive models in order to comprehensively
reflect the behavior of the battery under different working conditions; under multiple
environmental conditions, a model identification framework that can accurately perform
parameter identification under various conditions such as different temperatures, humidity,
pressure, etc., can be developed to improve the applicability and robustness of the model.

(2) Consideration of the battery aging phenomenon

The study of the battery aging model and the integration of battery aging mechanisms
into the parameter identification model can improve the reliability of the parameter identi-
fication results and provide the basis for the health management and timely maintenance
of lithium-ion batteries.

(3) Consideration of multiple aspects
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Combining the research results of many disciplines, such as chemistry, material science,
electronic engineering, computer science, etc., can systematically solve the problems in the
process of lithium-ion battery parameter identification and improve the comprehensive
performance and application scope of identification. For example, among the selection of
cathode materials for lithium-ion batteries, Ni-rich cathodes materials (NCM) are becoming
increasingly dominant in the field of lithium-ion batteries, while future research will
continue to be directed towards high-nickel batteries that can significantly increase energy
density [123]. In addition, lithium-sulfur is becoming a popular battery system due to its
high capacity and excellent cycle efficiency [124]. Besides, comprehensively considering
the voltage, capacity, and temperature sensitivity of the battery will further enable higher
performance, cost efficiency, and sustainability.

6. Conclusions

Lithium-ion batteries are a widely used energy source in electric vehicles and renew-
able energy storage systems, and the parameter identification of these batteries is essential
for achieving an efficient BMS. With the continuous development of technology, data-driven
parameter identification methods have attracted more attention in recent years. However,
most of the current studies are only for specific data-driven methods; this type of method
has not been comprehensively reviewed. To this end, this paper mainly summarizes the
applications of data-driven parameter identification methods in different scenarios, and ad-
vantages and limitations of each method are also discussed while exploring the challenges
and future research directions of these methods.

Upon analyzing and reviewing the related literature, it has been found that in the
face of higher-order or more complex electrochemical models, effectively improving the
accuracy and stability of model parameter identification is still an important research
direction. In addition, although the RLS method is more mature, there is still much room
for improving the adaptive ability, reducing the computational complexity, and improving
the robustness of the algorithm. For the filtering algorithm, how to flexibly deal with the
strong nonlinearity of the electrochemical model and adjust the system noise efficiently is
still an urgent problem to be solved. Furthermore, with the rapid development of machine
learning and artificial intelligence technology, the reasonable use of deep learning models
can effectively reduce the computation time and maintain the accuracy of recognition.

Combining the future perspectives, it is realized that although existing research has
made remarkable achievements in battery parameter identification, lithium-ion battery
parameter identification still faces many challenges and opportunities compared with the
complex and changing application scenarios and continuously increasing performance
requirements. This paper provides research scholars with a reference for battery parameter
identification in the hope of realizing the development of more advanced and efficient
battery management systems.
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