State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter
Abstract
:1. Introduction
2. Methodology
2.1. The 1D CNN
2.2. The UKF
- (1)
- Let us consider that the mean value of the state variable is , the variance is P, and the expected value is E. Initialize the mean and variance:
- (2)
- Obtain the sigma point set and weight value:
- (3)
- Calculate the one-step prediction of , and update the prediction value and the covariance matrix, and , respectively:
- (4)
- Find the predicted value and the predicted mean :
- (5)
- Find the predicted covariance:
- (6)
- Find the Kalman gain:
- (7)
- Finally, update the state and covariance matrices:
3. Experiments
3.1. Datasets and Experimental Evaluation Criteria
3.2. Comparison and Analysis of Different Methods
3.3. Analysis of CNN-UKF Estimation SOC Results with Different Initial Values of R
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shrivastava, P.; Naidu, P.A.; Sharma, S.; Panigrahi, B.K.; Garg, A. Review on technological advancement of lithium-ion battery states estimation methods for electric vehicle applications. J. Energy Storage 2023, 64, 107159. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Zhang, Q.; Sun, C.; Zhou, Y.; Wang, S.; Qiu, X.; Xu, S.; Chen, R.; Wei, T. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries. Chin. J. Chem. Eng. 2023, 60, 80–89. [Google Scholar] [CrossRef]
- Zhang, F.; Ye, W.; Lei, G.; Liu, Y.; Wang, X. SOH estimation of Li-ion battery based on FA-BPNN-K-means optimization algorithm. J. Comput. Methods Sci. Eng. 2022, 22, 1209–1222. [Google Scholar] [CrossRef]
- He, H.; Zhang, X.; Xiong, R.; Xu, Y.; Guo, H. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 2012, 39, 310–318. [Google Scholar] [CrossRef]
- Rahimi, M. Lithium-ion batteries: Latest advances and prospects. Batteries 2021, 7, 8. [Google Scholar] [CrossRef]
- Murawwat, S.; Gulzar, M.M.; Alzahrani, A.; Hafeez, G.; Khan, F.A.; Abed, A.M. State of charge estimation and error analysis of lithium-ion batteries for electric vehicles using Kalman filter and deep neural network. J. Energy Storage 2023, 72, 108039. [Google Scholar]
- Li, S.; Ye, C.; Ding, Y.; Song, Y. Reliability assessment of renewable power systems considering thermally-induced incidents of large-scale battery energy storage. IEEE Trans. Power Syst. 2023, 38, 3924–3938. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Zhou, Y.T. Online state of charge estimation of lithium-ion cells using particle filter-based hybrid filtering approach. Complexity 2020, 2020, 8231243. [Google Scholar] [CrossRef]
- Dini, P.; Colicelli, A.; Saponara, S. Review on Modeling and SOC/SOH Estimation of Batteries for Automotive Applications. Batteries 2024, 10, 34. [Google Scholar] [CrossRef]
- Guo, P.; Wu, X.; Lopes, A.M.; Cheng, A.; Xu, Y.; Chen, L. Parameter identification for lithium-ion battery based on hybrid genetic–fractional beetle swarm optimization method. Mathematics 2022, 10, 3056. [Google Scholar] [CrossRef]
- Snihir, I.; Rey, W.; Verbitskiy, E.; Belfadhel-Ayeb, A.; Notten, P.H. Battery open-circuit voltage estimation by a method of statistical analysis. J. Power Sources 2006, 159, 1484–1487. [Google Scholar] [CrossRef]
- Ren, L.; Zhu, G.; Wang, J.V.; Luo, B.; Kang, J. Comparison of robustness of different state of charge estimation algorithms. J. Power Sources 2020, 478, 228767. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Zhang, X. An improved adaptive unscented Kalman filtering for state of charge online estimation of lithium-ion battery. J. Energy Storage 2020, 32, 101980. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Y.; Yang, T. State of charge estimation for lithium-ion battery based on unscented Kalman filter and long short-term memory neural network. Batteries 2023, 9, 358. [Google Scholar] [CrossRef]
- Hou, E.; Wang, Z.; Zhang, X.; Wang, Z.; Qiao, X.; Zhang, Y. Combined State of Charge and State of Energy Estimation for Echelon-Use Lithium-Ion Battery Based on Adaptive Extended Kalman Filter. Batteries 2023, 9, 362. [Google Scholar] [CrossRef]
- Guo, S.; Ma, L. A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation. Energy 2023, 263, 125872. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Wang, L.; Wu, J. Bayesian information criterion based data-driven state of charge estimation for lithium-ion battery. J. Energy Storage 2022, 55, 105669. [Google Scholar] [CrossRef]
- Li, C.; Xiao, F.; Fan, Y. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit. Energies 2019, 12, 1592. [Google Scholar] [CrossRef]
- Yang, F.; Li, W.; Li, C.; Miao, Q. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network. Energy 2019, 175, 66–75. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, T.; Yu, S.; Liu, G. Accurate prediction approach of SOH for lithium-ion batteries based on LSTM method. Batteries 2023, 9, 177. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Z.; Jiang, Y.; Song, W.; Gu, J. The State of Charge Estimation of Lithium-Ion Battery Based on Battery Capacity. J. Electrochem. Soc. 2023, 169, 120539. [Google Scholar] [CrossRef]
- Che, Y.; Zheng, Y.; Wu, Y.; Lin, X.; Li, J.; Hu, X.; Teodorescu, R. Battery States Monitoring for Electric Vehicles Based on Transferred Multi-Task Learning. IEEE Trans. Veh. Technol. 2023, 72, 10037–10047. [Google Scholar] [CrossRef]
- Ni, S.; Li, H. Battery state-of-charge prediction method based on one-dimensional convolutional neural network combined with long short-term memory network. J. Comput. Appl. 2021, 41, 1514. [Google Scholar]
- Song, X.; Yang, F.; Wang, D.; Tsui, K.L. Combined CNN-LSTM network for state-of-charge estimation of lithium-ion batteries. IEEE Access 2019, 7, 88894–88902. [Google Scholar] [CrossRef]
- Shahriar, S.M.; Bhuiyan, E.A.; Nahiduzzaman, M.; Ahsan, M.; Haider, J. State of charge estimation for electric vehicle battery management systems using the hybrid recurrent learning approach with explainable artificial intelligence. Energies 2022, 15, 8003. [Google Scholar] [CrossRef]
- Kollmeyer, P. Panasonic 18650PF Li-ion battery data. 2018. [Google Scholar]
- Ma, L.; Hu, C.; Cheng, F. State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network. J. Energy Storage 2021, 37, 102440. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Lopes, A.M.; Bao, X.; Zhang, Z.; Lin, Y. Joint estimation of state of charge and state of energy of lithium-ion batteries based on optimized bidirectional gated recurrent neural network. IEEE Trans. Transp. Electrif. 2023, 10, 1605–1616. [Google Scholar] [CrossRef]
- Zou, R.; Duan, Y.; Wang, Y.; Pang, J.; Liu, F.; Sheikh, S.R. A novel convolutional informer network for deterministic and probabilistic state-of-charge estimation of lithium-ion batteries. J. Energy Storage 2023, 57, 106298. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, L.; Yu, Q.; Liu, S.; Zhou, G.; Shen, W. State of charge estimation for lithium-ion batteries based on cross-domain transfer learning with feedback mechanism. J. Energy Storage 2023, 70, 108037. [Google Scholar] [CrossRef]
Method | Criterion | Temperature (C) | Average | ||
---|---|---|---|---|---|
25 | 10 | 0 | |||
CNN | RMSE | 0.01439 | 0.03134 | 0.03955 | 0.02843 |
MAE | 0.01142 | 0.02570 | 0.03337 | 0.02350 | |
CNN-UKF | RMSE | 0.00295 | 0.01140 | 0.00308 | 0.00581 |
MAE | 0.00209 | 0.00939 | 0.00253 | 0.00467 | |
Method in [28] | RMSE | 0.00937 | 0.01309 | 0.01827 | 0.01358 |
MAE | 0.00793 | 0.01023 | 0.01699 | 0.01172 | |
Method in [27] | RMSE | 0.0171 | 0.0324 | / | 0.02475 |
MAE | 0.0139 | 0.0266 | / | 0.02025 | |
Method in [29] | RMSE | 0.0062 | 0.0091 | 0.0108 | 0.00870 |
MAE | 0.0052 | 0.0087 | 0.0100 | 0.00797 | |
Method in [30] | RMSE | 0.0082 | 0.0078 | 0.0047 | 0.00690 |
MAE | 0.0070 | 0.0054 | 0.0039 | 0.00543 |
Method | Criterion | Temperature (C) | Average | ||
---|---|---|---|---|---|
25 | 10 | 0 | |||
CNN | RMSE | 0.02713 | 0.03889 | 0.04779 | 0.03794 |
MAE | 0.02169 | 0.03056 | 0.03866 | 0.03030 | |
CNN-UKF | RMSE | 0.00387 | 0.00497 | 0.00599 | 0.00494 |
MAE | 0.00337 | 0.00463 | 0.00593 | 0.00464 | |
Method in [29] | RMSE | 0.0069 | 0.0094 | 0.0119 | 0.00940 |
MAE | 0.0059 | 0.0089 | 0.0110 | 0.00860 |
Method | Criterion | Temperature (C) | Average | ||
---|---|---|---|---|---|
25 | 10 | 0 | |||
CNN | RMSE | 0.03804 | 0.03528 | 0.05826 | 0.04386 |
MAE | 0.03152 | 0.02729 | 0.04793 | 0.03558 | |
CNN-UKF | RMSE | 0.00956 | 0.00398 | 0.00565 | 0.00640 |
MAE | 0.00875 | 0.00366 | 0.00500 | 0.00580 | |
Method in [28] | RMSE | 0.01229 | 0.01430 | 0.01388 | 0.01349 |
MAE | 0.01099 | 0.01300 | 0.01090 | 0.01163 |
Method | Criterion | Temperature (C) | Average | ||
---|---|---|---|---|---|
25 | 10 | 0 | |||
CNN | RMSE | 0.03009 | 0.03159 | 0.03920 | 0.03363 |
MAE | 0.02645 | 0.02468 | 0.03106 | 0.02740 | |
CNN-UKF | RMSE | 0.00329 | 0.00412 | 0.00197 | 0.00313 |
MAE | 0.00276 | 0.00256 | 0.00116 | 0.00216 | |
Method in [29] | RMSE | 0.0069 | 0.0075 | 0.0100 | 0.00813 |
MAE | 0.0060 | 0.0069 | 0.0082 | 0.00703 |
Initial Value of R | Criterion | Temperature (C) | Average | ||
---|---|---|---|---|---|
25 | 10 | 0 | |||
RMSE | 0.00534 | 0.01898 | 0.01945 | 0.01459 | |
MAE | 0.00407 | 0.01479 | 0.01573 | 0.01153 | |
RMSE | 0.00735 | 0.02444 | 0.02894 | 0.02024 | |
MAE | 0.00567 | 0.02012 | 0.02477 | 0.01685 | |
RMSE | 0.00908 | 0.02599 | 0.03291 | 0.02266 | |
MAE | 0.00703 | 0.02187 | 0.02839 | 0.01910 | |
RMSE | 0.00295 | 0.01140 | 0.00308 | 0.00581 | |
MAE | 0.00209 | 0.00939 | 0.00253 | 0.00467 | |
RMSE | 0.00873 | 0.00418 | 0.00401 | 0.00564 | |
MAE | 0.00631 | 0.00320 | 0.00297 | 0.00416 |
Initial Value of R | Criterion | Temperature (C) | Average | ||
---|---|---|---|---|---|
25 | 10 | 0 | |||
RMSE | 0.00361 | 0.00483 | 0.00491 | 0.00445 | |
MAE | 0.00313 | 0.00424 | 0.00428 | 0.00388 | |
RMSE | 0.00865 | 0.00479 | 0.01433 | 0.00926 | |
MAE | 0.00691 | 0.00427 | 0.01134 | 0.00751 | |
RMSE | 0.01303 | 0.00819 | 0.02275 | 0.01466 | |
MAE | 0.01064 | 0.00685 | 0.02020 | 0.01256 | |
RMSE | 0.00387 | 0.00497 | 0.00599 | 0.00494 | |
MAE | 0.00337 | 0.00463 | 0.00593 | 0.00464 | |
RMSE | 0.00473 | 0.00542 | 0.00592 | 0.00536 | |
MAE | 0.00465 | 0.00527 | 0.00584 | 0.00525 |
Initial Value of R | Criterion | Temperature (C) | Average | ||
---|---|---|---|---|---|
25 | 10 | 0 | |||
RMSE | 0.01771 | 0.00657 | 0.01666 | 0.01365 | |
MAE | 0.01512 | 0.00539 | 0.01375 | 0.01142 | |
RMSE | 0.02576 | 0.01141 | 0.03162 | 0.02293 | |
MAE | 0.02107 | 0.00801 | 0.02740 | 0.01883 | |
RMSE | 0.03027 | 0.01625 | 0.03972 | 0.02875 | |
MAE | 0.02462 | 0.01198 | 0.03495 | 0.02385 | |
RMSE | 0.00956 | 0.00398 | 0.00565 | 0.00640 | |
MAE | 0.00875 | 0.00366 | 0.00500 | 0.00580 | |
RMSE | 0.00456 | 0.00762 | 0.00389 | 0.00536 | |
MAE | 0.00405 | 0.00736 | 0.00352 | 0.00498 |
Initial Value of R | Criterion | Temperature (C) | Average | ||
---|---|---|---|---|---|
25 | 10 | 0 | |||
RMSE | 0.00652 | 0.00400 | 0.00907 | 0.00653 | |
MAE | 0.00412 | 0.00262 | 0.00643 | 0.00439 | |
RMSE | 0.01249 | 0.00985 | 0.01790 | 0.01341 | |
MAE | 0.00883 | 0.00637 | 0.01405 | 0.00975 | |
RMSE | 0.01575 | 0.01569 | 0.02357 | 0.01834 | |
MAE | 0.01127 | 0.01080 | 0.01842 | 0.01350 | |
RMSE | 0.00329 | 0.00412 | 0.00197 | 0.00313 | |
MAE | 0.00276 | 0.00256 | 0.00116 | 0.00216 | |
RMSE | 0.00467 | 0.00249 | 0.00128 | 0.00281 | |
MAE | 0.00348 | 0.00203 | 0.00082 | 0.00211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Bao, X.; Lopes, A.; Chen, L.; Liu, G.; Zhu, M. State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter. Batteries 2024, 10, 198. https://doi.org/10.3390/batteries10060198
Ma H, Bao X, Lopes A, Chen L, Liu G, Zhu M. State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter. Batteries. 2024; 10(6):198. https://doi.org/10.3390/batteries10060198
Chicago/Turabian StyleMa, Hongli, Xinyuan Bao, António Lopes, Liping Chen, Guoquan Liu, and Min Zhu. 2024. "State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter" Batteries 10, no. 6: 198. https://doi.org/10.3390/batteries10060198
APA StyleMa, H., Bao, X., Lopes, A., Chen, L., Liu, G., & Zhu, M. (2024). State-of-Charge Estimation of Lithium-Ion Battery Based on Convolutional Neural Network Combined with Unscented Kalman Filter. Batteries, 10(6), 198. https://doi.org/10.3390/batteries10060198