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Abstract: There has been a recent increasing interest in Zn–air batteries as an alternative to Li-ion
batteries. Zn–air batteries possess some significant advantages; however, there are still problems
to solve, especially related to the tuning of the properties of the air–cathode which should carry an
inexpensive but efficient bifunctional oxygen reduction (ORR) and oxygen evolution (OER) reaction
electrocatalyst. Biochar can be an alternative, since it is a material of low cost, it exhibits electric
conductivity, and it can be used as support for transition metal ions. Although there is a significant
number of publications on biochars, there is a lack of data about biochar from raw biomass rich
in hemicellulose, and biochar with a small number of heteroatoms, in order to report the pristine
activity of the carbon phase. In this work, activated biochar has been made by using corncobs. The
biomass was first dried and minced into small pieces and pyrolyzed. Then, it was mixed with KOH
and pyrolyzed for a second time. The final product was characterized by various techniques and
its electroactivity as a cathode was determined. Physicochemical characterization revealed that the
biochar had a hierarchical pore structure, moderate surface area of 92 m2 g−1, carbon phase with a
relatively low sp2/sp3 ratio close to one, and a limited amount of N and S, but a high number of
oxygen groups. The graphitization was not complete while the biochar had an ordered structure
and contained significant O species. This biochar was used as an electrocatalyst for ORR and OER in
Zn–air batteries where it demonstrated a satisfactory performance. More specifically, it reached an
open-circuit voltage of about 1.4 V, which was stable over a period of several hours, with a short-circuit
current density of 142 mA cm−2 and a maximum power density of 55 mW cm−2. Charge–discharge
cycling of the battery was achieved between 1.2 and 2.1 V for a constant current of 10 mA. These data
show that corncob biochar demonstrated good performance as an electrocatalyst in Zn–air batteries,
despite its low specific surface and low sp2/sp3 ratio, owing to its rich oxygen sites, thus showing
that electrocatalysis is a complex phenomenon and can be served by biochars of various origins.

Keywords: biochar; corncob; electrocatalysis; Zn–air batteries; ORR; OER

1. Introduction

An interesting and realistic alternative to Li batteries is Zn batteries. Zn batteries
exhibit some advantages, for example, the abundance and lower cost of Zn compared to Li,

Batteries 2024, 10, 209. https://doi.org/10.3390/batteries10060209 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries10060209
https://doi.org/10.3390/batteries10060209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0009-0006-3595-9475
https://orcid.org/0000-0001-8466-7029
https://orcid.org/0000-0001-9000-8863
https://orcid.org/0000-0002-3577-8520
https://orcid.org/0000-0001-8920-6416
https://orcid.org/0000-0003-3955-0272
https://doi.org/10.3390/batteries10060209
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries10060209?type=check_update&version=1


Batteries 2024, 10, 209 2 of 14

the easier treatment of Zn, and the fact that Zn batteries are environmentally friendly. Zinc
can be employed directly as an anode in contrast to other metals. The Zn batteries are more
stable and safer, with a longer lifespan, and they use aqueous electrolytes, which makes
them more attractive than other types of batteries, which need more complex electrolytes.
Zinc metal has a redox potential of −0.76 V vs. RHE, is relatively resistant to oxidation in
an aqueous environment, and it is easy to reverse the oxidation of Zn to Zn2+. Also, it has
been reported to reach a significant specific capacity (820 mAh g−1) [1–3]. A comprehensive
approach for the Zn-ion batteries includes not only the Zn anode but also the electrolyte [4]
and the cathode materials [5]. This is also valid for other types of batteries like Li-S
batteries [6]. In such cases, the electrolyte can determine the efficiency of the battery [7].

Zn–air batteries, the most popular among Zn batteries, function with aqueous elec-
trolytes while Zn metal itself makes the anode electrode. For this reason, cathode materials
make the difference in Zn–air batteries. Thus, it is not surprising that the effort of the
scientific community on the Zn–air batteries [8–12] is ever-increasing, but there remains
a focus on the quality of the cathode. Despite its great advantages, Zn–air battery perfor-
mance is sensitive to ambient conditions while, as already said, an advanced design is
necessary for the air electrode. Although the Zn–air battery has the maximum discharge
capacity among zinc-based batteries, it has a limited power output, again mainly due to
the inadequate performance of air electrodes [13], and it is not fully competitive with other
types of batteries [14].

In addition, Zn–air batteries have an unsatisfactory life cycle and energy conversion
efficiency. This is again due to the air–cathode. The two important electrochemical reac-
tions on the air–electrode (cathode) are the ORR during discharging and the OER during
charging [3]. These two reactions follow multiple mechanisms and generally have slow
kinetics and high overpotential. The ORR at the air (cathode) electrode is of great impor-
tance in these batteries. The anode (metal Zn in our case) is oxidized, and the electrons
should react on the cathode with oxygen in a very efficient way; otherwise, the electrons
are accumulated and reduce water to produce H2.

The ORR can follow 2e− or 4e− kinetics which are shown by the following reactions,
written for an alkaline electrolyte [15]:

O2 + 2e− + 2H2O → H2O2 +2OH− (1)

O2 + 4e− + 2H2O → 4OH− (2)

OER and ORR are significant for the performance of Zn–air batteries, but are very
challenging due to their complexity, slow kinetics, and high overpotential. To overcome
these problems, a new highly reversible bifunctional electrocatalyst should be synthe-
sized. Generally, these criteria demand electrodes with transition metals, although carbon
materials are part of the electrocatalyst [16,17].

The four-electron semi-reaction is obviously preferable, since 4e− are then consumed,
but it demands a powerful electrocatalyst. In recent days, the trend for less costly, greener,
and more environmentally friendly agents attracts the focus of new eco-friendly materials
used in plenty of applications, including Zn–air batteries, where they have been applied as
electrocatalysts on the cathode electrode. Such electrocatalysts should be bifunctional and
active for both ORR and OER, in order to recharge the battery. Thus, the electrocatalyst
should have electrical conductivity, high active surface area, and porosity with hierarchical
structure and surface groups that can participate in the interfacial electro-reactions [7,18,19].
Among the recently studied possible candidates for electrocatalysis, biochar has several
advantages. It possesses the above-described characteristics, it can be easily produced
from different types of biomass, and it can also be considered as a by-product, or even
waste, of the pyrolysis of biomass for the production of liquid and air fuels. Biochar is a
carbonaceous residue from the pyrolysis of raw biomass in the absence of oxygen or in a
limited oxygen atmosphere. Generally, it has a significant specific surface area (SSA) and,
depending on the pyrolysis conditions, various oxygen-containing surface groups. The
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pyrolysis graphitizes the carbon phase giving biochar the required electrical conductivity,
while during pyrolysis the gases produced help to increase the porosity and the SSA of the
final biochar. Furthermore, biochar can be prepared from any kind of waste biomass, both
from plants and animals [20–23].

Biochar can be easily post-treated chemically with acidic or basic compounds to
improve its physicochemical properties. The post-treatment can be performed with or
without pyrolysis [24–28]. In the case of post-treatment without a second pyrolysis step, the
biochar surface reacts with added acid or base and significant changes can be detected in
the surface groups, the acidity, and the SSA of the biochar [24]. More intense changes occur
when the post-treatment is followed by a second pyrolysis. In these cases, for example, in
pyrolysis of an already prepared biochar abundantly mixed with KOH, which is a process
similar to the production of activated carbons, the graphitic layers are affected, and K
ions intercalate among them. This process increases SSA since a high quantity of volatile
compounds is then released. Thus, the final product has a hierarchical pore distribution.
Among others, KOH also reacts and dissolves lignin [20,22,23,29,30].

Biochar, as a carbonaceous material, exhibits a significant amount of oxygen-containing
surface sites, while other heteroatoms, such as N, P, and S can be detected. These atoms
usually favour the electrocatalytic activity and have a synergistic effect with the carbon
conductive phase. In this view, doping with different heteroatoms has been applied as a
route for improving the electrocatalytic activity. The doping is not only limited to non-metal
atoms, like N and S, but also transition metal ions were used [31–33].

Biochar electrode studies have become very popular in the last few years since the use of
an abundant, inexpensive material originating from residual biomass is very attractive. Some
applications like direct carbon fuel cells and supercapacitors have been reported [34–38]. The
high SSA is a desirable characteristic but not crucial for the efficiency of the electrode. For
example, four different carbon materials, Vulcan XC-72R, carbon nanotubes, graphene, and
biochar were used as supports for electrocatalysts in fuel cell applications and it has been
reported that other characteristics, like the crystalline phase and the point of zero charge of the
carbon material, affect the interactions between the carbon and metal phase and consequently
the electrocatalytic activity [39]. Also, biochar from spent malt rootlets untreated or with
various chemical treatments was used as supercapacitors [40] or as an electrode for the
production of H2O2 [41], and the influence of the SSA was not significant.

Also, in a recent study, data about electrodes from wheat were collected and dis-
cussed [42] where the SSA values vary considerably with no direct correlation with the
electroactivity of the biochar. A more detailed study concerning the influence of the SSA
on the properties of activated graphene as a supercapacitor points out that other param-
eters like the milling procedure and pyrolysis temperature resulted in a better electrode
performance despite a decrease in the SSA by 30% [43].

In this study, we have examined the electrocatalytic functionality of biochar from
corncobs. Corncobs, a waste produced in high quantities, are usually burned, although
more than 1 million tons are disposed of every year [43]. Corncobs are one of the few
biomass types with a high hemicellulose composition, usually between 26% and 36% and
sometimes even more, which differentiates them from other residual biomasses [44,45].
Cellulose and lignin are the main components of the carbonaceous phase, which do not
contribute to electric conductivity.

Biochar from corncobs has been prepared and used in many other, non-electrochemical
applications. Corncob biochar is not so popular, since it demonstrates a low SSA of some
m2 g−1 and a low concentration of non-metal heteroatoms. Despite these two rather
disadvantageous characteristics and the fact that the presently used biochar did not contain
any metal or non-metal groups, we proceeded to make activated biochar from corncobs in
order to study its performance as an electrocatalyst in Zn–air batteries.

Our purpose was to investigate the possibility of a biochar originating from biomass
with high hemicellulose content and to report the pristine activity of the carbon phase.
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Finally, we want to compare the present biochar with two previously reported biochars
rich in lignin.

Indeed, in a recent article [38] we reported the electrochemical behaviour of two
KOH-activated biochars from olive tree twigs and spent malt rootlets. Both had high
lignin content, and the treatment with KOH did result in a high SSA. It was found that
the biomass origin exhibits a minor effect on the electrochemical behaviour of the biochar
since the second pyrolysis step homogenized the properties of the two biochars. This may
also be valid for other biochars of other origins, especially biochars from biomass rich in
lignin, such as the present one. In this sense, it is interesting to study the electrochemical
characteristics of a biochar prepared under the same preparation conditions but originating
from corncobs, despite its other less desirable characteristics and to support a conclusion
that the biomass origin is not the crucial factor for the determined electro-activity. Thus, in
this work, biochar has been made from corncobs and subsequently activated with KOH
under pyrolysis, characterized with different physicochemical techniques, finally used as a
cathode electrocatalyst in Zn–air batteries, and tested for its ORR and OER capacity.

2. Materials and Methods
2.1. Biochar and Electrode Preparation

All reagents used were of analytical grade and purchased from Sigma-Aldrich (St.
Louis, MO, USA) except for the carbon cloth (CC) (Fuel Cell Earth, Wobum, MA, USA) and
carbon black (CB) (Cabot Corporation Vulcan XC72, Billerica, MA, USA). The biochar was
prepared from corncobs under pyrolysis with a limited O2 atmosphere (20% O2) and acti-
vated with a second pyrolysis step, after mixing with KOH in a ratio of KOH/biochar = 3/1.
The activation temperature was 850 ◦C. More details about the biochar preparation and
activation can be found in [38].

The collected biochar was used to prepare electrodes through deposition on CC with a
dimension of 1 cm × 1 cm with the same procedure as in [38]. The same procedure was
followed for the preparation of the CB/CC electrode by replacing the biochar with carbon
black. Furthermore, a Pt-modified biochar electrode was made by adding Pt, according to
the following procedure: Around 50 mg of sodium tetrachloroplatinate was solubilized in a
mixture of 1 mL isopropanol with 1 mL acetone. A carbon cloth electrode carrying biochar,
as above, was placed on a hot plate and the tetrachloroplatinate solution was drop-casted
over the whole area of the biochar. Then, the electrode was again annealed at 340 ◦C.

2.2. Physicochemical Characterizations

The physicochemical characterization of biochar was performed using Scanning Elec-
tron Microscopy (SEM) (JEOL, JSM-6300, JEOL USA, Inc., Peabody, MA, USA), X-ray
Photoelectron Spectroscopy (XPS) (SPECS Phoibos 100-1D-DLD, SPECS Surface Nano
Analysis GmbH, Berlin, Germany), porosimetry, (Tristar 3000 porosimeter, Micromeritics,
Norcross, GA, USA), X-ray diffraction (XRD) (Bruker D8 (Billerica, MA, USA)), Fourier-
transform infrared (FTIR) (Perkin Elmer Spectrum RX FTIR system Waltham, MA, USA)
and Raman spectroscopy (Jobin-Yvon Horiba LabRam-HR, Lille, France). Details can be
found in [38].

2.3. An Electrochemical Characterization of the Electrodes and Construction and Operation of the
Zn–Air Battery

All electrochemical measurements were carried out with an Autolab potentiostat
PGSTAT128N (Utrecht, The Netherlands) according to the procedures described in [38].

Zn–air batteries were constructed using a Zn foil (Sigma-Aldrich, St. Louis, MO, USA)
anode and a biochar/CC or CB/CC cathode electrode, with a 5 mm distance between the
two electrodes, and 5 M of NaOH containing 0.2 M ZnO as the electrolyte [12].
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3. Results and Discussion
3.1. Physicochemical Characterization of the Biochar

Figure 1 shows the SEM images of the material. Interestingly, the SEM images reveal a
hierarchical porous structure for the corncob biochar.
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Figure 1. SEM images of corncobs biochar powders after KOH treatment.

The EDX analysis presented in Table 1 confirms that biochar has a high C and O
content as expected. K was found at a low concentration as a result of the wash and
filtration after the activation treatment. Some traces of Mg, Si, and P were detected while
the absence of N and S is possibly due to the extensive pyrolysis.

Table 1. EDX results for the corncob biochar used.

Element Atoms (%)

C 90.9
O 7.9
K 0.8

Mg 0.1
Si 0.05
P 0.25

A more detailed analysis of the surface was performed with XPS. The XPS survey scan,
presented in Figure 2, shows that P was not detected on the surface of the biochar and only
traces of Si and Mg were detected. C and O are the main surface elements, while small
quantities of K are also present.
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The % surface atomic concentration, presented in Table 2, of each element was calcu-
lated from the area of the C1s, O1s, K2p, Si2p, Ca2p, and Mg2p peaks taking into account
the relative sensitivity factors.

Table 2. % surface atomic concentration of the corncob biochar from XPS analysis. Data were recorded
with a 0.5% error.

XPS Peak Eb [eV] Atomic Concentration (%)

C1s 284.5 76.2
Ca2p 347.7 traces
O1s 532.5 17.4
K2p 293.0 1.1
Si2p 103.2 2.8

Mg2p 51.5 2.5

The location of each XPS peak is also presented in Table 2. Interestingly, the location
of O1s is at 532.5 eV and this can be attributed mainly to O atoms in C-O bonds, since
carbonates and metal hydroxides develop peaks at about 531 eV [46,47].

Comparing Tables 1 and 2, it can be seen that the surface of biochar is enriched in
O. probably due to the surface oxidation. Also, a small enrichment of the surface can be
detected for K, different than expected since K intercalates above graphitic layers. This
is the first evidence that the activation process does not have the desirable effect on the
surface characteristics of the biochar. The oxidation of the surface results in different C
species and not only graphitic carbon.

Figure 3 shows the combined XPS spectral window of the C1s and K2p peaks. The
C1s peak is deconvoluted into carbon (sp2 and sp3) and carbon–oxygen bonds with the
peak components shown in different colours and the assignments shown in the inset of this
figure. The K2p peaks consist of the peaks for K2p1/2 and K2p3/2.
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The speciation of each carbon surface species is presented in Table 3. Two-thirds of
carbon species are non-oxidized, while the rest are oxidized carbon species, 7.5% of which
are highly oxidized. The sp2/sp3 ratio in this study is slightly above one, one of the lower
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values generally reported for different biochars. This ratio is important concerning the
ORR activity [48]. In a recent study, it was found that this ratio increases with the pyrolysis
temperature, while it is well correlated with the ORR activity. Since sp2 carbon is related
to the C=C bonds and thus with electric conductivity, it is logical that this ratio plays an
important role in electrochemical processes [38,48].

Table 3. % Component concentration of C1s XPS peaks of the biochar studied.

Eb (eV) Assignments Biochar (±0.5)

284.4 ± 0.1 C-C sp2 35.9
285.3 ± 0.1 C-C sp3 30.1
286.2 ± 0.2 C-O(H) 26.2
287.8 ± 0.2 C=O 3.6
289.0 ± 0.2 COOH 2.9

290.5 carbonates 1.9

The adsorption–desorption isotherm is presented in Figure 4a. The shape of the curve
is type IV with an H3 hysteresis loop according to IUPAC, suggesting that the material has
macropores that are not completely filled with N2 and a limited amount of non-uniform
mesopores. Macropores are also detected with the SEM images. Finally, the biochar also
has a portion of micropores as the N2 amount adsorbed in low P/Po is significant. The
pore size distribution is presented in Figure 4b. As can be seen, the majority of the pores
are in micropore and macropore regions and only a small amount of mesopores can be
detected. The SSA was found to be significantly low, at 92 m2 g−1, i.e., ten times lower
than expected compared to other activated biochars. Generally, biochar from corncobs
exhibits a very small SSA of a few m2 g−1, and only in a few works, the SSA is higher
than 100 m2 g−1 [48,49]. This low SSA of the pristine biochar and the high amount of
cellulose and hemicellulose may explain why the activation procedure with KOH is not
efficient to give high values of SSA in the activated biochar. The influence of a base in raw
biomass is limited to lignin content, while cellulose and hemicellulose react with acids to
be dissolved. This is also valid for the carbonaceous phase of the pristine biochar [24]. In
our case, corncobs with high amounts of hemicellulose produce pristine biochar with low
SSAs. Thus, treatment with KOH does not affect, to a high extent, the carbonaceous phase.
During the pyrolysis procedure, KOH was melted at temperatures above 406 ◦C, helping
the reaction with lignin and the carbon phase originating from lignin. On the other hand,
hemicellulose is inactive in basic solutions and requires acidic solutions to be dissolved.
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The XRD pattern of the biochar is presented in Figure 5. The XRD patterns of the
biochar show two main broad peaks centred at 24◦ and 43.6◦. The pattern is typical
of a disorder of amorphous graphitic material. The first peak corresponds to C(002),
typical of the amorphous graphitic phase [50], while the second is due to C(100). This
peak describes C in sp2 hybridization, i.e., the carbon species that are responsible for the
electric conductivity of the biochar [51]. It is interesting that no other well-formed peaks
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for inorganic compounds are detected, in contrast to a previous study [38], especially
peaks that correlate to potassium salts, pointing out that the activation process was not
so successful in this biochar. This is in accordance with XPS and EDX results, where the
amount of K is rather low.
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The FTIR spectrum of the biochar is presented in Figure 6. The main peak is the
intense band centered at 1384 cm−1 and can be attributed to carbonates. Interestingly,
this peak is located between the peak in pure potassium carbonate (1353 cm−1) and the
hydrated magnesium carbonate (1417 cm−1), thus suggesting that the carbonate species
interact with the detected cations [52]. There are also two other broad bands, at 1092 cm−1

and 3422 cm−1. These bands are related to the O-containing groups of the biochar. The
first is due to C–O bonds, while the second is due to –OH groups or even adsorbed water
molecules [53–55].
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The Raman spectrum of the activated biochar is presented in Figure 7. As can be
seen, the spectrum is typical of disordered carbon materials. There are two main peaks
centered at 1349 and 1591 cm−1, with a broad band above 2500 cm−1. The first peak is
the D band which described the disordered carbon structures of the biochar, specifically
the aromatics with no less than 6 rings but fewer rings than graphite. The second band,
the G band, is associated with sp2-hybridized carbon atoms in graphitic carbon layers,
C=C on the aromatic ring, and amorphous carbon. The G band indicates the presence of
organized sp2 domains, while the D band is related to defects associated with the breaking
of the hexagonal symmetry of the carbon atoms [39,56–58]. The ratio ID/IG is related to
the crystallinity of biochar. In our case, the ratio ID/IG was found equal to 1.06. Values
around one denote that the biochar has an adequate degree of carbon ordering, but also a
sufficient number of functional groups. These groups increase the inter-spacing between
carbon layers. It is interesting that in our case the absence of other bands in the spectrum
denotes that the biochar is not a highly disordered material. Also, no band was detected at
about 1260 cm−1, where the S band can be detected. The S band is due to Calkyl-Caryl and is
related to the sp3 carbon species. The absence of this band suggests that the biochar has a
significant amount of O species [59].
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3.2. Electrocatalytic Properties of the Corncob Biochar

The water oxidation, i.e., OER, and the ORR capacity of the corncob biochar electrode
have been examined in comparison with the Pt/biochar/CC electrode and the CB/CC
electrode. The results are presented in Figure 8a (oxidation) and Figure 8b (reduction). The
distinction between biochar and CB electrodes is obvious in both oxidation and reduction.
Even though the standard CB/CC carbon electrode is functional in both processes, an
important advantage is offered by the present corncob biochar electrode. Indeed, in that
case, both water oxidation and oxygen reduction took place at lower voltages than in
the case of carbon black, indicating the advantage of using biochar as an electrode. The
addition of Pt had a rather limited effect. This indicates that the biochar electrode can
practically function well by itself, and the presence of platinum is not necessary.
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electrode. The electrolyte was an oxygen-saturated 0.5 M of NaOH. Data were plotted against the
RHE electrode. (a) Data were obtained in the direction of increasing voltage (oxidation) and (b) in the
direction of decreasing voltage (reduction).

The oxidation activity of the corncob biochar is very close to that observed in a previous
study [38]. The water oxidation threshold is slightly above 1.25 V vs. RHE as was the
case of the two previously studied biochars [38], which was significantly lower than that
of the CB electrode. Interestingly, these two biochars had a much higher sp2/sp3 ratio,
i.e., around 3.6, while the biochar in this study had a ratio of around 1. These differences
in C hybridization can be attributed to the raw biomass. Corncobs rich in hemicellulose
and cellulose have fewer aromatic structures in contrast to lignin, and this difference may
explain the lower ratio. This ratio was also influenced by the pyrolysis temperature since
higher temperatures increase the aromaticity of the biochar; however, since the pyrolysis
temperature is the same for all three biochars, then the raw biomass can be considered as
the key factor for the low value of the sp2/sp3 ratio in the case of corncobs.

3.3. Application in the Construction of a Zn–Air Battery

Zn–air batteries were actually made using corncob biochar/CC as cathode electrodes.
Figure 9a shows the corresponding potential vs. current density and power density vs.
current density curves. The battery reached an open-circuit voltage of about 1.4 V. This
value was stable over a period of several hours, as seen in Figure 9b. The short-circuit
current was 142 mA cm−2 and the maximum power density was 55 mW cm−2. By taking
into account the fact the carbon material should act both as an ORR and OER electrocatalyst,
the cell underwent charge–discharge cycles. We are reminded at this point that during
discharging, oxygen is reduced at the cathode electrode, while during charging, water is
oxidized and oxygen evolves also at the cathode electrode. Figure 10 shows the charge–
discharge cycles for a Zn–air battery operating with either biochar/CC or CB/CC cathode
electrodes, for comparison. In the case of the CB/CC, the battery discharge operated at 1.0 V
while more than 2.7 V was necessary to charge the battery at a constant current of 10 mA.
In the case of biochar (corncob)/CC, the corresponding values were 1.2 and 2.1 V. This
result is very interesting and shows that corncob biochar can be a successful electrocatalyst
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for Zn–air batteries. It is seen that a battery running with corncob biochar can yield a
higher voltage for a given current and spends much less energy to be charged than when
it is running with a standard Vulcan XC72 catalyst. This is an important technological
advantage, in view of the availability and easy processing of corncob wastes. The findings
shown in Figure 10 are in accordance with those of Figure 8.
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Figure 10. Galvanostatic charge–discharge cycles for a Zn–air battery carrying a cathode electrode
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4. Conclusions

Corncob was used as raw biomass for the preparation of activated biochar. The biochar
exhibited moderate SSA but achieved a hierarchical porous structure and preserved a high
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amount of O active groups. The carbon phase was rich in sp3 species, despite the high
pyrolysis temperature. This can be attributed to the speciation of the raw biomass and
the high amount of hemicellulose and cellulose. The low content of lignin in raw biomass
increased the difficulty of releasing volatile species; thus, the SSA remained low, and
the aromatization process was obstructed. In spite of these undesirable characteristics,
the electrochemical behaviour of the biochar was interesting. Corncob biochar has been
successfully employed as both ORR and OER in Zn–air batteries. Despite the fact that
this material fails to attain a high SSA, it seems that the large percentage of oxygen active
sites enhances its performance as an electrocatalyst. The above results verify the fact that
electrocatalysis is a complex phenomenon and can be served by biochars of various origins.
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