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Abstract: Installing a battery energy storage system (BESS) and renewable energy sources can
significantly improve distribution network performance in several aspects, especially in electric
vehicle (EV)-integrated systems because of high load demands. With the high costs of the BESS and
PV, optimal placement and capacity of them must be carefully considered. This work proposes a
solution for determining the optimal placement and capacity of a BESS and photovoltaic (PV) in a
distribution system by considering EV penetrations. The objective function is to reduce system costs,
comprising installation, replacement, and operation and maintenance costs of the BESS and PV. The
replacement cost is considered over 20 years, and the maintenance and operation costs incurred in
the distribution system include transmission line loss, voltage regulation, and peak demand costs. To
solve the problem, two metaheuristic algorithms consisting of particle swarm optimization (PSO)
and the African vulture optimization algorithm (AVOA) are utilized. The tenth feeder of Phitsanulok
substation 1 (PLA10), Thailand, which is a 91-bus distribution network, is tested to evaluate the
performance of the proposed approach. The results obtained from the considered algorithms are
compared based on distribution system performance enhancement, payback period, and statistical
analysis. It is found from the simulation results that the installation of the BESS and PV could
significantly minimize system cost, improve the voltage profile, reduce transmission line loss, and
decrease peak demand. The voltage deviation could be reduced by 86%, line loss was reduced by
0.78 MW, and peak demand could be decreased by 5.706 MW compared to the case without BESS
and PV installations.

Keywords: African vultures optimization algorithm; battery energy storage systems; distribution
systems; electric vehicles; particle swarm optimization

1. Introduction

Currently, energy consumption is continuously rising because of economic expansion
and developments in industrial technology, causing electricity to play a key role in boosting
economies and raising the living standard in various countries [1–3]. In addition, the
production and utilization of electric vehicles (EVs) and renewable energy, especially in
photovoltaic (PV) industries, have increased, which will notably affect both the economy
and the electricity production system in the future [4–8]. The growing number of EVs will
require more electric vehicle charging stations, and the usage of PV, which will become
common in daily life, will be integrated into electricity distribution systems, leading to risks
in managing power systems from the perspective of the voltage profile and total harmonic
distortion (THD) [9,10]. Therefore, to accommodate the increasing electricity demand from
EVs and the growth of energy consumption, PV will be integrated into the distribution
system, and energy storage systems (ESSs) will also be installed to preserve energy from

Batteries 2024, 10, 212. https://doi.org/10.3390/batteries10060212 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries10060212
https://doi.org/10.3390/batteries10060212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0001-8870-7307
https://doi.org/10.3390/batteries10060212
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries10060212?type=check_update&version=1


Batteries 2024, 10, 212 2 of 27

PV and the grid during times of low electricity demand and provide the energy back into
the system during times of peak demand.

Various types of ESS technology have been studied to be efficiently installed in distri-
bution systems selected based on a number of variables, including cost, energy capacity,
efficiency, and reliability, with a primary focus on safety in operation [11]. Additionally,
suitable ESSs to be installed in distribution networks should have a moderate discharge
time frame (minutes to hours) since this discharge time frame can meet the daily load
demands immediately, and battery energy storage systems (BESSs) mostly reach this time
frame [12]. Moreover, by installing BESSs in distribution networks, the placement and
capacity of the BESS must be considered as they are crucial factors in improving the ef-
ficiency and reliability of the distribution systems and reduce system costs. Due to the
high price of the BESS, oversized BESSs may incur excessive investment costs with longer
payback periods, and inappropriate BESS placement can incur large amounts of energy
losses. With the optimal placement and capacity of the BESS, the remaining energy from
DGs after being provided to the loads can be efficiently stored in the installed BESS with low
power loss in the transmission lines, and the amount of stored energy is also appropriate
to provide energy back to the system during high peak periods, resulting in peak shaving
and voltage deviation reductions. So, the optimal placement and capacity of the BESS must
be efficiently found to obtain the best feasible investment costs together with high system
performance enhancement.

Many approaches have been introduced to find the optimal BESS location and sizing in
distribution networks, and the optimal location and sizing of distribution generators (DGs)
are also included in some literature. A novel algorithm called the artificial hummingbird
algorithm (AHA) was introduced in [13] to find the best position and size of DGs based
on biomass in radial systems, aiming to reduce losses and improve voltage deviation. The
results indicated that the distribution system efficiency was improved in terms of reductions
in power loss and voltage deviation. In [14], the best location and BESS sizing connected
to renewable energy sources (RESs) were presented to find the minimum system cost in
the IEEE 33-bus system. The genetic algorithm (GA) and particle swarm optimization
(PSO) were used, and the results showed that PSO was more effective in cost reduction
than GA. The best possible DG position and size in the 118-bus system of IEEE and the
practical system in Egypt identified using a modified forensic-based investigation (mFBI)
were introduced in [15]. The optimization problem has been considered a multi-objective
function where the objective functions consist of minimizing energy loss, voltage deviation,
and operation cost while maximizing voltage stability, and they demonstrated that mFBI
outperformed various methods in the literature and generated better results according
to the objective values. In [16], the GA and the greedy algorithm were applied to find
the optimal position and size of a BESS connected to EVs and DGs to reduce installation,
operation, and maintenance (O&M) costs in a rural 22-bus distribution network. In [17],
the best feasible BESS installation combined with PV and wind turbine (WT) in the IEEE
33-bus distribution network was proposed, adopting the interior point method to control
operations in conjunction with a distribution management system (DMS) and energy
management system (EMS) aiming to decrease system expenses. It was found that BESS
could enhance the performance of the system, as investigated through voltage deviation
examination, power loss reduction, and peak demand decrease. In [18], a stand-alone
microgrid system with 17 buses connected to residential loads and EVs was used to assess
the best position and sizing of DGs and the BESS by applying teaching–learning-based
optimization (TLBO), resulting in reduced power losses and improved voltage quality.
The best BESS sizing and position in a radial distribution system were determined using
the hierarchical planning mode and natural aggregation algorithm (NAA) in order to
manage voltage and lower life cycle costs (LCC) [19]. The optimal installation of BESS
utilizing a fuzzy method to forecast the ambiguity of load profiles and employing tabu
search (TS) and simulated annealing (SA) to determine the DG capacity, battery quantity,
BESS power, and BESS size and location was proposed in [20]. The results showed that the
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presented methods could reduce purchased electricity costs from the grid and minimize
power losses in the distribution system. As mentioned in previous works, it can be observed
that various approaches have been introduced to find the optimal location and sizing of a
BESS in distribution networks to minimize total system expenses comprising installation,
replacement, power loss, voltage deviation, and peak demand costs. However, only some of
these costs have been considered in each work, and most of these works applied traditional
algorithms to solve the problems.

To fully and efficiently reduce system costs and improve distribution network perfor-
mance, some studies have proposed approaches to find the optimal position and capacity
of BESS in distribution networks by considering the total system costs, and some of them
employed newly proposed algorithms to achieve efficient objective values. In [21], the best
possible BESS installation alongside DGs and EVs was proposed, applying multi-objective
PSO (MOPSO) and Monte Carlo simulation (MCS) to search for the optimal LCC, includ-
ing initial investment costs (ICs), maintenance costs (MCs), and replacement costs (RCs).
The outcomes indicated that installing the BESS in the distribution system reduced the
total LCC. The optimal approach for Interline-PV (I-PV) systems under varying EV loads,
focusing on reducing power losses and improving voltage profiles, was proposed in [22].
Three optimization algorithms were employed to specify the best solution strategies, and
it was found that I-PV enhanced voltage profiles, reduced power losses, and was able
to be adapted to practical problems. However, this work only evaluated the installation
of I-PV, which included the installation of PV and a BESS at the same location, without
considering the costs of installing the BESS and the optimal PV location. In [23], the best
feasible BESS position and size in a DG-connected distribution system using GA, PSO,
and the salp swarm algorithm (SSA) were proposed to reduce system expenses consisting
of power loss, voltage fluctuation, and peak power expenses in the IEEE 33- and 69-bus
systems. It revealed that system costs, power loss, and peak demand could be reduced
and voltage stability could be improved. However, only the O&M costs of the system were
computed in this research without considering installation and battery replacement costs.
The best feasible placement and sizing of BESS in the IEEE 33- and 69-bus distribution
networks connected to PV and EVs were presented in [24] to decrease the system expenses,
consisting of installation, replacement, and O&M costs of the BESS, and the distribution
network performance was improved in terms of transmission loss, the voltage deviation
index (VDI), and peak power reductions. Three algorithms consisting of PSO, the African
vulture optimization algorithm (AVOA), and SSA were applied to solve this problem
and compared the aspects of the system cost, distribution system efficiency improvement,
payback period, and statistical results, and the results in both systems showed that PSO
gave the best objective values and AVOA provided the fastest payback period. A detailed
summary of the previous work conducted in the optimal placement and capacity of the
BESS is provided in Table 1.

Table 1. Summary of the previous works conducted in the optimal placement and capacity of
the BESS.

Refs Objective Functions Total System Costs DGs Test Systems Algorithms

[13] minimizing losses and
voltage deviation x biomass IEEE 33-, 69-,

119-bus system AHA

[14]
minimizing voltage regulation
cost, power loss cost, and peak

demand cost
x PV, WT IEEE 33-bus system GA, PSO

[15]
minimizing energy loss, voltage
deviation, operation cost while

maximizing voltage stability
x PV, WT Egypt system mFBI

[16] minimizing investment and
O&M costs ✓ PV rural 22-bus network GA, greedy

algorithm
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Table 1. Cont.

Refs Objective Functions Total System Costs DGs Test Systems Algorithms

[17]

minimizing battery costs and
system costs due to system losses,

peak demand, and
voltage regulation.

✓ PV, WT IEEE 33-bus system interior point
method

[18] minimizing power losses and
improving voltage quality x PV, WT, 17-bus stand-alone

microgrid TLBO

[19]
minimizing investment cost,

operation cost, maintenance cost,
and residual value

x PV IEEE 15-, 69-bus
system NAA

[20] minimizing operation cost and
reliability cost x N/A modified 21-node

system TS, SA

[21]
minimizing life cycle cost

including initial, maintenance,
and replacement costs

✓ PV, WT a house in Sanandaj MOPSO, MCS

[22] minimizing power losses and
improving voltage quality x PV IEEE 33-bus system

system COA, PSO, GWO

[23]
minimizing reduce system costs
consisting of power loss, voltage
deviation, and peak demand costs

x PV, WT IEEE 33-, 69-bus
system GA, PSO, SSA

[24]
minimizing system costs
consisting of installation,

replacement, and O&M costs
✓ PV IEEE 33-, 69-bus

system PSO, SSA, AVOA

Although some research studies have investigated the optimal position and capacity
of BESS, most of them have not evaluated installation and battery replacement costs [22,23].
In [24], the installation and battery replacement costs were included; however, the loca-
tion and size of PV have not been optimally placed, and only IEEE systems were tested.
Moreover, it was found in [24] that PSO and AVOA were high-performance algorithms
to solve the problem of the optimal position and sizing of BESSs in distribution systems
connected to PV and EVs. Therefore, the optimal placement and capacity of the BESS and
PV in distribution networks considering EV penetrations are proposed in this work. The
objective functions considered to be minimized are system costs including installation,
replacement, and O&M costs of the BESS and the installation cost of PV, and the network
performance is aimed to be improved in aspects of line loss, voltage deviation, and peak
demand reductions by the BESS installation. A practical system, namely the tenth feeder of
Phitsanulok substation 1 (PLA10), Thailand, which is a 91-bus distribution system, is used
to evaluate the performance of the approach. The conventional efficient algorithm, which
is PSO, as well as the new efficient algorithm, which is AVOA, are utilized to determine the
optimal solutions.

The main contributions of this work are as follows:

1. The optimal placement and capacity of the BESS and PV in the PLA10 distribution
system considering EV penetrations are investigated in this work by considering
the overall system costs including installation, replacement, and operational and
maintenance costs as the objective functions to be minimized.

2. The distribution system performance is improved by reducing line losses, minimizing
peak demand, and enhancing the voltage profile after the installation of the BESS
and PV.

3. Two optimization algorithms including PSO and AVOA are employed to find the
optimal solutions, and their simulation results, statistical analysis, and payback period
are compared.
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The rest of the paper is divided as follows. Section 2 introduces input data models of
the BESS and EV charging stations in the distribution network. The problem formulation
of the optimal placement and capacity of the BESS and PV in the distribution network is
provided in Section 3. In Section 4, the methodology of this work is presented. Section 5
shows the simulation results and discussions. Finally, the conclusion of this work is
presented in Section 6.

2. Input Data Models

This section presents the modeling of the BESS and EV charging stations in the distri-
bution network.

2.1. Battery Energy Storage Systems (BESSs) in a Distribution System

An electrochemical BESS is employed in this paper since it has an appropriate dis-
charge time and the ability to quickly respond to daily loads [12,25–27]. The simulation of
the BESS is explained below.

2.1.1. BESS Simulation

A Li-ion battery has been selected as the BESS of this work due to its various ad-
vantages, including over 90% efficiency, high energy density (90–190 Wh/kg), high life
cycle, and reasonable cost. Although Li-ion has some disadvantages such as the need for a
protection circuit, degradation at high temperatures and high voltage, and the impossibility
of rapid charge at freezing temperatures when compared to other BESSs, Li-ion can still
overcome other BESSs for this work because of its various advantages and suitability for
distribution systems. However, the temperature, number of BESS operation cycles, and
depth of discharge (DOD) are some of the factors that can impact the life cycle of a Li-ion
battery. So, extended service life of the BESS is achieved by controlling heat dissipation at
the ideal temperature, which is between 15 and 35 degrees Celsius, preventing frequent
charging and discharging, and maintaining operation at the recommended DOD of a Li-ion,
which is 80% of the total capacity [28,29].

The BESS simulation considers charging and discharging the BESS for the same
amount of time each day, or 24 h [14,17,23]. The period is divided evenly into one hour,
thirty minutes, and fifteen minutes to accommodate the battery’s charging and discharging
rates of 24, 48, or 96, respectively. The charging and discharging rates over any period are
calculated using the given equation.

CiT =

 EB(1)
...
EB(m)

 (1)

where CiT is the charging and discharging rates in the considered duration EB(t) is the
energy in the BESS (MWh) at time t = 1, 2, 3, . . ., m.

To calculate the energy in the BESS, the Fourier series is applied using the Fourier
coefficient vector (CiF), produced by the optimization operation since the energy in the
BESS represented in finely dispersed periodic patterns can be found by using the Fourier
series. The periodic pattern is separated into sinusoidal components in the time domain
using the Fourier series, which allows for a comprehensive analysis of the BESS energy [30].
In this method, the process uses the Fourier transform to forecast the energy (EB) in the
BESS hourly, starting at random with sixteen values of the Fourier coefficient. Then, the
state of energy (SOE) is represented for the whole period considered by using the Fourier
series. The energy in the BESS is calculated using the given equations [17,30].

CiF =

 a1, b1
...
an, bn

 (2)
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EB(t) = a0 + a1 cos
(

2πt
T

)
+ b1 sin

(
2πt
T

)
+ . . . + an cos

(
2πnt

T

)
+ bn sin

(
2πnt

T

)
(3)

where a0, an, bn, n, t, and T denote the constant Fourier coefficient, Fourier cosine coefficient,
Fourier sine coefficient, number of Fourier coefficients, which is set to 8, time, and total
period, respectively. Additionally, an and bn are optimization variables in this problem.

By substituting CiF from Equation (2) into Equation (3), the BESS energy, EB(t), can be
found. According to Equation (3), a0 is not required because it has no effect on the BESS
charging and discharging processes and the energy cost coefficient. Thus, following an
optimization process, it may be adjusted to guarantee that the BESS power curve does
not fall below the minimal amount necessary to meet the DOD criteria. The changes in
energy in the BESS at two continuous times can be calculated using Equation (4), and it is
used to determine the BESS power as in Equation (5) and Equation (6). The BESS power is
utilized to present the state of the BESS. The BESS power is positive when it is in a charging
state, signifying the addition of energy to the BESS. On the other hand, the BESS power is
negative when it is in the discharging stage, signifying the release of energy from the BESS.

∆EB = EB(t)− EB(t − 1) (4)

PB(t) = ∆EB/(∆t × ηc), PB(t) > 0 (5)

PB(t) = (∆EB × ηd)/∆t, PB(t) < 0 (6)

where ∆EB indicates the changes in energy in the BESS at two continuous times, ηc, ηd,
PB, and ∆t are the charging efficiency of the BESS, discharging efficiency of the BESS,
BESS power, and sampling interval time, respectively, ηc = ηd =

√
ηbat, and ηbat is the cycle

efficiency of BESS, which is set to 0.9.

2.1.2. BESS Simulation

Power and energy capacities should be considered to find the optimal BESS capacity
in order to reduce overall costs and maintain the reliability and quality of a distribution
system. The number of cycles and the SOC, which are two main factors affecting the BESS
life, should also be considered [11]. The efficiency of the BESS life cycle can be increased
by reducing daily SOC fluctuations via improved charging and discharging cycles in the
BESS. Thus, the BESS size can be formulated as given in Equation (7). The daily cycle and
lifespan of the BESS are evaluated as Equations (8) and (9), respectively.

Battery size(kWh) =

∣∣Emax
B − Emin

B
∣∣

DODmax
(7)

where EB
max and EB

min are the maximum and minimum energies of the BESS, respectively,
and DODmax is the maximum DOD, which is equal to 0.8 in this work.

Cycles =
1
2

(
∑T

t=1 EB(t)− EB(t − 1)
DODmax × Battery size

)
(8)

Q (years) =
CyclesLi f e
Cycles × D

(9)

where Cycles indicate the daily cycle of the BESS, D is operation days, which is equal to
285 days, CyclesLife is the nominal life cycle of the Li-ion battery, which is 3000 cycles, and
Q represents the lifespan of the BESS in years.

2.2. Charging Station for EV Modeling

To find the best possible location and sizing of the BESS and PV in the distribution
network connected to EV charging stations, the charging stations are considered EV pen-
etrations. To add the EV penetration into the systems, it can be assumed that the BESS
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and grid feed power to the EVs according to the penetration load while increasing the EV
demand on all buses through the use of an AC/DC converter or charging port. [22,31].
Additional active and reactive loads of EVs are calculated using the presented equations.

P0
ev(n) = λev × P0

L(n) (10)

Q0
ev(n) = P0

ev(n) × tan(φn(c)) (11)

where P0
ev(n) and Q0

ev(n) are additional active and reactive loads by the EV penetrations at
the nth bus, λev is a scale factor that shows how much of an EV load there is in relation to
the real power demand at each location, P0

L(n) is the nominal real load power at the nth

bus, and φn(c) is the AC/DC converter power factor.
The total active and reactive load powers of the EV penetration at each placement are

then formulated using the provided equations.

Pt
d(n) = P0

L(n) ×
(

Vt
(n)

V0
(n)

)α

+

P0
ev(n) ×

(
Vt
(n)

V0
(n)

)αev
 (12)

Qt
d(n) = Q0

L(n) ×
(

Vt
(n)

V0
(n)

)β

+

Q0
ev(n) ×

(
Vt
(n)

V0
(n)

)βev
 (13)

where Pt
d(n) and Qt

d(n) are the total active and reactive power loads integrating the EV
penetration at the nth bus, respectively, Q0

L(n) is the nominal reactive load power at bus
n, Vt

(n) and V0
(n) indicate the time and initial nominal voltages, respectively, α and β are

active and reactive power exponents of the load demand, respectively, which are both equal
to 0, and αev and βev are the active and reactive power exponents of the EV load demand,
respectively, which are equal to 2.59 and 4.06, respectively [31].

3. Problem Formulation

The optimal position and sizing of the BESS and PV in the distribution network
integrated with EV charging stations in this research are proposed to minimize the system
costs comprising the installation, replacement, and operation and maintenance costs of the
BESS and installation cost of the PV. The system costs are set to be the minimized objective
function subject to technical constraints. So, this section defines the objective function and
constraints of this work.

3.1. Objective Function

The system costs are considered the objective function to minimize the costs of the
BESS installation, which are the investment cost, replacement cost, and operation and
maintenance costs and the cost of the PV installation [18,19,23]. The objective function is
determined using the equations below.

f (CiF) = min
(
Csystem

)
(14)

Csystem = CI + CR + CO&M + Cpv (15)

CI = Nbat × γI (16)

CR = Nbat × γI ×
tyear

Q(years)
(17)

CO&M = CVR + Closs + Cp (18)
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CVR =
(
∑T

t=1 ∑Nbus
i=1

∣∣∣Vi − Vre f

∣∣∣)× γVR (19)

Closs =
(
∑T

t=1 ∑Nbr
i=1|PL|

)
× γloss (20)

Cp = Pmax × ∆t × γp (21)

Cpv = Npv × γpv (22)

where Csystem, CI, CR, CO&M, and CPV are the system costs, BESS investment cost, BESS
replacement cost, BESS operation and maintenance costs, and PV installation cost, respec-
tively; CVR, Closs, and Cp are the costs of voltage regulation, line loss, and peak demand,
respectively; Nbat, Npv, tyear, Vi, Vref, PL, and Pmax are the BESS size (kWh), PV size (kW),
study duration (set to 20 years), voltage at the ith bus (p.u.), reference voltage, which is
1 p.u., real loss in each line, and maximum power demand, respectively; Nbus, Nbr, γI ,
γVR, γloss, γp, and γpv are the total number of buses, total number of branches, rate of the
BESS installation cost (equal to 100 $/kWh), rate of the voltage regulation cost (equal to
0.142 $/p.u.), rate of the transmission loss cost (equal to 0.284 $/kWh), rate of the maximum
energy demand cost (equal to 200 $/kWh/year), and rate of the PV installation cost (equal
to 2000 $/kW), respectively.

When integrating the BESS into the distribution system, THD can occur when the
power from the BESS is transmitted through the power conversion system (PCS). The
THD can cause the voltage and current waveforms to be distorted resulting in low-quality
transmitted power. However, most of the present distribution systems normally contain
high-efficiency filters in the PCS, which can significantly relieve THD. So, by integrating
the BESS into distribution systems, THD is assumed to be ignored in this work.

3.2. Constraints

The considered objective function must be subjected to technical constraints while
solving the optimization problem. The equality and inequality constraints of this work are
presented below.

3.2.1. Equality Constraints

The system power balance in the distribution system is controlled as presented in the
given equation.

Pgrid(t) = PD(t)− Ppv(t)± PB(t) + PL(t) (23)

where Pgrid(t), PD(t), Ppv(t), PB(t), and PL(t) are the power of the grid, power of the load
demand, power of the PV, power of the BESS, and power of the transmission loss at time
t, respectively.

3.2.2. Inequality Constraints

The voltages of all buses must be within the range of the limits, which is considered
±10% of the reference voltage as shown in the following Equation.

Vmin ≤ Vt
i ≤ Vmax (24)

where Vmin and Vmax indicate the minimum and maximum voltages of each bus, which
are 0.9 and 1.1, respectively, and Vi

t is the voltage at bus i at time t.
The BESS power and energy are also restricted to keep it safe while charging and

discharging. These constraints are represented by the provided equations.

Pmin
B ≤ Pt

cha, Pt
dis ≤ Pmax

B (25)

Emin
B ≤ Et

B ≤ Emax
B (26)
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where PB
min and PB

max denote the minimum and maximum powers of the BESS, respec-
tively, Pt

cha and Pt
dis are the charging and discharging of the BESS at time t, and EB

min and
EB

max are the minimum and maximum energies of the BESS, respectively.

4. Methodology

To solve the optimization problem in this work, metaheuristic algorithms, namely PSO
and AVOA, are applied to provide the optimal location and sizing of the BESS and PV in
the distribution network. Moreover, these algorithms are compared using the distribution
system efficiency evaluation in aspects of VDI, line losses, and peak demand enhancement.
The methodology used in this work is explained below.

4.1. Particle Swarm Optimization (PSO)

PSO was introduced by Kennedy and Eberhart in 1995 to determine the optimal
solution to an optimization problem. Despite being a traditional approach, PSO has
shown the potential to outperform recently proposed optimization algorithms in various
studies [23,32,33]. Moreover, PSO was considered a high-performance algorithm in solving
the problem of finding the placement and location of the BESS in distribution networks
as presented in [24]. A key idea of PSO came from imitating a flock of birds foraging for
food. Each bird in the flock would follow the bird that is currently closest to the best food
source [34]. Every particle in the PSO, which is each bird in the flock, represents a potential
solution, and the best solution can be searched for using the PSO process. The process
of PSO can be explained by updating the velocity and position of each particle using the
equations below.

vk+1
i = wk × vk

i + c1r1(pk
best,i − xk

i ) + c2r2(gk
best − xk

i ) (27)

xk+1
i = xk

i + vk+1
i (28)

where vi
k+1 and vi

k denote the velocity of particle i at iterations k + 1 and k, respectively,
wk is the inertia weight at iteration k, c1 and c2 are positive constant values, r1 and r2 refer
to random values between 0 and 1, pk

best,i and gk
best are the best position of the particle

i (personal best) and the best position of the entire particle (global best) at iteration k,
respectively, and the positions of particle i at iterations k and k + 1 are indicated by xi

k and
xi

k+1, respectively. wk can be calculated using the following equation.

wk = wmax − (
wmax − wmin

itermax
× k) (29)

where wmax and wmin are the maximum and minimum inertia weights set to 0.9 and 0.4,
respectively, and itermax is the maximum iteration.

4.2. African Vulture Optimization Algorithm (AVOA)

African vultures, which normally migrate in groups to search for food and settle down
where the food source is, which refers to the optimal solution, served as the model for
the new metaheuristic algorithm called AVOA. The initial locations of the vultures in the
search space are randomly sampled to start the AVOA, and the equation below is used to
determine the best two vultures.

R(i) =

{
BestVulture1 i f pi = L1

BestVulture2 i f pi = L2
(30)

pi =
Fi

∑n
i=1 Fi

(31)

where R(i) denotes one of the best vultures chosen, pi indicates the probability of selecting
the best solution, the indicators determined before the searching process are represented by
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L1 and L2 where the values are between 0 and 1 and the summation of them must equal 1,
and n is the number of vulture groups. Then, the starvation rates of both vultures can be
found using the provided equations.

F = (2 × rand1 + 1)× z ×
(

1 − iter
itermax

)
+ t (32)

t = h ×
(

sinw
(

π

2
× iter

itermax

)
+ cos

(
π

2
× iter

itermax

)
− 1
)

(33)

where F is the starvation rate of the vultures, rand1 refers to a random value between 0
and 1, z is a number randomly generated between −1 and 1, which is regenerated in each
iteration, t is a parameter used to enhance the searching operation, h indicates a number
randomly chosen between −2 and 2, and the exploration and exploitation phases can be
balanced by using w [35]. If a number generated by z is less than 0 ([−1, 0)), the vultures
are starved, and if a number generated by z is more than 0 ([0, 1]), the vultures are satiated.
The starvation rate of the vultures can be described as shown below.

If the F of the vultures is equal to or less than 1, the vultures are satiated. Then, at
random distances from one of the two groups, the vultures explore for food by updating
the position as shown in the given equations.

D(i) = |X × R(i)− P(i)| (34)

P(i + 1) = R(i)− D(i)× F (35)

P(i + 1) = R(i)− F + rand2 × ((ub − lb)× rand3lb) (36)

where D(i) is adopted to update the best vulture positions in two groups, X is the movement
of vultures that randomly move to protect food from others, P(i) and P(i + 1) are the
vectors of the vulture position at iterations i and i + 1, rand2 and rand3 are numbers
randomly generated between 0 and 1, and ub and lb are the variable upper and lower
bounds, respectively.

When F is equal to or more than 0.5 and less than 1, violent arguments break out
among vultures, and hostile vultures do not share their food. Weaker vultures obtain food
scraps from stronger vultures. So, the vultures update their positions in this situation using
the presented equations.

d(t) = R(i)− P(i) (37)

P(i + 1) = D(i)× (F + rand4)− d(t) (38)

S1 = R(i)×
(

rand5 × P(i)
2π

)
× cos(P(i)) (39)

S2 = R(i)×
(

rand6 × P(i)
2π

)
× sin(P(i)) (40)

P(i + 1) = R(i)− (S1 + S2) (41)

where d(t) denotes the distance of the vulture from one of the best vultures in the two groups,
S1 and S2 are spiral equations obtained between all vultures and one of the best vultures in
the two groups, and rand4, rand5, and rand6 are numbers randomly generated between 0
and 1.

Conflicts occur among vultures if F is less than 0.5 because it is assumed that there
are a greater number of vultures than food sources. Usually, all vultures tend to fly to the
same place where the food is. Thus, the vulture position is updated using the equations
shown below.
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A1 = BestVulture1(i)−
BestVulture1(i)× P(i)

BestVulture1(i)− P(i)2 × F (42)

A2 = BestVulture2(i)−
BestVulture2(i)× P(i)

BestVulture2(i)− P(i)2 × F (43)

P(i + 1) =
A1 + A2

2
(44)

P(i + 1) = R(i)− |d(t)| × F × Levy(d) (45)

where A1 and A2 are rivalries for food that might lead to an accumulation of different
vulture species in one food supply, the best vultures of the first and second groups at
iteration i are represented by BestVulture1(i) and BestVulture2(i), respectively, and Levy(d)
indicates a Levy flight employed to boost the randomness of AVOA and is calculated using
the presented equation.

Levy(d) = 0.01 × u × σ

|v|
1
β

, σ =

(
Γ(1 + β)× sin(πβ

2 )

Γ(1 + 2β)× β × 2( β−1
2 )

) 1
β

(46)

4.3. System Efficiency Evaluation

After the installation of the BESS and PV, the efficiency of the distribution network is
investigated regarding different aspects by referring to the objective function in terms of
VDI, transmission losses, and peak demand.

4.3.1. Voltage Deviation Index (VDI)

The efficiency of the distribution network is evaluated using the VDI to examine the
voltage profile improvement after the BESS and PV installations. The percentage of VDI
is found by the difference between the reference voltage and the actual voltage for each
period as the presented equation.

%VDIi = maxT
|Vre f −Vi|

Vre f
× 100,

%VDI =
Nbus
∑

i=1
%VDIi

(47)

where %VDIi is the maximum percentage of VDI at bus i for each period T, Vref and Vi are
the voltage values of the reference bus and bus i, respectively, %VDI is the total percentage
of the VDI in the system, and Nbus is the number of buses.

4.3.2. Transmission Losses

After installing the BESS and PV, the distribution network’s efficiency is also assessed
and compared using transmission losses, which are calculated using the following equation
and comprise active power, reactive power, and apparent power losses.

Ploss =
T
∑

t=1

Nbr
∑
l

Pt
L,

Qloss =
T
∑

t=1

Nbr
∑
l

Qt
L,

Sloss =
√

Ploss
2 + Qloss

2

(48)

where Ploss, Qloss, and Sloss indicate the active power, reactive power, and apparent power
losses, respectively, for each period T, and the active and reactive power losses of line l at
each time t are represented by Pt

L and Qt
L, respectively.
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4.3.3. Peak Demand

Peak demand is evaluated after the installation of the BESS and PV specified by
peak shaving. The peak demand, which considers a duration of 24 h in this work, is the
maximum active power consumption under the consideration period.

4.4. Implementation

The placement and sizing of the BESS and PV in the distribution network considering
EV penetrations are optimized by employing two metaheuristic algorithms comprising
PSO and AVOA. The optimization process of the proposed approach is illustrated by the
flowchart in Figure 1.
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Figure 1. Optimization process of the proposed approach.
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5. Simulation Results

The optimal placement and sizing of the BESS and PV were simulated in the practical
distribution network by considering EV penetrations. The two algorithms, which are PSO
and AVOA, were used to generate the solutions to the optimization problem with minimum
system costs. The process was operated in MATLAB 2021a, and MATPOWER 7.1 was
adopted to simulate the power flow [36]. The population number and maximum iterations
of the metaheuristic algorithms were set to 60 and 250, respectively. The input system data
and simulation results are presented and discussed in the following subsections.

5.1. Input System Data

The practical distribution network investigated in this study is the tenth feeder of
Phitsanulok substation 1 (PLA10), Thailand, which is a 91-bus distribution network. At
present, the Provincial Electricity Authority of Thailand is planning to install BESSs in
several substations due to the increasing load demands, renewable energy sources, and
EVs. Phitsanulok is an important economic zone of the upper central region of Thailand
(the capital city of Thailand is in the central region), and there will be more investment
in this area in the future. So, by installing a BESS and PV in Phitsanulok Substation,
the growing load demands and EV demands will be able to be fully supported, and the
system performance will be significantly enhanced in the future. The single-line diagram
of PLA10 is shown in Figure 2, and the system data including load demand at each bus
and transmission line data are given in Table A1 in Appendix A. The base power is 1 MVA,
the base voltage is 22 kV, and the maximum load demand of the system is 9045.40 kW.
The 24-h load demand and PV generation are presented in p.u. as shown in Table 2. The
load demand and EV penetration at 20%, 40%, and 60% of the PLA10 distribution network
within a day are illustrated in Figure 3.
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Table 2. Hourly load demand and PV generation within a day.

Hr. Load (p.u.) PVp (p.u.) Hr. Load (p.u.) PVp (p.u.)

1 0.366 0.000 13 0.923 0.987
2 0.353 0.000 14 0.964 0.916
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Table 2. Cont.

Hr. Load (p.u.) PVp (p.u.) Hr. Load (p.u.) PVp (p.u.)

3 0.335 0.000 15 0.985 0.729
4 0.315 0.000 16 1.000 0.427
5 0.314 0.000 17 0.817 0.179
6 0.295 0.000 18 0.739 0.014
7 0.292 0.072 19 0.770 0.000
8 0.342 0.325 20 0.748 0.000
9 0.404 0.608 21 0.592 0.000
10 0.485 0.820 22 0.363 0.000
11 0.736 0.950 23 0.323 0.000
12 0.902 1.000 24 0.306 0.000
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5.2. Results and Discussion

The optimal position and sizing of the BESS and PV were generated by the considered
algorithms in the PLA10 distribution network. After the installation of the BESS and PV,
the effectiveness of each algorithm is examined in terms of the minimal system costs, which
include the costs of the PV installation and operation and maintenance as well as the
investment and replacement costs. Furthermore, the performance improvement of the
distribution network generated by PSO and AVOA is compared before and after BESS and
PV installation in aspects of the VDI, line loss, and peak demand. The simulation results of
this system are presented as follows:

5.2.1. Optimal Placement and Capacity of the BESS and PV

To find the most feasible placement and capacity of the BESS and PV, the generated
Fourier coefficients of the algorithms were used to calculate the SOE of the BESS in a day.
The SOE depending on the load demand at each EV penetration throughout the day is
illustrated in Figure 4. The optimal placement and capacity of the BESS and PV, power and
lifetime of the BESS, and system costs are presented in Table 3.

From Figure 4, it can be noted from all EV penetrations that the BESS was in the
charging state when the demand was low from 1 a.m. to around noon. Even though the
demand started to become higher from 9 a.m. to noon, the BESS could still be in a charging
state because of the energy generated from PV. The BESS then started to be in a discharging
state in the afternoon until around 9 p.m. due to very high load demand. In Table 3, it is
observed that the optimal placements of the BESS installation obtained by PSO were at the
41st bus at all considered EV penetrations and by AVOA at the 41st, 31st, and 41st buses at
20%, 40%, and 60% EV penetrations, respectively. By considering the objective function
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value, PSO could provide better system costs than those of AVOA for all EV penetrations.
So, by considering the results provided by PSO, the optimal placement was the 41st bus,
which is the location of New Ice Factory, Ban Krang Subdistrict, Mueang Phitsanulok
District, Phitsanulok. This place was observed and found to be suitable and has space to
install the BESS. Furthermore, the optimal locations of the PV obtained by PSO were at
the 51st bus at all EV penetrations. Unfortunately, the actual area survey found that this
place cannot invest in PV installation since a university is located on this bus. However,
the PV can be installed on a nearby bus, which is the 52nd bus, because there are areas
that have not yet been developed. In addition, the largest BESS size obtained by PSO was
24.5914 MWh at 60% of EV penetrations, followed by AVOA, which was 24.5594 MWh at
40% of EV penetrations.
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Table 3. Optimal placement and capacity of the BESS and PV generated by each algorithm at each
considered EV penetration.

Algorithm λev
BESS

Placement
BESS Size

(MWh)
PV

Placement
PV Size

(kW)
Power of

BESS (MW)
Lifetime of

BESS
System

Costs ($)

PSO
20% 41 17.1415 51 2356.65 2.8215 8.824658 40,208,157.04
40% 41 18.9705 51 2544.36 3.1765 8.824658 47,213,163.04
60% 41 24.5914 51 3913.34 3.8928 8.824658 54,148,223.67

AVOA
20% 41 17.4733 51 2598.12 2.8497 8.784056 40,283,138.35
40% 31 24.5594 82 2460.39 3.6452 8.824658 47,234,023.75
60% 41 19.7769 50 3689.10 3.4387 8.824658 54,435,077.17

5.2.2. System Performance Improvement Comparison

The performance improvement of PLA10 was evaluated in different terms by referring
to the objective function in terms of the VDI, transmission line losses, and peak demand
before and after the installation of the BESS and PV by each algorithm as shown in Table 4,
where the base case was the case without a BESS.

Table 4. Comparison of distribution system performance improvements before and after the BESS
and PV installations.

Algorithm λev
VDI
(%)

Real Power Loss
(MW)

Reactive Power Loss
(MVAr)

Apparent Power
Loss (MVA)

Peak Demand
(MW)

Base
20% 256.99 1.515 3.256 3.591 10.786
40% 298.12 2.045 4.397 4.849 12.535
60% 339.84 2.661 5.722 6.31 14.293

PSO
20% 199.77 1.126 2.434 2.682 6.882
40% 233.55 1.546 3.341 3.681 8.171
60% 253.81 1.881 4.064 4.478 8.587

AVOA
20% 197.60 1.125 2.432 2.679 6.749
40% 242.57 1.570 3.398 3.743 7.749
60% 261.65 1.921 4.153 4.575 9.143

It is observed from Table 4 that after the BESS and PV installations in the PLA10
distribution system, both algorithms provided reductions in the VDI, line losses, and peak
demand for all EV penetrations. Moreover, it was found that AVOA was more efficient
than PSO at 20% of EV penetration for VDI, losses, and peak demand reductions, but PSO
generated better reductions of those terms than AVOA at 40% and 60% of EV penetrations
except for the peak demand at 40% of EV penetration. The VDI could be reduced the most
compared to the base case by around 59.39%, 64.57%, and 86.03% for 20%, 40%, and 60%
of EV penetrations, respectively. The biggest decrease in real power loss compared to the
base case reached approximately 0.39, 0.499, and 0.78 MW for 20%, 40%, and 60% of EV
penetrations, respectively. For the highest peak demand reductions at 20%, 40%, and 60%
of EV penetrations, they dropped around 4.037, 4.786, and 5.706 MW, respectively. So, the
system performance could be significantly improved after the BESS and PV installations,
especially in the high EV penetration case.

The 24-h voltage profiles at the weakest bus, which is the 91st bus, for 20%, 40%, and
60% of EV penetrations obtained by PSO and AVOA are presented in Figure 5 to show the
improvement voltage profiles before and after the BESS and PV installations.

In Figure 5, it is noticeable that the voltage before the BESS and PV installations in the
base case at 4.00 p.m. was at the lowest value because this period has the highest demand.
However, the all-day voltage profile could be enhanced by installing the BESS and PV
regardless of the increase in EV penetrations.
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The 24-h real line losses in the PLA10 before and after installing the BESS for 20%,
40%, and 60% of EV penetrations provided by PSO and AVOA are plotted in Figure 6.

It can be seen in Figure 6 that the BESS was charging to reserve power to reduce
the peak power during the peak period, resulting in the transmission line loss increasing,
which was more than the base case in some periods from around 1.00 a.m. to 10.00 a.m. and
9.00 p.m. to 12.00 a.m. However, there was a noticeable drop in transmission loss between
10.00 a.m. and 9.00 p.m. because the BESS discharged power to assist in supplying the
network’s demand, as evident in Table 4. So, the installation of the BESS and PV enhanced
the 24-h transmission line loss when compared to the base case.

Finally, the peak demands in the PLA10 for 20%, 40%, and 60% of EV penetrations
before and after installing the BESS and PV by PSO and AVOA are plotted in Figure 7.
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It can be observed from Figure 7 that the peak demand was at 4.00 p.m. for the base
case. It is also evident that, following the BESS installation, there were times between
1:00 a.m. and 10:00 a.m. and 9.00 p.m. and 12:00 a.m. when the peak demand exceeded
that of the base case because the BESS was charging in order to store energy to lower the
peak demand during the highest peak period. Thus, as shown in Table 4, the peak demand
was greatly reduced from 10:00 a.m. to 9.00 p.m. following the installation of the BESS,
resulting in a 24-h peak demand decrease.

5.2.3. Statistical Analysis and Algorithm Performance Comparison

The statistical results of the considered algorithms are investigated, and the perfor-
mance of the algorithms is compared. The statistical results and operation times of each
algorithm for 20%, 40%, and 60% of EV penetrations are given in Table 5, and the conver-
gence curves of PSO and AVOA for solving the system costs for 20%, 40%, and 60% of EV
penetrations are potted in Figure 8.
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Table 5. Statistical results of each algorithm in the PLA10 distribution system.

Algorithm λev Best Worst Mean Median Std.

PSO
20% 40,208,157.04 40,476,376.40 40,369,678.50 40,397,090.20 99,605.69
40% 47,213,163.04 47,313,442.33 47,254,287.65 47,236,257.59 42,878.09
60% 54,148,223.67 54,333,070.57 54,229,925.23 54,208,481.46 76,971.73

AVOA
20% 40,2831,38.35 40,814,701.71 40,487,523.12 40,466,871.68 198,660.95
40% 47,234,023.75 47,750,305.34 47,464,793.62 47,410,051.78 214,296.01
60% 54,435,077.17 55,431,002.91 54,761,252.60 54,599,970.51 347,863.18

It can be seen from Table 5 that PSO provided the best results in terms of the best
value, worst value, mean, median, and standard deviation. From Figure 8, it is noted that
the convergence curves generated by both algorithms were very close to each other where
both PSO and AVOA took turns converging faster towards the optimal solution.
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For investment considerations, the calculation of the break-even point involved divid-
ing the costs of installing BESS and PV by the difference between the system’s operation
and maintenance costs before and following the BESS and PV installations as presented in
Table 6.

Table 6. Break-even point of each algorithm.

Algorithm λev
System Costs

($)
Operation and Maintenance Costs

for 1 Day ($)
Payback
(Years)

Base
20% - 6345.0331 -
40% - 7454.8843 -
60% - 8594.2133 -

PSO
20% 40,208,157.04 4095.3141 7.8274
40% 47,213,163.04 4921.6504 7.5551
60% 54,148,223.67 5245.0794 8.4142

AVOA
20% 40,2831,38.35 4022.0764 8.1893
40% 47,234,023.75 4697.4262 7.3293
60% 54,435,077.17 5561.2344 8.4512

Table 6 shows that the optimal installation of the BESS and PV generated by PSO
provided a faster payback period than that of AVOA. However, AVOA provided the
quickest payback time at 40% of EV penetration because AVOA has a larger BESS size than
that of PSO resulting in a bigger reduction in the peak demand, which affects the costs.
However, the break-even point is found based on the same behavior of using BESS and PV
every day for a period of 20 years, which may change according to usage behavior.

6. Conclusions

This paper proposed an approach to find the optimal placement and capacity of
the BESS and PV while minimizing system costs and enhancing the performance of the
distribution system integrated with EVs. The system costs, which are the main objective
functions, consisting of installation, replacement, transmission loss, voltage regulation,
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and peak demand costs, are minimized while satisfying the considered constraints. The
metaheuristic algorithms consisting of PSO and AVOA were applied to solve the problem,
and the PLA10 distribution network in Thailand was tested. The simulation results showed
that the optimal placement and capacity of BESS and PV in PLA10 considering several
levels of EV penetrations could be obtained by both algorithms while PSO could provide
lower overall system costs than AVOA. The optimal placement of the BESS for the PLA10
was at the 41st bus, which was observed to be suitable for installing the BESS, while the
optimal PV location was at the 51st bus, which was found to be inappropriate for installing
the PV, but it can be installed at a nearby bus. For the system performance investigation, it
is revealed in most cases of EV penetrations that PSO generated better VDI improvement
and real loss reductions while AVOA achieved superior peak demand reductions. The VDI
could be reduced, at most, by 86.03%, real power loss decreased the most by 0.78 MW, and
the largest peak demand reduction reached 5.706 MW compared to those of the case without
installing a BESS and PV. It is found that the system performance could be significantly
improved after BESS and PV installations, especially in the case of high EV penetration.
In the statistical analysis and algorithm performance comparison, PSO obtained the best
statistical values including best value, worst value, mean, median, and standard deviation,
and PSO also converged to the optimal solutions faster and had a faster payback period
than those of AVOA. So, to find the optimal placement and capacity of the BESS and PV in
this tested system, PSO should be adopted to provide efficient solutions. However, this
work provided the optimal placement and capacity of the BESS and PV in the practical
system simulation, so the real location of the system is required to be observed to determine
whether the BESS and PV can really be installed. In the future, the optimal placement
and capacity of the BESS and PV from this work will be considered for installation in the
real PLA10 distribution network in order to improve system efficiency with minimum
investment costs. Moreover, the TOU pricing method can be applied, and the energy from
the BESS sold back to the grid can be considered in order to more optimally store and
consume the energy, resulting in a faster payback period. In addition, the effect of the EV
state of charge on the energy demand can be also studied in order to further interpret the
BESS behaviors.
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Abbreviations

Abbreviations
AHA artificial hummingbird algorithm
AVOA African vulture optimization algorithm
BESS battery energy storage system
COA coyote optimization algorithm
DG distribution generator
DMS distribution management system
DOD depth of discharge
EMS energy management system
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ESS energy storage system
EV electric vehicle
GA genetic algorithm
GWO grey wolf optimizer
IC investment costs
IPV Interline-PV
LCC lower life cycle costs
MC maintenance costs
MCS Monte Carlo simulation
mFBI modified forensic-based investigation
MOPSO multi-objective PSO
NAA natural aggregation algorithm
O&M operation and maintenance
PCS power conversion system
PLA10 the tenth feeder of Phitsanulok substation 1
PSO particle swarm optimization
PV photovoltaic
RC replacement costs
RES renewable energy source
SA simulated annealing
SOE state of energy
SSA salp swarm algorithm
THD total harmonic distortion
TLBO teaching learning-based optimization
TS tabu search
VDI voltage deviation index
WT wind turbine
Nomenclature
symbols
a0 constant Fourier coefficient
an, bn Fourier cosine coefficient, Fourier sine coefficient,
CiF Fourier coefficient vector
CiT charging and discharging rates in the considered duration
CI BESS investment cost
Closs line loss cost
CO&M BESS operation and maintenance costs
Cp peak demand cost
CPV PV installation cost
CR BESS replacement cost
Csystem system costs
CVR voltage regulation cost
Cycles daily cycle of the BESS
CyclesLife nominal life cycles of the Li-ion battery
D operation days
DODmax maximum DOD
EB energy in the BESS (MWh)
EB

min, EB
max minimum and maximum energies of the BESS

∆EB changes in energies in the BESS at two continuous times
Nbat BESS size (kWh)
Nbr total number of branches
Nbus total number of buses
Npv PV size (kW)
n number of Fourier coefficients
PB BESS power
PB

min, PB
max minimum and maximum powers of the BESS

Pt
cha, Pt

dis charging and discharging of the BESS at a time t
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PD power of the load demand
Pt

d(n), Qt
d(n) total active and reactive power loads integrating EV penetration at the nth bus

P0
ev(n), Q0

ev(n) additional active and reactive loads by the EV penetrations at the nth bus
Pgrid power of the grid
P0

L(n), Q0
L(n) nominal active and reactive load power at the nth bus

Pt
L, Qt

L active and reactive power losses of line l at each time t
PL real loss in each line
Ploss active power loss for each period T
Pmax maximum power demand
Ppv power of the PV
Q lifespan of the BESS in years
Qloss reactive power loss for each period T
Sloss apparent power loss for each period T
T total period
t time
tyear study duration
∆t sampling interval time
Vi voltage at the ith bus (p.u.)
Vmin, Vmax minimum and maximum voltages of each bus
Vref reference voltage
Vt

(n), V0
(n) time and initial nominal voltages

%VDI total percentage of VDI in the system
%VDIi maximum percentage of VDI at bus i for each period T
αβ active and reactive power exponents of the load demand
αev, βev active and reactive power exponents of the EV load demand
γI , γVR, γloss, rates of the BESS installation cost, voltage regulation cost, transmission loss
γp, γpv cost, maximum energy demand cost and PV installation cost
ηbat cycle efficiency of BESS
ηc, ηd Charging and discharging efficiencies of the BESS
λev scale factor
φn(c) AC/DC converter power factor
symbols for PSO
c1, c2 positive constant values
gbest best position of the entire particle (global best)
itermax maximum iteration
k iteration
pbest,i best position of the particle i (personal best)
r1, r2 random values between 0 and 1
vi velocity of particle i
w inertia weight
wmax, wmin maximum and minimum inertia weight
xi position of particle i
symbols for AVOA
A1, A2 rivalries for food
BestVulture1(i),

best vulture of the first and second groups at iteration i
BestVulture2(i)
D parameter adopted to update the best vulture positions in two groups
d distance of the vulture from one of the best vultures in two groups
F starvation rate of the vultures
h number randomly chosen between −2 and 2
i iteration
L1, L2 indicators determined before the searching process
Levy(d) Levy flight
n number of vulture groups
P vector of the vulture position
pi probability of selecting the best solution
R one of best vultures
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rand1, rand2,
random number between 0 and 1rand3, rand4,

rand5, rand6

S1, S2
spiral equation obtained between all vultures and one of the best
vultures in two groups

t parameter used to enhance the searching operation
ub, lb variable upper and lower bounds
w parameter used to balance exploration and exploitation phases
X movement of vultures randomly move to protect food from others
z number randomly generated between −1 and 1

Appendix A

The system data of the PLA10 distribution system are presented in Table A1.

Table A1. System data of the PLA10 distribution system.

From Bus To Bus

Transmission Line Load at Receiving Bus

Resistance
(p.u.)

Reactance
(p.u.)

Active Power
(MW) Reactive Power (MVar)

1 2 0.00066753 0.00131316 0.040000 0.040000
2 3 0.00304984 0.00599965 0.080000 0.050000
3 4 0.03190178 0.06275724 0 0
4 5 0.00615880 0.01211575 0.000170 0.002000
5 6 0.00416107 0.00818577 0.000160 0.002000
6 7 0.04335671 0.09034338 0.040000 0.030000
7 8 0.08122618 0.18842561 0 0
8 9 0.01395848 0.03238038 0.010000 0.010000
9 10 0.00213025 0.00494169 0 0

10 11 0.04919453 0.11411968 0 0
10 60 0.00384937 0.00757257 3.008000 1.864000
11 12 0.00912894 0.02117700 0.000160 0.003400
11 62 0.02639606 0.05192700 0.804000 0.498200
12 13 0.01396787 0.03240218 0 0
13 14 0.00314541 0.00729661 0.381700 0.023600
13 65 0.01438785 0.00797073 0.014620 0.016500
14 15 0.00615577 0.01427993 0.000160 0.002050
15 16 0.04016105 0.09316418 0 0
16 17 0.00439902 0.01020468 0.000160 0.001030
17 18 0.02003538 0.04647736 0.005770 0.005510
18 19 0.09222763 0.21394636 0.005570 0.038620
19 20 0.06495031 0.15066940 0.178560 0.121240
20 21 0.02132539 0.04946987 0 0
21 22 0.01916562 0.04445972 0.028680 0.023040
21 66 0.15693050 0.06482364 0.090740 0.063640
22 23 0.00740378 0.01717504 0.086560 0.064230
23 24 0.01236938 0.02869405 0.021610 0.018740
24 25 0.06179254 0.14487545 0.003180 0.001976
25 26 0.00572173 0.01327308 0.007210 0.006480
26 27 0.00073966 0.00171583 0 0
27 28 0.00213266 0.00494727 0.147400 0.104600
27 68 0.09849954 0.19377077 0 0
28 29 0.01063023 0.02465962 0.007530 0.004660
29 30 0.01916156 0.04445031 0 0.320350
30 31 0.01916156 0.04445031 0 0
31 32 0.01198843 0.02781033 0.203700 0.134600
31 71 0.00393335 0.00162476 0.168000 0.104100
32 33 0.01265207 0.02934982 0.004640 0.003810
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Table A1. Cont.

From Bus To Bus

Transmission Line Load at Receiving Bus

Resistance
(p.u.)

Reactance
(p.u.)

Active Power
(MW) Reactive Power (MVar)

33 34 0.04567201 0.10594830 0.016490 0.011470
34 35 0.03290951 0.07634231 0 0
35 36 0.04224496 0.09642051 0.001760 0.001090
36 37 0.05730026 0.11272252 0.005335 0.003306
37 38 0.06691377 0.13163447 0.000584 0.000362
38 39 0.01909708 0.03756826 0.000160 0.001000
39 40 0.14006092 0.27553140 0.006120 0.004730
40 41 0.00481246 0.00946720 0 0
41 42 0.06041173 0.11884350 0 0
41 74 0.00490924 0.00202787 0.807000 0.500000
42 43 0.02607389 0.05129321 0.000400 0.003450
42 78 0.02676599 0.01105629 0.000436 0.000270
43 44 0.26283988 0.51706521 0 0
44 45 0.00748726 0.01472912 0.001320 0.000820
45 46 0.01764724 0.03471611 0.008250 0.007050
46 47 0.08322179 0.05876720 0.003240 0.003940
47 48 0.04592143 0.03242749 0 0
48 49 0.03547341 0.01465309 0.004280 0.004510
48 80 0.00871169 0.00359856 0.054010 0.033460
49 50 0.11240115 0.21125256 0 0.311800
50 51 0.00259138 0.00509782 0 0
51 52 0.03175833 0.06247578 0.008020 0.005920
51 82 0.00368953 0.00725813 2.419000 1.499000
52 53 0.09577148 0.18840408 0 0
53 54 0.13929892 0.27403234 0.000340 0.002130
53 83 0.08478230 0.03502123 0 0
54 55 0.03304137 0.06499981 0.000160 0.000970
55 56 0.01455318 0.02862939 0 0
56 57 0.11294182 0.22218196 0.004380 0.002718
57 58 0.00454544 0.00894190 0 0
58 88 0.13124128 0.05421213 0.011150 0.006910
58 59 0.11447834 0.22728361 0.007940 0.005870
60 61 0.00227225 0.00447004 0.000980 0.196900
62 63 0.01036553 0.02039132 0.000160 0.027130
63 64 0.00243037 0.00478109 0.000160 0.027130
66 67 0.03859241 0.01594146 0.007620 0.009990
68 69 0.01777059 0.03495874 0.000160 0.003370
69 70 0.20185744 0.15214860 0.008380 0.519700
71 72 0.00347006 0.00143339 0.000160 0.021290
72 73 0.01266308 0.00998547 0.000160 0.013420
74 75 0.00438857 0.00181280 0.000160 0.021030
75 76 0.01184211 0.00489165 0.000160 0.020900
76 77 0.00909933 0.00375868 0.000160 0.021030
78 79 0.02405394 0.01813048 0.015400 0.009580
80 81 0.00446599 0.00184478 0.008000 0.015260
83 84 0.01456305 0.00601559 0.040970 0.030930
83 86 0.03047604 0.01258881 0.039520 0.030000
84 85 0.09970403 0.04118499 0.042040 0.031610
86 87 0.15245500 0.06297496 0.007440 0.009720
88 89 0.02513544 0.01038276 0 0
89 90 0.01389884 0.00574123 0.004320 0.002680
89 91 0.06395522 0.02641814 0.015780 0.009780
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