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Abstract: Lithium titanium oxide (LTO) batteries offer superior performance compared to graphite-
based anodes in terms of rapid charge/discharge capability and chemical stability, making them
promising candidates for fast-charging and power-assist vehicle applications. However, commonly
used battery models often struggle to accurately describe the current–voltage characteristics of LTO
batteries, particularly before the charge/discharge cutoff conditions. In this work, a novel electrical
model based on the solid-phase diffusion equation is proposed to capture the unique electrochemical
phenomena arising from the diffusion mismatch between the positive and negative electrodes in
high-power LTO batteries. The robustness of the proposed model is evaluated under various loading
conditions, including constant current and dynamic current tests, and the results are compared
against experimental data. The experimental results for LTO batteries exhibit remarkable alignment
with the model estimation, demonstrating a maximum voltage error below 3%.

Keywords: battery model; lithium titanium oxide (LTO) batteries; rate characteristics

1. Introduction

Lithium-ion batteries have become ubiquitous in a wide range of electrical devices
and systems, including telephones, electric vehicles, and renewable energy generation,
owing to their high power density, high energy density, and excellent reliability [1–4]. To
meet the diverse power and energy requirements of different applications, lithium-ion
batteries can be categorized into two broad types: high-power designs and high-energy
designs. Lithium titanium oxide (LTO) batteries utilizing Li4Ti5O12 as the anode material
have exhibited remarkable battery performance, encompassing excellent rate capabilities
and chemical stability. Consequently, LTO batteries have emerged as a leading candidate
for fast-charging and power-assist vehicle applications [5,6]. LTO batteries demonstrate
pronounced advantages over conventional lead–acid batteries for starting or regenerative
braking applications, which is primarily attributed to their superior power density and
significantly extended service life [7–10]. LTO batteries have been used in a wide range
of applications, including all-electric buses and high-speed rail trains. Highly accurate
battery models are essential for ensuring safe battery operation and enhancing battery
management systems [11–14].

In recent decades, various battery models have been reported to address the critical
requirements of diverse scenarios. These models can be broadly categorized into three
groups: electrochemical models, analytical models, and circuit models [15–18]. Electro-
chemical modeling is based on electrochemical equations and thermodynamic principles
and represents the chemical reaction processes inside the battery numerically through
partial differential equations of electrode and electrolyte kinetics [16,18]. Analytical models
are founded upon the same fundamental principles as electrochemical models, with a
simplification of the computational equations [11]. However, these models involve com-
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plex nonlinear differential equations and numerous unknown variables, increasing their
complexity and making them challenging to integrate into battery management systems.

Circuit models, on the other hand, can capture a battery’s current–voltage character-
istics through a combination of electrical components such as voltage sources, resistors,
and capacitors [17,19,20]. These models have a simpler structure and fewer unknown
variables compared to the other two model types and can be easily incorporated into the
control model of a battery-powered system. For example, Low et al. [21] proposed an
improved model consisting of two resistance–capacitance (RC) parallel networks, which
can predict the behavior of lithium iron phosphate (LFP) batteries with sufficient accuracy.
Hu et al. [17] compared twelve circuit models using the same data, finding that a single
RC parallel network model is more suitable for lithium–nickel–manganese–cobalt oxide
batteries, while a first-order RC model with a single-state hysteresis is more suitable for
LFP cells. Philipp et al. [22] provide a comprehensive analysis of modeling techniques
for high-power LTO batteries, noting that accurately modeling battery performance at the
high current rate (C-rate), extreme temperatures, and state-of-charge (SOC) boundaries are
the main challenges. In addition, they conclude that second- or third-order RC equivalent
circuits are best suited as LTO battery models. Many studies have also reported modeling
LTO batteries with equivalent circuits, but the performance of these models is poor at high
C-rates [23–25].

To improve the feasibility of high-power battery models, researchers have developed
several enhanced circuit models. SOC estimation at different C-rates has been achieved
using a normalization method based on the definition of the rate factor [26]. More com-
prehensively, Zhang et al. proposed an integrated approach combining a circuit model
and a Rakhmatov diffusion model, which is capable of capturing the recovery effect [27].
However, this improved model has a complex structure that can be difficult to configure.
In addition, Kim et al. used a kinetic model rather than a diffusion model to represent
the rate–capacity effect to enhance the model’s adaptability to high C-rates [28]. It is
worth noting that the above approaches rarely discuss the variation in model parame-
ters with current flow rate and direction, although they are sufficiently accurate from a
quantitative perspective.

Lam et al. proposed an empirical formulation using curve fitting to describe the
current dependence of the model parameters [29]. However, the generalization of this
approach is limited due to the lack of theoretical derivation and the fact that the model
validation was only achieved at rates below 2 C.

Liu et al. modeled LTO batteries in high-power applications based on the Butler–
Volmer equation with a correction for the electrochemical polarization in the model [30].
Chen et al. modeled LTO batteries at different temperatures by correcting the open-circuit
voltage and ohmic resistance based on the Nernst and Arrhenius equations [31]. However,
these models have poor accuracy at SOC boundaries such as 0–20% SOC or 80–100% SOC.
The main reason for this is caused by the deviation of the material surface SOC from the
cell SOC due to the diffusion process [32].

There are several studies that have considered the effect of the diffusion process and
made corrections based on diffusion equations to improve the model accuracy [27,28,32].
However, the difference in diffusion ability of positive and negative electrodes and the
effect at different C-rates are not considered.

This work presents a novel electrical model for high-power LTO batteries based on
the diffusion equation. The model accurately simulates the diffusive polarization of the
electrodes under high C-rate operation scenarios. The accuracy and reliability of the
proposed battery model across the full SOC range are validated by testing the lithium
titanate battery at various C-rates and dynamic operating conditions, demonstrating a
maximum error within 3%.

The remainder of this paper is structured as follows. Section 2 presents the related
work, encompassing commonly utilized electrical circuit models and derivations of the
diffusion equation. Section 3 details the experimental setup and procedures. The modeling
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process of the proposed model is outlined in Section 4. Section 5 outlines the steps for
parameter extraction. Model verification results are discussed in Section 6. Finally, Section 7
concludes the work.

2. Related Work
2.1. Equivalent Circuit Model

The equivalent circuit model is a widely adopted approach for simplifying the complex
electrochemical dynamics of batteries. This modeling technique leverages the electrical
properties of circuit elements, such as resistors, capacitors, and voltage sources, to represent
the underlying electrochemical processes within the battery. A commonly used variant is
the second-order equivalent circuit model, as illustrated in Figure 1.
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Figure 1. Schematic diagram of the second-order equivalent circuit model.

The model consists of a controlled voltage source that is primarily governed by the bat-
tery’s SOC, a series resistance to account for the energy losses in the electrodes, electrolyte,
and other cell components, and two parallel RC networks. These RC branches are used
to simulate the electrochemical polarization and concentration polarization phenomena,
respectively, which are fundamental to the battery’s transient behavior.

In practice, the values of the resistances and capacitances within this equivalent circuit
model are dependent on the battery’s SOC and differ between charging and discharging opera-
tions. This adaptability allows the model to capture the complex and nonlinear electrochemical
dynamics of the battery. However, conventional equivalent circuit models may be insufficient
to accurately characterize the battery’s performance under high-power applications, due to
their limited ability to represent the intricate internal reaction mechanisms.

2.2. Solid-Phase Diffusion Equation

To better simulate the voltage response in high-power application scenarios, this work
analyzes the effect of different polarization processes on the battery voltage. The analysis is
based on the results of electrochemical impedance spectroscopy (EIS) from our previous
study [33], in conjunction with analytical methods from the literature [34].

As shown in Figure 2, the various polarization losses are separated using curves
simulated with parameters identified from the EIS data. Among the polarization effects, dif-
fusion polarization has the greatest impact on the voltage, followed by ohmic polarization
and interfacial polarization. The voltage losses for ohmic and interfacial polarization are
fully developed within a few seconds. Therefore, the prolonged voltage loss is primarily
caused by diffusion polarization. Additionally, while the interfacial polarization differs for
the positive electrode (PE) and negative electrode (NE) at different SOCs, the combined
effect of these two polarizations remains relatively constant. In contrast, the effects of
diffusive polarization vary significantly at different SOCs.
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Figure 2. Polarization voltage simulation during an 180 s constant-current discharge pulse at (a) 10%
SOC, (b) 50% SOC, and (c) 90% SOC.

The results shown in Figure 2 indicate that diffusion polarization has a greater impact
than interfacial polarization on the LTO battery. Specifically, the voltage drop caused by
diffusion polarization is 1.07 to 1.75 times that caused by interfacial polarization. This
finding highlights the urgent need for methods that can effectively characterize the diffusive
polarization resulting from concentration changes within the cell.

During the establishment of the diffusion process in the spherical electrode particles,
the diffusion of lithium ions within the material follows Fick’s law [35], which can be
expressed as follows:

∂cs(r, t)
∂t

=
D
r2

∂

∂r

[
r2 · ∂cs(r, t)

∂r

]
(1)

where cs is the solid-phase lithium-ion concentration, r is the distance from the center of the
spherical particles, and D is the diffusion coefficient. Additionally, the following boundary
conditions must be satisfied:

∂cs

∂r
|r=0 = 0, (2)

∂cs

∂r
|r=Rs = − i(t)

nFD
(3)

where n is the number of charges carried by a single charged particle and F is Faraday’s
constant. However, it seems impractical to directly obtain the concentration difference
by integration, as Equation (1) cannot be solved without a known initial concentration
value, which is typically unavailable. Fortunately, the initial concentration value does not
affect the concentration difference between the material concentration and the average
concentration. Wang and Srinivasan [36] proposed an empirical equation to describe the
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evolution of the concentration gradient within a spherical particle under constant current,
which provides a valuable tool for characterizing the diffusive polarization in LTO cells.

cs(r, t) = cavg(t) +
i(t)r
nFD

(
1− e−

4
√

Dt
3r

)
(4)

3. Experimental Setup and Procedures

The experimental test platform is depicted in Figure 3, comprising a battery charge/
discharge test system and a temperature-controlled test chamber. The battery charge/discharge
test system is a multi-channel 5V-100A tester manufactured by Arbin, featuring a voltage
accuracy of ±0.02% and a current accuracy of ±0.05%. The temperature-controlled thermal
chamber was provided by GIANT FORCE CO., with a temperature range of −60 ◦C to
100 ◦C and a temperature resolution of 0.1 ◦C. In this study, the thermal chamber was kept
at a constant temperature of 25 ◦C.
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Figure 3. Experimental setup for battery tests.

The basic parameters of the LTO battery investigated for this study are summarized in
Table 1. Compared to lithium-ion batteries with graphite negative electrodes, LTO batteries
are preferred for high-power applications in electric vehicles due to their superior rate
capabilities. Accordingly, the reference rate for the maximum current of the battery is
provided in Table 1.

Table 1. The basic parameters of LTO batteries investigated.

Battery Parameters Characteristics

Nominal capacity 25 Ah
Voltage range 1.8~2.8 V

Max. charge current 8 C (200 A)
Max. discharge current 12 C (300 A)

Cathode material LiCoO2
Anode material Li4Ti5O12

To evaluate the battery’s performance under different charge/discharge rates, a series
of constant-current charge/discharge tests were conducted. The battery was first charged
or discharged at a 1 C rate until the cutoff voltage was reached. Subsequently, the battery
was then charged and discharged in the opposite direction at five different current rates:
1 C, 2 C, 4 C, 6 C, and 8 C. This experimental protocol allowed for the assessment of the
battery’s performance as a function of the applied current rates.
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For internal resistance characterization, the test conditions were based on the Japanese
electric vehicle standard (JEVS). The procedure involved the following steps between 10%
and 90% SOC at 10% SOC intervals:

(1) 1 C charging for 60 s;
(2) 0.1 C discharging until the discharged capacity equals the charging capacity of the

previous step;
(3) Resting for 10 min;
(4) 1 C discharging for 60 s;
(5) 0.1 C charging until the charging capacity equals the charging capacity of the previous

step;
(6) Repeat steps (1) to (5) after replacing 1 C with 2 C, 4 C, 6 C, and 8 C, respectively.

Additionally, the battery was subjected to dynamic stress test (DST) and federal urban
dynamic schedule (FUDS) profiles to provide a comprehensive dataset for model validation.
Typical current curves for the DST and FUDS tests are shown in Figure 4.
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4. Diffusion Equation Based Electrical Model

Figure 5 shows the diffusion-equation-based electrical model. It employs two con-
trolled voltage sources to simulate the positive and negative open-circuit potential (OCP),
respectively, and uniquely embeds a simplified form of the diffusion equation to simulate
diffusion polarization. In addition, parallel branches of R0 and R1, C1 are used to simulate
ohmic and interfacial polarization, respectively. As a result, the proposed model is suffi-
cient to characterize the integrated battery behavior, especially for lithium titanate batteries
applied to high-rate applications.
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Figure 5. Schematic of the proposed electrical model.

Assuming that the battery is discharged with current I from the equilibrium state at
the moment t0, the proposed model is described as
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U = OCPPE[SOLPE(t)]−OCPNE[SOLNE(t)]− R0 I − R1 I
(

1− e−
t

R1C1

)
(5)

where OCPPE and OCPNE are functions of positive and negative electrode OCP with respect
to the state of lithiation (SOL). Since only the lithium-ion concentration on the surface of
the electrode material affects the OCP of the electrode, the expression of the electrode SOL
can be obtained according to the diffusion Equation (4) as

SOL(t) = SOL(t) + ∆SOL[I(t)] ·
(

1− e−
√

t
τ

)
(6)

where SOL(t) denotes the lithiation state on the surface of the electrode material; SOL(t)
denotes the average lithiation state of the electrode material; ∆SOL[I(t)] denotes the shift of
the lithiation state of the electrode due to diffusive polarization; and τ is the corresponding
time constant. The SOL(t) can be calculated by integrating the current over time as shown
in Equation (7), where Q is the capacity of the electrode.

SOL(t) = SOL(t0)−
1
Q

∫ t

t0

I(t)dt (7)

As derived in Section 2.2, the proposed model differs from other methods that aim to
improve model accuracy by correcting the model parameters. In the case of the presented
approach, none of the circuit elements (R0, R1, and C1) within the model vary with the SOC
of the battery. Instead, the diverse polarization behaviors exhibited by the cell at different
SOC levels are all represented by the diffusion-based polarization term. Specifically, SOL(t)
can be calculated using Equation (8) since the diffusion polarization is also changed at
different current rates:

∆SOL[I(t)] = λ · I(t) + µ (8)

where λ and µ are the parameters to be identified. The diffusion Equation (6) can be further
morphed into

SOL(t) = SOL(t) + [λ · I(t) + µ] ·
(

1− e−
√

t
τ

)
. (9)

By directly incorporating diffusion-based polarization into the model structure, the
proposed model is able to accurately capture the battery’s performance characteristics across
a wide range of SOC and current conditions without the need for extensive parameter
tuning. The complete schematic for calculating the output voltage is shown in Figure 6.
The U0 and U1 are the voltages induced by the current across R0 and R1/C1, respectively.
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5. Model Extraction
5.1. Full Cell OCV-SOC and Electrode OCP-SOL

As an integral part of the proposed model, the full-cell, open-circuit voltage (OCV)
as a function of SOC can be obtained by averaging the battery’s charge and discharge
curves measured at low current rates. This approach ensures that the full-cell OCV-SOC
relationship captures the underlying electrochemical equilibrium behavior of the battery.
To further characterize the model, the relationship between the OCP and the SOL for
the positive and negative electrodes can be determined through half-cell testing. The
positive material of the half-cell is the positive and negative materials obtained from the
disassembled full cell, and the negative material of the half-cell is lithium metal. Then,
according to the method in the literature [37], the OCV curves of the full battery are matched
using the OCP curve, and the matching relationship between the positive and negative
electrodes and the full battery is obtained as shown in Figure 7.
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The matching process involves scaling and offsetting the electrode OCP-SOL curves to
align with the OCV curve. Specifically, the scaling factors αPE and αNE are used to stretch
or shrink the OCP curves of the positive and negative electrodes, respectively, while the
offsets βPE and βNE are used to shift the OCP curves to lower SOC levels to match the
full-cell behavior.

When SOL = 0, it indicates that the electrode is completely delithiated, and the
electrode OCP is the highest; when SOL = 1, it indicates that the electrode is completely
embedded in lithium, and the electrode OCP is the lowest. Finally, the relationship between
the full-cell capacity (QFull) and the individual electrode capacities (QPE and QNE) can be
calculated using the following equation:

QFull =
QPE
αPE

=
QNE
αNE

. (10)

5.2. Parameter Identification

Depending on the parameter type, the parameter identification process can be divided
into three parts:

(1) The OCV curves of the full cell were reconstructed using the OCP data of the half-
cells based on the methodology presented in the literature [33,38], to obtain the
correspondence parameters between the electrode and the full cell (αPE, αNE, βPE,
and βNE), as well as the ohmic resistance (R0). These parameters and Equation (10)
were then used to calculate the capacity of the electrode (QPE, QNE).

(2) Based on the three-electrode battery configuration, the battery was subjected to
constant-current charge/discharge experiments at different C-rates. The parameters
(λ, µ) in the diffusion Equation (9) were identified based on the difference between
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the diffusion polarization of the positive and negative electrodes. In addition, the
parameter R1 was determined by ohmic and interfacial polarization.

(3) Based on the JEVS experiments with different SOCs, the parameters (C1, τ) were
obtained by least-squares fitting of different pulses according to the different mag-
nitudes of the time constant. The final parameters were obtained by averaging the
parameters at different SOCs.

To investigate the SOL shift that occurs at the positive and negative electrodes due
to the diffusion polarization under different current rates, this study employed a three-
electrode cell configuration. As shown in Figure 8, the positive electrode is LiCoO2, the
negative electrode is Li4Ti5O12, and a lithium metal electrode serves as the reference
electrode. The inclusion of the reference electrode allowed for a clear distinction between
the voltages of the positive and negative electrodes. Specifically, the voltage of the positive
electrode with respect to the reference electrode is denoted as UPE, while the voltage of the
negative electrode with respect to the reference electrode is denoted as UNE. The voltage of
the full battery can be expressed as the sum of these two electrode potentials, as shown in
the following equation:

U = UPE −UNE. (11)
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After assembling the three-electrode lithium titanate battery, charging and discharging
experiments were conducted at different current rates to highlight the distinct effects of
positive and negative electrode polarization on the full-cell voltage. Two representative
current conditions were selected for this analysis: the OCV test under 0.1 C (2.5A), which
minimizes the influence of polarization on the electrodes; and a high-rate 8 C (200A) test,
which emphasizes the impact of polarization on the electrodes. Through these experiments,
the performance differences between the positive and negative electrodes under varying
polarization levels could be more clearly analyzed. The experimental setup utilized three
test channels: one channel measured and controlled the full-cell voltage during charging
and discharging, while the other two channels independently monitored the voltages
between the positive electrode and the reference electrode and between the negative
electrode and the reference electrode, respectively.

Figure 9 illustrates the correlation between the positive electrode voltage, negative
electrode voltage, and full-cell voltage under various charging and discharging current
conditions. As observed in the OCV test, the rapid rise in the full-cell voltage near the
charging cutoff is primarily attributed to a significant drop in the negative electrode voltage,
indicating that the negative electrode becomes the dominant factor in determining the volt-
age cutoff of the full battery under these quasi-equilibrium conditions. In contrast, under
the high-rate 8 C charging condition, the rapid increase in the full-cell voltage before the
cutoff is mainly driven by a rapid rise in the positive electrode voltage, suggesting that the
positive electrode becomes the primary influence on the full-cell voltage cutoff. The voltage
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difference in the vertical direction at a steady state is caused by a combination of ohmic
polarization and interface polarization. The polarization resistance R1 can be obtained by
dividing this voltage difference by the current and subtracting the ohmic resistance.
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Figure 9. Relationship between voltages of positive and negative electrodes and full cell during charging.

By fitting the OCP curves of the positive and negative electrodes to the measured
three-electrode voltages, the diffusion polarization at the positive and negative electrodes
can be separately quantified. Additionally, the shift in the voltage direction of the full-
cell curve represents the combined effects of ohmic and interfacial polarization. Similar
observations can be made for the OCV and 8 C discharge tests, as shown in Figure 10.
Compared to the charging process, the diffusion polarization at the positive electrode
remains relatively unchanged, while the diffusion polarization at the negative electrode is
significantly reduced, which may be attributable to the differences in the material properties
between the positive and negative electrodes.
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Figure 10. Relationship between voltages of positive and negative electrodes and full cell during dis-
charging.

By matching the positive and negative electrode voltage curves obtained during
constant-current charging and discharging at different current rates, the offset βrate under
various current rates can be obtained and used to calculate the ∆SOLrate of the electrodes,
where the subscript “rate” denotes the specific current rate applied during the charging and
discharging processes. It is important to note that during the curve-matching process, the
parameters αPE and αNE should be constrained to ensure consistency with the identified
OCP curves. This approach ensures that the positive and negative electrodes have the
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same capacity. According to the matching results, the ∆SOLrate of the positive and negative
electrodes can be calculated using Equation (12):

∆SOLrate = βOCV − βrate (12)

where βOCV represents the offset obtained from the OCV test. The experimentally deter-
mined ∆SOL of the positive and negative electrodes as a function of the current rate is
shown in Figure 11.
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Figure 11. Positive and negative ∆SOL versus C-rates: (a) charging and (b) discharging.

After the ∆SOL has been determined, the parameters (C1, τ) can be identified sepa-
rately according to the differences in the time constants of interfacial and diffusion polar-
ization. In general, the time constant of the diffusion process is much larger than that of
the interfacial process. Therefore, the particle swarm algorithm was fitted to the model
using the voltage response under the complete 60 s current pulse from the JEVS test to
identify the parameter τ. It is worth noting that parameter C was set to infinity during
the identification process to ignore the effect of the interfacial process. Then, the voltage
response of the first 10 s of the pulse in the JEVS test was used to identify parameter C1,
which characterizes the interfacial process. All the identified model parameters at 25 ◦C are
summarized in Table 2.

Table 2. Identification results of equivalent circuit model parameters for LTO battery.

Parameters Current
Direction

Positive
Electrode

Negative
Electrode Full Cell

R0 - - - 0.8 mΩ
R1 - - - 0.4 mΩ
C1 - - - 27,732 F

αOCV - 1.239 1.023 -
βOCV - −0.064 −0.003 -

λ
Charge 0.009 0.018 -

Discharge 0.004 0.006 -

µ Charge 0.027 −0.002 -
Discharge 0.068 0.013 -

τ
Charge 116.6 s 106.1 s -

Discharge 123.2 s 102.0 s -

6. Model Verification

To validate the proposed model, constant current tests and dynamic current tests with
different current rates were carried out for LTO batteries, respectively. The superiority
of the proposed model was then quantitatively assessed by comparing the simulation
results against the experimental data. In this study, the proposed model was implemented
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using MATLAB, which ensures its potential for generalization and application in high-
power applications.

6.1. Galvanostatic Test at Different Rates

Figure 12 presents the validation results of the lithium titanate battery model under
constant current charging conditions with varying current multiplication factors. As shown,
the simulated voltage results of the proposed model closely align with the experimental
test data, despite the differences in current multiplication. Specifically, when the current
was 1 C, the error throughout the entire charging process was less than 1%, as shown in
Figure 12a. Similarly, for an 8 C current, the error remained below 1% for the first 350 s of
charging, though it exhibited an upward trend towards the end, with a maximum error of
less than 3%, as shown in Figure 12b.
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On the other hand, Figure 13 compares the simulation results and experimental data
for constant-current discharge under different current multiplication factors. Analogous
to the charging performance, the model’s errors were less than 1% for the majority of the
discharge cycle. Larger errors, not exceeding 3%, were observed only at the beginning
and end of discharge. These results demonstrate that the proposed model can accurately
capture the constant-current discharge and charging behavior of lithium titanate batteries.
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6.2. Dynamic Current Testing Using DST and FUDS Profiles

In addition to the galvanostatic validation, the proposed model was further assessed
under DST and FUDS operating conditions. For the DST, as shown in Figure 14a, the error
between the model-simulated voltage and the experimental data were less than 2% for
the majority of the time range. This demonstrates the simulation accuracy of the model
at continuous, steadily varying currents. It is worth noting that even though the error
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increased towards the end of the discharge period, the maximum error remained within
3%, reflecting the model’s stability and reliability throughout the discharge process.
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In addition, the battery model also performs well under more complex FUDS condi-
tions, as shown in Figure 14b. In this case, the battery’s voltage response underwent drastic
oscillations due to the frequent changes in current. Nevertheless, the proposed model
was still able to accurately simulate the voltage response under such dynamic conditions.
Even during the most violent current fluctuations, the maximum error in the model predic-
tion was less than 3%, proving the model’s accuracy and reliability in capturing complex
dynamic behavior.

6.3. Comparison against Second-Order RC Model

To better illustrate the advantages of using diffusion equation modeling, the second-
order RC model and the model proposed in this paper were used to describe the perfor-
mance of the battery at different conditions.

In order to compare the errors of the models under different C-rates, the errors dis-
tributed by time were transformed into errors distributed by SOC, as shown in Figure 15.
The SOC was calculated based on the capacity at different C-rates, respectively. The voltage
error of the second-order RC model rises continuously, exceeding 6% by the end of charge
in Figure 15a. And, the error increases at a higher C-rate. Similarly, the second-order RC
model also exhibits low accuracy in the galvanostatic discharging with large C-rates, as
shown in Figure 15b. In contrast, the voltage error of the proposed model remains lower
than 3%, demonstrating the diffusion equation’s ability to better characterize the integrated
battery behavior, enhancing the model’s applicability for high C-rate operations.
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Figure 16 shows the error analysis of the battery under DST and FUDS operating
conditions. The voltage error of the second-order RC model increases rapidly, exceeding
18% before the discharge cutoff, while the error of the model proposed in this paper is
always less than 3%. This indicates that the diffusion equation accurately captures the
battery characteristics, particularly during rapid voltage changes near the charging and
discharging cutoffs. The high agreement between the simulation results and experimental
data for LTO batteries verifies the accuracy and reliability of the model proposed in this
paper, which outperforms the second-order RC model.

Batteries 2024, 10, x FOR PEER REVIEW 15 of 18 
 

Figure 16 shows the error analysis of the battery under DST and FUDS operating 

conditions. The voltage error of the second-order RC model increases rapidly, exceeding 

18% before the discharge cutoff, while the error of the model proposed in this paper is 

always less than 3%. This indicates that the diffusion equation accurately captures the 

battery characteristics, particularly during rapid voltage changes near the charging and 

discharging cutoffs. The high agreement between the simulation results and experimental 

data for LTO batteries verifies the accuracy and reliability of the model proposed in this 

paper, which outperforms the second-order RC model. 

  

Figure 16. Comparison between the proposed model and the Thevenin model for (a) the DST and 

(b) the FUDS test. 

7. Conclusions 

In this paper, a simplified diffusion equation was used to establish an electrical model 

for high-power LTO batteries, and the main contributions are as follows: 

(1) By comparing the polarization distribution of the battery, it was found that the effect 

of diffusion polarization on the LTO battery is more serious than that of interfacial 

polarization, and it is the diffusion polarization rather than the interfacial 

polarization that will change with SOC. Specifically, the effect of diffusion 

polarization is 1.07 to 1.75 times that of interfacial polarization. 

(2) A simplified diffusion equation related to SOL that can be directly added to the 

circuit model was elaborately derived, which has more physical significance than the 

mathematical solution, and gives an ideal expression for the lithiation state of the 

positive and negative electrodes in the steady state. 

(3) Through the three-electrode battery architecture, the degree of diffusion polarization 

of the positive and negative electrodes under high-power conditions was decoupled 

and analyzed, and the model based on the simplified diffusion equation was 

established with high accuracy in the full SOC range, with a maximum voltage error 

of less than 3%. 

Compared with the second-order RC model, the model implemented in MATLAB 

embeds the simplified form of the diffusion equation, which reduces the model estimation 

error under different loading profiles. Comparative analysis of simulation and 

experimental data for LTO batteries shows that the proposed model has the advantage of 

accurately and reliably estimating the terminal voltage. In this paper, a modeling method 

for lithium titanate batteries is provided for the first time from the perspective of diffusion 

polarization and will contribute to the optimization of management strategies for battery 

management systems in future fast charging and electric vehicles. 

Author Contributions: Conceptualization, H.C. and W.Z.; methodology, H.C.; software, H.C.; 

validation, H.C., C.Z., and B.S.; formal analysis, H.C.; investigation, S.Y.; resources, W.Z.; data 

curation, D.C.; writing—original draft preparation, H.C.; writing—review and editing, S.Y.; 

Figure 16. Comparison between the proposed model and the Thevenin model for (a) the DST and
(b) the FUDS test.

7. Conclusions

In this paper, a simplified diffusion equation was used to establish an electrical model
for high-power LTO batteries, and the main contributions are as follows:

(1) By comparing the polarization distribution of the battery, it was found that the effect
of diffusion polarization on the LTO battery is more serious than that of interfacial
polarization, and it is the diffusion polarization rather than the interfacial polarization
that will change with SOC. Specifically, the effect of diffusion polarization is 1.07 to
1.75 times that of interfacial polarization.

(2) A simplified diffusion equation related to SOL that can be directly added to the
circuit model was elaborately derived, which has more physical significance than the
mathematical solution, and gives an ideal expression for the lithiation state of the
positive and negative electrodes in the steady state.

(3) Through the three-electrode battery architecture, the degree of diffusion polarization
of the positive and negative electrodes under high-power conditions was decoupled
and analyzed, and the model based on the simplified diffusion equation was estab-
lished with high accuracy in the full SOC range, with a maximum voltage error of less
than 3%.

Compared with the second-order RC model, the model implemented in MATLAB
embeds the simplified form of the diffusion equation, which reduces the model estimation
error under different loading profiles. Comparative analysis of simulation and experimental
data for LTO batteries shows that the proposed model has the advantage of accurately
and reliably estimating the terminal voltage. In this paper, a modeling method for lithium
titanate batteries is provided for the first time from the perspective of diffusion polarization
and will contribute to the optimization of management strategies for battery management
systems in future fast charging and electric vehicles.
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Nomenclature

C-rate Current rate
DST Dynamic stress test
EIS Electrochemical impedance spectroscopy
FUDS Federal urban driving schedule
JEVS Japanese electric vehicle standard
LFP Lithium iron phosphate
LTO Lithium titanium oxide
NE Negative electrode
OCP Open-circuit potential
OCV Open-circuit voltage
PE Positive electrode
RC Resistance–capacitance
SOC State of charge
SOL State of lithiation
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