Experimental Investigation of Thermal Runaway Characteristics of Large-Format Li(Ni0.8Co0.1Mn0.1)O2 Battery under Different Heating Powers and Areas
Abstract
:1. Introduction
2. Experimental
2.1. Battery Information
2.2. Experimental Settings
3. Results and Discussion
3.1. Phenomenon Observations
3.2. Temperature Response and Energy Input
3.3. Jet Temperature
3.4. Mass Loss and Combustion Residues
3.4.1. Mass Loss and Mass Loss Ratio
3.4.2. Analysis of Battery Combustion Residues
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Wang, H.; Li, W.; Li, C. Quantitative Identification of Emissions from Abused Prismatic Ni-Rich Lithium-Ion Batteries. eTransportation 2019, 2, 100031. [Google Scholar] [CrossRef]
- Wei, G.; Huang, R.; Zhang, G.; Jiang, B.; Zhu, J.; Guo, Y.; Han, G.; Wei, X.; Dai, H. A Comprehensive Insight into the Thermal Runaway Issues in the View of Lithium-Ion Battery Intrinsic Safety Performance and Venting Gas Explosion Hazards. Appl. Energy 2023, 349, 121651. [Google Scholar] [CrossRef]
- Song, L.; Huang, Z.; Mei, W.; Jia, Z.; Yu, Y.; Wang, Q.; Jin, K. Thermal Runaway Propagation Behavior and Energy Flow Distribution Analysis of 280 Ah LiFePO4 Battery. Process Saf. Environ. Prot. 2023, 170, 1066–1078. [Google Scholar] [CrossRef]
- Ohneseit, S.; Finster, P.; Floras, C.; Lubenau, N.; Uhlmann, N.; Seifert, H.J.; Ziebert, C. Thermal and Mechanical Safety Assessment of Type 21700 Lithium-Ion Batteries with NMC, NCA and LFP Cathodes–Investigation of Cell Abuse by Means of Accelerating Rate Calorimetry (ARC). Batteries 2023, 9, 237. [Google Scholar] [CrossRef]
- Mao, B.; Chen, H.; Cui, Z.; Wu, T.; Wang, Q. Failure Mechanism of the Lithium Ion Battery during Nail Penetration. Int. J. Heat Mass Transf. 2018, 122, 1103–1115. [Google Scholar] [CrossRef]
- Xu, J.; Mei, W.; Zhao, C.; Liu, Y.; Zhang, L.; Wang, Q. Study on Thermal Runaway Mechanism of 1000 mAh Lithium Ion Pouch Cell during Nail Penetration. J. Therm. Anal. Calorim. 2021, 144, 273–284. [Google Scholar] [CrossRef]
- Finegan, D.P.; Tjaden, B.; Heenan, T.M.M.; Jervis, R.; Michiel, M.D.; Rack, A.; Hinds, G.; Brett, D.J.L.; Shearing, P.R. Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells. J. Electrochem. Soc. 2017, 164, A3285. [Google Scholar] [CrossRef]
- Yin, H.; Ma, S.; Li, H.; Wen, G.; Santhanagopalan, S.; Zhang, C. Modeling Strategy for Progressive Failure Prediction in Lithium-Ion Batteries under Mechanical Abuse. eTransportation 2021, 7, 100098. [Google Scholar] [CrossRef]
- Ren, D.; Feng, X.; Lu, L.; Ouyang, M.; Zheng, S.; Li, J.; He, X. An Electrochemical-Thermal Coupled Overcharge-to-Thermal-Runaway Model for Lithium Ion Battery. J. Power Sources 2017, 364, 328–340. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, X.; Chen, S.; Zhu, J.; Han, G.; Dai, H. Unlocking the Thermal Safety Evolution of Lithium-Ion Batteries under Shallow over-Discharge. J. Power Sources 2022, 521, 230990. [Google Scholar] [CrossRef]
- Li, H.; Zhou, D.; Zhang, M.; Liu, B.; Zhang, C. Multi-Field Interpretation of Internal Short Circuit and Thermal Runaway Behavior for Lithium-Ion Batteries under Mechanical Abuse. Energy 2023, 263, 126027. [Google Scholar] [CrossRef]
- Özdemir, T.; Ekici, Ö.; Köksal, M. Numerical and Experimental Investigation of the Electrical and Thermal Behaviors of the Li-Ion Batteries under Normal and Abuse Operating Conditions. J. Energy Storage 2024, 77, 109880. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, B.; Stoliarov, S.I.; Sun, J. A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies. Prog. Energy Combust. Sci. 2019, 73, 95–131. [Google Scholar] [CrossRef]
- Xu, C.; Wang, H.; Jiang, F.; Feng, X.; Lu, L.; Jin, C.; Zhang, F.; Huang, W.; Zhang, M.; Ouyang, M. Modelling of Thermal Runaway Propagation in Lithium-Ion Battery Pack Using Reduced-Order Model. Energy 2023, 268, 126646. [Google Scholar] [CrossRef]
- Yeon, S.-Y.; Umirov, N.; Lim, S.-H.; Bakenov, Z.; Kim, J.-S.; Kim, S.-S. Thermal Stability and Reduction Mechanism of LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Co0.2Mn0.3O2 Cathode Materials Studied by a Temperature Programmed Reduction. Thermochim. Acta 2021, 706, 179069. [Google Scholar] [CrossRef]
- Wu, R.; Liu, X.; Zheng, Y.; Li, Y.; Shi, H.; Cheng, X.; Pfleging, W.; Zhang, Y. Unveiling the Intrinsic Reaction between Silicon-Graphite Composite Anode and Ionic Liquid Electrolyte in Lithium-Ion Battery. J. Power Sources 2020, 473, 228481. [Google Scholar] [CrossRef]
- Jia, Z.; Qin, P.; Li, Z.; Wei, Z.; Jin, K.; Jiang, L.; Wang, Q. Analysis of Gas Release during the Process of Thermal Runaway of Lithium-Ion Batteries with Three Different Cathode Materials. J. Energy Storage 2022, 50, 104302. [Google Scholar] [CrossRef]
- Xu, C.; Fan, Z.; Zhang, M.; Wang, P.; Wang, H.; Jin, C.; Peng, Y.; Jiang, F.; Feng, X.; Ouyang, M. A Comparative Study of the Venting Gas of Lithium-Ion Batteries during Thermal Runaway Triggered by Various Methods. Cell Rep. Phys. Sci. 2023, 4, 101705. [Google Scholar] [CrossRef]
- Kisseler, N.; Hoheisel, F.; Offermanns, C.; Frieges, M.; Heimes, H.; Kampker, A. Monitoring of Thermal Runaway in Commercial Prismatic High-Energy Lithium-Ion Battery Cells via Internal Temperature Sensing. Batteries 2024, 10, 41. [Google Scholar] [CrossRef]
- Yang, M.; Rong, M.; Pan, J.; Ye, Y.; Yang, A.; Chu, J.; Yuan, H.; Wang, X. Thermal Runaway Behavior Analysis during Overheating for Commercial LiFePO4 Batteries under Various State of Charges. Appl. Therm. Eng. 2023, 230, 120816. [Google Scholar] [CrossRef]
- Feng, X.; Zheng, S.; Ren, D.; He, X.; Wang, L.; Cui, H.; Liu, X.; Jin, C.; Zhang, F.; Xu, C.; et al. Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database. Applied Energy 2019, 246, 53–64. [Google Scholar] [CrossRef]
- Zheng, Y.; Shi, Z.; Ren, D.; Chen, J.; Liu, X.; Feng, X.; Wang, L.; Han, X.; Lu, L.; He, X.; et al. In-Depth Investigation of the Exothermic Reactions between Lithiated Graphite and Electrolyte in Lithium-Ion Battery. J. Energy Chem. 2022, 69, 593–600. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, T.; Jin, K.; Sun, J.; Wang, Q. Heating Power Effect on the Thermal Runaway Characteristics of Large-Format Lithium Ion Battery with Li(Ni1/3Co1/3Mn1/3)O2 as Cathode. Energy 2022, 239, 121885. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, X.; Peng, Y.; Li, L.; Cao, J.; Yang, L.; Cao, B. Quantitative Study on the Thermal Failure Features of Lithium Iron Phosphate Batteries under Varied Heating Powers. Appl. Therm. Eng. 2021, 185, 116346. [Google Scholar] [CrossRef]
- Zhou, Z.; Ju, X.; Zhou, X.; Yang, L.; Cao, B. A Comprehensive Study on the Impact of Heating Position on Thermal Runaway of Prismatic Lithium-Ion Batteries. J. Power Sources 2022, 520, 230919. [Google Scholar] [CrossRef]
- Jin, C.; Sun, Y.; Wang, H.; Lai, X.; Wang, S.; Chen, S.; Rui, X.; Zheng, Y.; Feng, X.; Wang, H.; et al. Model and Experiments to Investigate Thermal Runaway Characterization of Lithium-Ion Batteries Induced by External Heating Method. J. Power Sources 2021, 504, 230065. [Google Scholar] [CrossRef]
- GB 38031. Safety Requirements for Power Batteries Used in Electric Vehicles. 2020. Available online: https://blog.csdn.net/qfmzhu/article/details/106123885 (accessed on 14 April 2024).
- Wang, H.; Zhang, Y.; Li, W.; Gao, Z.; Zhang, B.; Ouyang, M. Experimental Study on the Cell-Jet Temperatures of Abused Prismatic Ni-Rich Automotive Batteries under Medium and High States of Charge. Appl. Therm. Eng. 2022, 202, 117859. [Google Scholar] [CrossRef]
- Zou, K.; Chen, X.; Ding, Z.; Gu, J.; Lu, S. Jet Behavior of Prismatic Lithium-Ion Batteries during Thermal Runaway. Appl. Therm. Eng. 2020, 179, 115745. [Google Scholar] [CrossRef]
- Jia, Z.; Song, L.; Mei, W.; Yu, Y.; Meng, X.; Jin, K.; Sun, J.; Wang, Q. The Preload Force Effect on the Thermal Runaway and Venting Behaviors of Large-Format Prismatic LiFePO4 Batteries. Appl. Energy 2022, 327, 120100. [Google Scholar] [CrossRef]
- Kong, D.; Zhao, H.; Ping, P.; Zhang, Y.; Wang, G. Effect of Low Temperature on Thermal Runaway and Fire Behaviors of 18650 Lithium-Ion Battery: A Comprehensive Experimental Study. Process Saf. Environ. Prot. 2023, 174, 448–459. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, X.; Xu, C.; Jiang, F.; Ouyang, M. Thermal Runaway Front in Failure Propagation of Long-Shape Lithium-Ion Battery. Int. J. Heat Mass Transf. 2022, 182, 121928. [Google Scholar] [CrossRef]
Parameters | Specification |
---|---|
Cathode active material | Lithium nickel manganese cobalt (LiNi0.8Co0.1Mn0.1O2) |
Anode active material | Graphite |
Nominal capacity (Ah) | 75 |
Nominal voltage (V) | 3.68 |
Maximum cut-off voltage (V) | 4.2 |
Minimum cut-off voltage (V) | 2.8 |
Geometry (mm) | 542 × 101 × 8.21 |
Mass (g) | 1070 |
Energy density (Wh/kg) | 267 |
Experiment No. | SOC | Heating Area [cm2] | Heating Power Density [W/cm2] |
---|---|---|---|
1 | 100% | 6 × 6 | 8.33 |
2 | 100% | 6 × 6 | 5 |
3 | 100% | 6 × 6 | 2.38 |
4 | 100% | 21 × 6 | 8.33 |
5 | 100% | 21 × 6 | 5 |
6 | 100% | 21 × 6 | 2.38 |
Experiment No. | Heater Heating Time (s) | Heater Input Energy (kJ) | Surface Spread Rate (mm/s) | Thickness Spread Rate (mm/s) |
---|---|---|---|---|
1 | 50.8 | 15.2 | 57.96 | 2.16 |
2 | 180.3 | 32.5 | 52.04 | 1.87 |
4 | 51.8 | 54.4 | 47.22 | 2.57 |
5 | 108.6 | 68.4 | 70.83 | 3.91 |
6 | 358.1 | 107.4 | 47.22 | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Fan, Z.; Xu, C.; Jiang, F.; Feng, X. Experimental Investigation of Thermal Runaway Characteristics of Large-Format Li(Ni0.8Co0.1Mn0.1)O2 Battery under Different Heating Powers and Areas. Batteries 2024, 10, 241. https://doi.org/10.3390/batteries10070241
Huang J, Fan Z, Xu C, Jiang F, Feng X. Experimental Investigation of Thermal Runaway Characteristics of Large-Format Li(Ni0.8Co0.1Mn0.1)O2 Battery under Different Heating Powers and Areas. Batteries. 2024; 10(7):241. https://doi.org/10.3390/batteries10070241
Chicago/Turabian StyleHuang, Jingru, Zhuwei Fan, Chengshan Xu, Fachao Jiang, and Xuning Feng. 2024. "Experimental Investigation of Thermal Runaway Characteristics of Large-Format Li(Ni0.8Co0.1Mn0.1)O2 Battery under Different Heating Powers and Areas" Batteries 10, no. 7: 241. https://doi.org/10.3390/batteries10070241
APA StyleHuang, J., Fan, Z., Xu, C., Jiang, F., & Feng, X. (2024). Experimental Investigation of Thermal Runaway Characteristics of Large-Format Li(Ni0.8Co0.1Mn0.1)O2 Battery under Different Heating Powers and Areas. Batteries, 10(7), 241. https://doi.org/10.3390/batteries10070241