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1、Physicochemical characterization 

The morphology and microstructure were characterized by the scanning electron microscope (SEM, ZEISS Merlin, 

at 10 kV) and transmission electron microscope (TEM, Thermo Scientific Talos F200X G2, at 200 kV). High-angle 

annular dark-field scanning transmission electron microscopy (HAADF-STEM, Thermo Scientific Talos F200X 

G2) was used to further study the elemental distribution of the materials. The X-ray diffraction (XRD) patterns were 

obtained using a Rigaku MiniFlex 600 X-ray diffractometer (Cu Kα radiation, λ = 1.54178 Å). The X-ray 

photoelectron spectroscopy (XPS) was carried out with a multi-technique system using an Al monochromatic X-

ray at a power of 350 W (Thermo Scientific K-Alpha). The binding energy of the spectra was calibrated by using 

the C 1s (284.6 eV).  

 

2、Electrochemical measurements 

2032-type coin cells were used to evaluate the electrochemical performances of synthesized samples. The cathode 

slurry was prepared by dispersing 80 wt% of active material, 10 wt% of poly-vinylidenefluoride (PVDF) and 10 

wt% of super P in N-methyl-2-pyrrolidone (NMP). Then, slurry was uniformly casted onto pure Al foil and dried 

at 120 oC in vacuum oven for 12 hours. The half-cell was assembled in an Ar-filled glove box using prepared 

cathode, Celgard 2500 membrane and lithium foil as working electrode, separator and counter electrode, 

respectively. The electrolyte was 1.0 M LiPF6 solution with ethylene carbonate (EC) + dimethyl carbonate (DMC) 

+ ethylmethyl carbonate (EMC) (v/v/v = 1:1:1). Charge-discharge measurement was performed on battery test 

equipment (NEWARE, CT/CTE-4000) at a specific C rate (1 C=170 mAh g−1) using a constant-current constant-

voltage (CC-CV) protocol in a voltage of 2.4~4.5 V (vs. Li+/Li). Cyclic voltammetry (CV) and electrochemical 

impedance spectroscopy (EIS) were performed on Gamry-3000 electrochemical workstation. The frequency of EIS 

test is from 100 kHz to 10 mHz using an AC voltage of 5 mV amplitude. All the experiments for electrochemical 

performances were performed on constant temperature at 25 oC. 
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Figure S1. a-b) SEM image of the LMFP/C-F/G nanorods and c-d) graphene. 

 

  



  S4 / S12 

 

Figure S2. a) XPS survey spectra of LFMP/C and the high-resolution spectrum of b) Fe 2p; c) Mn 2p; d) C 

1s; e) O 1s; f) P 2p; g) Li 1s. 
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Figure S3. a) XPS survey spectra of LFMP/C/G and the high-resolution spectrum of b) Fe 2p; c) Mn 2p; d) 

C 1s; e) O 1s; f) P 2p; g) Li 1s. 
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Figure S4. Electrochemical performance of LMFP/C/G at 25 oC: a) First three charge/discharge profiles at 0.1 C; 

b) Rate performance at different C rates and c) Corresponding charge/discharge curves. 
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Figure S5. Electrochemical performance of LMFP/C at 25 oC: a) First three charge/discharge profiles at 0.1 C; b) 

Rate performance at different C rates and c) Corresponding charge/discharge curves. 
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Supplementary tables 

 

Table S1. The discharge capacity at different C rates and corresponding energy density of the three materials 

were studied. 

Sample 0.1C 0.2C 0.5C 1C 2C 5C 
Energy density 

(Wh kg-1) 

LMFP/C 146.7 142.8 132.6 118.2 101.2 78.9 564.8 

LMFP/C/G 157.8 146.3 135.4 119.6 107.5 81.2 615.4 

LMFP/C-F/G 163.1 155.7 146.7 130.1 114.6 88.1 639.4 
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Table S2. The lithium ion diffusion coefficient DLi+ of the cathode materials were calculated from the Randles-

Sevcik formula. 

 

Materials Parameter 
Mn Oxidation 

site 

Mn Reduction 

site 
Fe Oxidation site 

Fe Reduction 

site 

LMFP/C-F/G 

slope 

1.71 -1.24 3.04 -2.17 

LMFP/C/G 1.24 -0.91 1.87 -1.51 

LMFP/C 0.6 -0.32 1.13 -1.17 

LMFP/C-F/G 

D1/2 

2.73×10-7 1.98×10-7 4.85×10-7 3.46×10-7 

LMFP/C/G 1.98×10-7 1.45×10-7 2.98×10-7 2.41×10-7 

LMFP/C 9.57×10-8 5.11×10-8 1.80×10-7 1.87×10-7 

LMFP/C-F/G 
D（cm2 

s−1） 

7.45×10-14 3.92×10-14 2.35×10-13 1.20×10-13 

LMFP/C/G 3.92×10-14 2.11×10-14 8.90×10-14 5.81×10-14 

LMFP/C 9.17×10-15 2.61×10-15 3.25×10-14 3.48×10-14 
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Table S3. Comparison of properties of LMFP materials. 

 

Materials Methods 
Particle 

size  

Initial 

discharge 

capacity (mAh 

g−1) 

Median 

discharge 

voltage

（V） 

Energy 

density 

(Wh kg-1) 

Ref. 

LMFP/C Solvothermal 

synthesis+calcinatio

ns (600 ℃ for 4 h in 

Ar) 

50-400 

nm 

146.7@0.1C 3.85 564.8 This work 

LMFP/C/G 157.8@0.1C 3.90 615.4 This work 

LMFP/C-F/G 163.1@0.1C 3.92 639.4 This work 

LiFe0.5Mn0.5P

O4/ (C+rGO) 

Solvothermal 

synthesis+calcinatio

ns 

~100 nm 166.0@0.1C 3.65 605.9 
Journal of Power Sources 

[1]  

LiFe0.5Mn0.5P

O4/C 

Solvothermal 

synthesis+calcinatio

ns 

~200 nm 155.0@0.1C 3.65 565.7 
Journal of Materials 

Chemistry A [2] 

LiFe0.2Mn0.8P

O4/

（C+NG） 

Co-precipitation 

method 

50-100 

nm 
159.1@0.1C 3.92 624.5 Electrochimica Acta [3] 

LiFe0.3Mn0.7P

O4/rGO@C 

Co-precipitation 

method+calcinations 

(700 ℃ for 1 h in 

H2/Ar=3/97) 

200 nm 161@0.1C 3.95 635.9 
ACS Applied Energy 

Materials [4]. 

Li1-

xNaxMn0.8Fe0.

2PO4 

/C 

Solvothermal 

synthesis 

40-120 

nm 
141.4@0.1C 4.05 572.7 Ceramics International [5]  

LiFe0.15Mn0.8

5PO4/C 

Solvothermal 

synthesis 

40-100 

nm 
165.4@0.1C 4.0 661.6 

Journal of Materials 

Chemistry A [6]. 
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Table S3. Comparison of properties of LMFP materials. 

 

Materials Methods 
Particle 

size  

Initial 

discharge 

capacity (mAh 

g−1) 

Median 

discharge 

voltage

（V） 

Energy 

density 

(Wh kg-

1) 

Ref. 

Mg-doped 

LiMn0.8Fe0.2

PO4/C 

Solvothermal method 

+calcinations (600 ℃ 

for 4 h in 

H2/Ar=5/95) 

~200 nm 156.9@0.1C 3.95 619.75 Journal of Energy Storage [7] 

LiFe0.2Mn0.8

PO4/C 

Polyol method+ 

calcinations 

(680 ℃for 1 h in 

H2/Ar=2/98) 

20-80 

nm 
160.6@0.1C 3.9 626.3 

RSC Advances [8] 

LiFe0.5Mn0.5

PO4/C 

20-80 

nm 
157.6@0.1C 3.7 583.1 

LiFe0.5Mn0.5

PO4/C 

Solvothermal 

synthesis 

+calcinations (600 ℃ 

for 5 h in N2) 

100-300 

nm 
157.0@0.1C 3.8 596.6 

Electrochemistry 

Communications [9] 
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