Second-Life Assessment of Commercial LiFePO4 Batteries Retired from EVs
Abstract
:1. Introduction
2. Experimental Description
2.1. Description of Experimental Procedures with LFP Battery Cells
2.2. Description of Experimental Procedures with LFP Battery Modules
- (1)
- A battery module test system was used to test the battery modules and obtain their capacities. The internal resistances of the cells were calculated afterward.
- (2)
- A battery cell tester was used to obtain the cells’ capacities within the module. Then, all cells were fully charged to have the modules achieve a top-balanced state.
- (3)
- The modules’ capacities were tested again after balancing.
2.3. Battery Impedance Calculation
3. Results and Discussion
3.1. CALB Battery Cell Aging Test Results
3.1.1. Aging Speed Analysis
3.1.2. Internal Resistance Analysis
3.1.3. Incremental Capacity Analysis (ICA) to Identify Aging Modes
3.2. BYD Battery Module Test Results
3.2.1. Module Capacity before and after Balancing
3.2.2. Analysis of Cell Health Conditions
3.2.3. Development of Balance Issues
3.3. Second-Life Evaluation of the LFP Batteries
4. Morphology Characterization
5. Conclusions
- LFP battery cells have a very long cycle life. For example, Cell 01 loses 33.9% of its capacity after 10,000 aging cycles, with an aging rate of only 3.26% per 1000 cycles.
- The battery cells’ impedance did not increase in the first 10,000 cycles, which is impressive.
- For second-life use, if the working voltage range remains between 2.80 V and 3.55 V (10~90% SoC), and high working temperatures are avoided, the charge current is 0.5 C, and the discharge current is 1 C, CALB batteries can exhibit very stable aging performance and achieve sustainable and efficient second-life use.
- High temperatures induce battery aging knee and cause an impedance increase.
- LFP batteries generally exhibit excellent performance at the cell level, as demonstrated by the CALB 100 Ah cells. However, the BYD module encounters balancing issues at the pack level, making an effective balancing system essential for LFP batteries.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- King, N. EVs Forecast to Account for Two Thirds of Global Light-Vehicle Sales in 2035. Available online: https://ev-volumes.com/news/ev/evs-forecast-to-account-for-two-thirds-of-global-light-vehicle-sales-in-2035/ (accessed on 29 July 2024).
- Hu, X.; Deng, X.; Wang, F.; Deng, Z.; Lin, X.; Teodorescu, R.; Pecht, M.G. A Review of Second-Life Lithium-Ion Batteries for Stationary Energy Storage Applications. Proc. IEEE 2022, 110, 735–753. [Google Scholar] [CrossRef]
- Gao, W.; Cao, Z.; Kurdkandi, N.V.; Fu, Y.; Mi, C. Evaluation of the Second-Life Potential of the First-Generation Nissan Leaf Battery Packs in Energy Storage Systems. eTransportation 2024, 20, 100313. [Google Scholar] [CrossRef]
- Yang, X.-G.; Leng, Y.; Zhang, G.; Ge, S.; Wang, C.-Y. Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition from Linear to Nonlinear Aging. J. Power Sources 2017, 360, 28–40. [Google Scholar] [CrossRef]
- Hossain, E.; Murtaugh, D.; Mody, J.; Faruque, H.M.R.; Sunny, H.M.S.; Mohammad, N. A Comprehensive Review on Second-Life Batteries: Current State, Manufacturing Considerations, Applications, Impacts, Barriers & Potential Solutions, Business Strategies, and Policies. IEEE Access 2019, 7, 73215–73252. [Google Scholar] [CrossRef]
- Hua, Y.; Liu, X.; Zhou, S.; Huang, Y.; Ling, H.; Yang, S. Toward Sustainable Reuse of Retired Lithium-Ion Batteries from Electric Vehicles. Resour. Conserv. Recycl. 2021, 168, 105249. [Google Scholar] [CrossRef]
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Ohneseit, S.; Finster, P.; Floras, C.; Lubenau, N.; Uhlmann, N.; Seifert, H.J.; Ziebert, C. Thermal and Mechanical Safety Assessment of Type 21700 Lithium-Ion Batteries with NMC, NCA and LFP Cathodes-Investigation of Cell Abuse by Means of Accelerating Rate Calorimetry (ARC). Batteries 2023, 9, 237. [Google Scholar] [CrossRef]
- Sockeel, N.; Gafford, J.; Manjrekar, M.; Mazzola, M. Economic Analysis of High-Longevity Battery Capacity Fades for Electric Vehicles Supercharger Buffering Application. IEEE Trans. Transp. Electrif. 2020, 6, 995–1002. [Google Scholar] [CrossRef]
- Gao, W.; Cao, Z.; Fu, Y.; Turchiano, C.; Kurdkandi, N.V.; Gu, J.; Mi, C. Comprehensive Study of the Aging Knee and Second-Life Potential of the Nissan Leaf E+ Batteries. J. Power Sources 2024, 613, 234884. [Google Scholar] [CrossRef]
- Attia, P.M.; Bills, A.; Planella, F.B.; Dechent, P.; dos Reis, G.; Dubarry, M.; Gasper, P.; Gilchrist, R.; Greenbank, S.; Howey, D.; et al. Review—“Knees” in Lithium-Ion Battery Aging Trajectories. J. Electrochem. Soc. 2022, 169, 060517. [Google Scholar] [CrossRef]
- Safari, M.; Delacourt, C. Aging of a Commercial Graphite/LiFePO4 Cell. J. Electrochem. Soc. 2011, 158, A1123. [Google Scholar] [CrossRef]
- Sun, S.; Guan, T.; Shen, B.; Leng, K.; Gao, Y.; Cheng, X.; Yin, G. Changes of Degradation Mechanisms of LiFePO4/Graphite Batteries Cycled at Different Ambient Temperatures. Electrochim. Acta 2017, 237, 248–258. [Google Scholar] [CrossRef]
- Naumann, M.; Spingler, F.B.; Jossen, A. Analysis and Modeling of Cycle Aging of a Commercial LiFePO4/Graphite Cell. J. Power Sources 2020, 451, 227666. [Google Scholar] [CrossRef]
- Dubarry, M.; Liaw, B.Y. Identify Capacity Fading Mechanism in a Commercial LiFePO4 Cell. J. Power Sources 2009, 194, 541–549. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Cell Degradation in Commercial LiFePO4 Cells with High-Power and High-Energy Designs. J. Power Sources 2014, 258, 408–419. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Gao, Y.; Li, N. State of Health Estimation of Second-Life LiFePO4 Batteries for Energy Storage Applications. J. Clean. Prod. 2018, 205, 754–762. [Google Scholar] [CrossRef]
- Simolka, M.; Heger, J.-F.; Traub, N.; Kaess, H.; Friedrich, K.A. Influence of Cycling Profile, Depth of Discharge and Temperature on Commercial LFP/C Cell Ageing: Cell Level Analysis with ICA, DVA and OCV Measurements. J. Electrochem. Soc. 2020, 167, 110502. [Google Scholar] [CrossRef]
- Wheeler, W.; Bultel, Y.; Venet, P.; Sari, A.; Riviere, E. Postmortem Analysis of 18650 Graphite/LFP Cells in a Long-Term Aging Study for Second-Life Applications. Batteries 2024, 10, 119. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, J.; Jiang, B.; Wang, X.; Wei, X.; Dai, H. Insights on the Degradation Mechanism for Large Format Prismatic Graphite/LiFePO4 Battery Cycled under Elevated Temperature. J. Energy Storage 2023, 60, 106624. [Google Scholar] [CrossRef]
- Etxandi-Santolaya, M.; Canals Casals, L.; Corchero, C. Extending the Electric Vehicle Battery First Life: Performance beyond the Current End of Life Threshold. Heliyon 2024, 10, e26066. [Google Scholar] [CrossRef]
- Ramirez-Meyers, K.; Rawn, B.; Whitacre, J.F. A Statistical Assessment of the State-of-Health of LiFePO4 Cells Harvested from a Hybrid-Electric Vehicle Battery Pack. J. Energy Storage 2023, 59, 106472. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Gao, Y.; Guo, Q. Recognition of Battery Aging Variations for LiFePO4 Batteries in 2nd Use Applications Combining Incremental Capacity Analysis and Statistical Approaches. J. Power Sources 2017, 360, 180–188. [Google Scholar] [CrossRef]
- CALB CA100 3.2V 100Ah LiFePO4 Lithium Ion Battery—LiFePO4 Battery. Available online: https://www.lifepo4-battery.com/Products/CALB-Battery/CALB-CA100-100Ah.html (accessed on 26 July 2024).
- Hu, X.; Li, S.; Peng, H. A Comparative Study of Equivalent Circuit Models for Li-Ion Batteries. J. Power Sources 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Wang, X.; Wei, X.; Zhu, J.; Dai, H.; Zheng, Y.; Xu, X.; Chen, Q. A Review of Modeling, Acquisition, and Application of Lithium-Ion Battery Impedance for Onboard Battery Management. eTransportation 2021, 7, 100093. [Google Scholar] [CrossRef]
- Gao, W.; Zou, Y.; Sun, F.; Hu, X.; Yu, Y.; Feng, S. Data Pieces-Based Parameter Identification for Lithium-Ion Battery. J. Power Sources 2016, 328, 174–184. [Google Scholar] [CrossRef]
- Dubarry, M.; Anseán, D. Best Practices for Incremental Capacity Analysis. Front. Energy Res. 2022, 10, 1023555. [Google Scholar] [CrossRef]
- Dubarry, M.; Liaw, B.Y.; Chen, M.-S.; Chyan, S.-S.; Han, K.-C.; Sie, W.-T.; Wu, S.-H. Identifying Battery Aging Mechanisms in Large Format Li Ion Cells. J. Power Sources 2011, 196, 3420–3425. [Google Scholar] [CrossRef]
- Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize Battery Degradation Modes via a Diagnostic and Prognostic Model. J. Power Sources 2012, 219, 204–216. [Google Scholar] [CrossRef]
- Dubarry, M.; Beck, D. Perspective on Mechanistic Modeling of Li-Ion Batteries. Acc. Mater. Res. 2022, 3, 843–853. [Google Scholar] [CrossRef]
- Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B.Y.; García, V.M.; Viera, J.C.; González, M. Operando Lithium Plating Quantification and Early Detection of a Commercial LiFePO4 Cell Cycled under Dynamic Driving Schedule. J. Power Sources 2017, 356, 36–46. [Google Scholar] [CrossRef]
- Andersson, A.M.; Edström, K. Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite. J. Electrochem. Soc. 2001, 148, A1100. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Z. High-Temperature Capacity Fading Mechanism for LiFePO4/Graphite Soft-Packed Cell without Fe Dissolution. J. Electroanal. Chem. 2015, 754, 148–153. [Google Scholar] [CrossRef]
- Halfi, I. NMC vs LFP: Safety and Performance in Operation. Available online: https://powerup-technology.com/nmc-vs-lfp-safety-and-performance-in-operation/ (accessed on 29 July 2024).
- Liu, P.; Wang, J.; Hicks-Garner, J.; Sherman, E.; Soukiazian, S.; Verbrugge, M.; Tataria, H.; Musser, J.; Finamore, P. Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses. J. Electrochem. Soc. 2010, 157, A499. [Google Scholar] [CrossRef]
- Simolka, M.; Heger, J.-F.; Kaess, H.; Biswas, I.; Friedrich, K.A. Influence of Cycling Profile, Depth of Discharge and Temperature on Commercial LFP/C Cell Ageing: Post-Mortem Material Analysis of Structure, Morphology and Chemical Composition. J. Appl. Electrochem. 2020, 50, 1101–1117. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Nominal Capacity | 100 Ah @ 0.3 C |
Nominal Voltage | 3.2 V |
Charge (CC-CV) | 1 C/3.65 V |
Charging Time | Standard: 4 h Quick charging: 1 h |
Discharge | 2 C/2.5 V |
Recommended SoC Window | 10–90% |
Charge Temperature | 0–45 °C |
Discharge Temperature | 0–55 °C |
Internal Resistance | ≤0.9 mΩ |
Weight | 3.4 kg |
Cell Packaging Type | Prismatic |
Dimensions | 142 mm × 67 mm × 219 mm |
Energy Density | 100 Wh/kg |
Cell Number | Initial Capacity (Ah) | SoC | Initial Capacity Test Date | Cycling Test Start Date |
---|---|---|---|---|
Cell 01 | 107.2 | 100.2% | July 2020 | September 2020 |
Cell 02 | 107.1 | 100.1% | March 2022 | |
Cell 03 | 95.0 | 88.8% | September 2020 | |
Cell 04 | 94.6 | 88.4% | September 2020 |
Parameter | Value |
---|---|
Nominal Capacity | 270 Ah |
Voltage Range | 2.8–3.8 V (3.2 V Nominal) |
Module Weight | 59.5 kg |
Cell Packaging Type | Prismatic |
Dimensions | 415 mm × 60 mm × 145 mm |
Energy Density | 116 Wh/kg |
Charge Current | Standard:100 A; Max: 200 A @25 °C |
Discharge Current | Standard: 200 A |
Cell Number | 01 | 02 | 03 | 04 |
---|---|---|---|---|
Initial capacity (Ah) | 107.1 (100%) | 104.48 (97.64%) | 95.0 (88.79%) | 94.6 (88.41%) |
Final capacity (Ah) | 70.69 (66.7%) | 83.26 (77.81%) | 51.45 (48.08%) | 62.53 (58.44%) |
Testing cycles | 10,390 | 4510 | 11,930 | 11,710 |
Average aging speed per 1000 cycles | 3.275% | 4.397% | 3.412% | 2.560% |
Module Number | 01 | 02 | 03 | 04 |
---|---|---|---|---|
Maximum Cell Capacity | 201.9 Ah (74.8%) | 224.2 Ah (83.0%) | 228.4 Ah (84.6%) | 228.7 Ah (84.7%) |
Minimum Cell Capacity | 193.2 Ah (71.5%) | 206.2 Ah (76.4%) | 213.5 Ah (79.1%) | 215.3 Ah (79.8%) |
Capacity Difference | 8.7 Ah (3.2%) | 18.0 Ah (6.7%) | 15.0 Ah (5.5%) | 13.4 Ah (5.0%) |
Maximum R0 (mΩ) | 0.67 | 0.55 | 0.40 | 0.33 |
Minimum R0 (mΩ) | 0.46 | 0.41 | 0.24 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Gao, W.; Fu, Y.; Turchiano, C.; Vosoughi Kurdkandi, N.; Gu, J.; Mi, C. Second-Life Assessment of Commercial LiFePO4 Batteries Retired from EVs. Batteries 2024, 10, 306. https://doi.org/10.3390/batteries10090306
Cao Z, Gao W, Fu Y, Turchiano C, Vosoughi Kurdkandi N, Gu J, Mi C. Second-Life Assessment of Commercial LiFePO4 Batteries Retired from EVs. Batteries. 2024; 10(9):306. https://doi.org/10.3390/batteries10090306
Chicago/Turabian StyleCao, Zhi, Wei Gao, Yuhong Fu, Christopher Turchiano, Naser Vosoughi Kurdkandi, Jing Gu, and Chris Mi. 2024. "Second-Life Assessment of Commercial LiFePO4 Batteries Retired from EVs" Batteries 10, no. 9: 306. https://doi.org/10.3390/batteries10090306
APA StyleCao, Z., Gao, W., Fu, Y., Turchiano, C., Vosoughi Kurdkandi, N., Gu, J., & Mi, C. (2024). Second-Life Assessment of Commercial LiFePO4 Batteries Retired from EVs. Batteries, 10(9), 306. https://doi.org/10.3390/batteries10090306