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Abstract: We report the investigation of silicon nanoparticle composite anodes for Li-ion batteries, using a
combination of two nm-scale atomic force microscopy-based techniques: scanning spreading resistance
microscopy for electrical conduction mapping and contact resonance and force volume for elastic modulus
mapping, along with scanning electron microscopy-based energy dispersion spectroscopy, nanoindentation,
and electrochemical analysis. Thermally curing the composite anode—made of polyethylene oxide-treated
Si nanoparticles, carbon black, and polyimide binder—reportedly improves the anode electrochemical
performance significantly. This work demonstrates phase segregation resulting from thermal curing,
where alternating bands of carbon and silicon active material are observed. This electrode morphology is
retained after extensive cycling, where the electrical conduction of the carbon-rich bands remains relatively
unchanged, but the mechanical modulus of the bands decreases distinctly. These electrical and mechanical
factors may contribute to performance improvement, with carbon bands serving as a mechanical buffer
for Si deformation and providing electrical conduction pathways. This work motivates future efforts to
engineer similar morphologies for mitigating capacity loss in silicon electrodes.

Keywords: lithium-ion battery; scanning spreading resistance microscopy; contact resonance force
microscopy; silicon anode; nanoparticles

1. Introduction

Demand for electric vehicles with longer driving ranges has spurred increased need
for lighter lithium-ion batteries (LIBs) [1]. Silicon (Si) is a promising anode material for this
purpose, as it has a much higher theoretical capacity (3579 mAh gSi

−1) than the current
commercial graphite anode (Gr, 372 mAh gGr

−1) [2,3]. However, Si undergoes a large
volumetric change during lithiation, which has limited its widespread implementation [3].
The expansion and contraction that occur during cycling results in mechanical failure
and disrupts the solid-electrolyte interphase (SEI). A stable and passivating SEI is crucial
for long cycle life, as it protects the Si from parasitic reactions and capacity fade [4–6].
Current industrial silicon electrodes typically only achieve 80% capacity retention over
several hundred cycles and have useful cycle lifetimes of approximately 100 cycles, which
is significantly below what is currently achieved with graphite-only anodes [7].

Si nanoparticles (NPs) present a possible avenue for improved anodes because the in-
creased surface-to-volume ratios allow for quicker lithiation and delithiation and decreased
damage due to volumetric expansion [8]. One NP fabrication method is plasma-enhanced
chemical vapor deposition (PECVD) using silane (SiH4) gas, which produces hydrogen-
terminated silicon NPs [9]. These NPs do not disperse when mixed in a polar solvent, such
as N-methyl pyrrolidone (NMP), which results in electrodes printed from NMP slurries

Batteries 2024, 10, 313. https://doi.org/10.3390/batteries10090313 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries10090313
https://doi.org/10.3390/batteries10090313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0001-5654-1664
https://orcid.org/0000-0002-3356-8247
https://doi.org/10.3390/batteries10090313
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries10090313?type=check_update&version=1


Batteries 2024, 10, 313 2 of 16

exhibiting non-optimal particle distribution and poor electron percolation of electron-
conducting phases [7,10]. To prevent this, the Si NPs can be coated with hydrophilic
molecules, such as polyethylene oxide (PEO), which renders the particles dispersible in
NMP. To remove the PEO coating, which inhibits electronic conduction and enables Si NP
aggregation during cycling, thermal curing is conducted after electrode fabrication [7,11].

It has been demonstrated that this thermal curing greatly improves silicon utilization
and first-cycle losses in thin electrodes [7]. However, as areal capacity increases with
thickness, silicon utilization decreases in thermally cured electrodes [7]. In this work, we
seek to understand the morphology as well as electrical and mechanical properties of
thermally cured electrodes so that strategies can be developed for how to maintain high
performance at greater thicknesses.

Scanning probe microscopy (SPM) is a powerful tool for characterizing battery samples
due to its nanoscale resolution and wide array of measurement modes, including the widely
used atomic force microscopy (AFM) [12]. Several SPM modes of interest to this field are
scanning spreading resistance microscopy (SSRM) and contact resonance force microscopy
(CRFM). SSRM measures localized electronic resistivity in a wide range of materials, from
insulators to semiconductors to conductors, and is helpful in imaging different components
in composite electrodes [13]. CRFM measures nanoscale mechanical properties to inform
electrode engineering efforts to mitigate mechanical failure due to Si expansion.

SSRM is a two-terminal resistance measurement technique. A bias voltage is applied
between the probe and the sample, and the sum of series resistances along the current
path is measured. Because the electrical current spreads rapidly as it moves away from
the probe/sample contact, the spreading resistance is dominated by the local resistivity
of the sample right beneath the probe in ~50 nm hemisphere volumes. SSRM has a
variety of applications in battery research, such as studying SEI resistivity [14–16], material
degradation after cycling [17], and component visualization [13].

Contact resonance and force volume (CR-FV) are two nm-scale mechanical charac-
terization methods based on AFM that measure modulus, along with other mechanical
properties [18,19]. Each is suited to materials with different modulus and hardness ranges,
allowing for the measurement of varied components in multiphase electrodes where me-
chanical properties can span a wide value range. To comprehensively understand the
mechanical properties of composite electrodes, this work combines these two techniques,
performed simultaneously, to provide a semi-quantitative mapping of mechanical proper-
ties and component distribution heterogeneity.

Here, we report a novel application of SSRM and CR-FV characterization for phase iden-
tification and measurement in battery electrodes, along with scanning electron microscopy-
energy dispersive spectroscopy (SEM-EDS) and instrumental nanoindentation on composite
anodes with PEO-treated Si NPs, conductive carbon, and binder. The anode shows phase
segregation after thermal curing. Further, these distinct carbon-rich and Si-rich domains
remain during cycling but have notably different resistivities and largely different mechanical
properties from the pristine anode. Potential mechanisms for electrode cycling performance
improvement through improved electronic pathways and mechanical strain relief due to
phase segregation will be discussed.

2. Results

To understand the influence of thermal curing on electrode properties and morphology,
this paper presents the electrical, mechanical, and chemical characterization of electrodes
before and after the curing step in their pristine state, as well as after cycling.

2.1. Pristine Electrodes
2.1.1. Phase Morphology and Identification

Comparison of uncured and cured pristine (i.e., before cycling) PEO-coated Si (Si@PEO)
electrode cross sections, as shown in Figure 1, reveals a significant change in the component
distribution by curing. SEM-EDS imaging of the uncured electrode shows a relatively
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homogeneous distribution of carbon (C45 carbon black) and Si (Si@PEO active Si NPs)
throughout the electrode (Figure 1a). The cured electrode, meanwhile, has smaller “band”-
like domains that show more carbon signal than the surrounding areas. These surrounding
areas show a higher Si concentration than the band structures, indicating that the carbon
and Si separate from each other during curing. Note that the EDS interaction depth (µm) is
significantly larger than the carbon (~100 nm) and Si particle sizes (<10 nm), so the maps
represent data from several microns in the depth direction and show that the visible band
structures exist three-dimensionally in the electrode [20].
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Figure 1. (a) SEM-EDS images of electrode cross sections, with the uncured sample showing uniform
carbon and Si distribution through thickness, while the cured electrode has an alternating carbon-rich
and Si-rich band structure. (b) SSRM resistivity maps of an uncured and cured electrode showing the
lower-resistivity C45 particles segregated into bands by curing. (c) Measured resistivity values of the
Si and carbon-rich domains, which do not change significantly by curing. Figure 1b is reproduced
from Ref. [7] with permission from the Royal Society of Chemistry.
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Due to the intrinsic and contrasting electronic properties of the carbon and Si com-
ponents, this phase segregation impacts the electrode’s physical properties. SSRM maps
of the local electrode resistivity (Figure 1b) also reveal morphology change during curing
consistent with the SEM-EDS data but with better resolution due to the intrinsic resolution
difference of both the tools and the shallow SSRM detection depth (~50 nm). In the uncured
electrode, the lower resistivity carbon particles are visible in a surrounding higher resistiv-
ity matrix and are distributed relatively uniformly through the electrode thickness. The
surrounding matrix contains Si particles (identified in EDS) and appears as a high resistivity
area rather than as discrete particles, due in part to the particle size being smaller than
the SSRM resolution and to the high resistivity binder surrounding the Si NPs. The cured
electrode shows lower resistivity bands, corresponding to the carbon particles. The local
resistivity values measured in the carbon-rich and Si-rich domains of both electrodes were
compared and no significant change during curing was found (Figure 1c). This similarity
indicates that there is no change in the materials themselves during curing. The average
overall resistivity for the cured sample is higher than that of the uncured sample (Figure 1c),
likely due to the lower-resistivity carbon particles moving closer together and covering
less area of the two-dimensional SSRM maps. However, the three-dimensional electrical
conduction pathway is a direct factor affecting the electrode performance rather than the
two-dimensional averaged resistivity. The carbon band structure in the cured sample
provides an effective conduction network rather than the distributed carbon particles in
the uncured electrode. Resistivity maps for thinner cured electrodes (1 µm and 6 µm) show
similar carbon bands present (Figure S1). As a final check for the carbon-rich and Si-rich
phase identifications, the area fractions of each domain measured based on resistivity match
well with the calculated volume fraction of each component based on the compositions
(Table S1), further demonstrating no significant intrinsic material changes during curing.

2.1.2. Mechanical Properties

Nanoindentation was used to quantify the mechanical properties of the phase-segregated
electrodes (Figure 2a). After the nanoindentation data were collected, the sample was imaged
in the same area with SSRM (Figure 2b). By overlaying the corresponding AFM height
and SSRM resistivity maps, the phase associated with each indent was determined based
on the corresponding resistivity. The Si-rich domains showed a slightly lower modulus
than the carbon-rich domains (Figure 2b), while the mixed domains have an intermediate
modulus. Both CR and FV maps of the pristine cured electrode (Figure 2c) show homogeneous
mechanical properties through the electrode thickness. The main advantage of AFM-based CR-
FV is the nm-scale spatial resolution that is necessary for characterizing the Si NP composite
anode, as demonstrated in later sections on cycled electrodes. However, the technique lacks
the sensitivity for measuring the absolute elastic modulus values, such as the slight difference
between domains in the pristine electrode, as shown by the nanoindentation. CR-FV data of
the pristine uncured electrode was also collected (Figure S2); a similarly low uniform modulus
was observed with no distinguishable morphological features.
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Figure 2. (a) Optical micrograph showing nanoindents in pristine cured electrode cross section and
(b) overlay of height map and SSRM resistivity map after nanoindentation used to designate phase of
each indent. (c) Resulting nanoindentation modulus values for individual phases. (d) FV, (e) CR, and
(f) corresponding height map for pristine cured electrode cross-section, showing no clear mechanical
property variation through electrode thickness.

2.2. Cycled Electrodes
2.2.1. Cycled Uncured Electrodes

An uncured sample was measured with SSRM and CR-FV after 25 cycles to investigate
property changes after cycling. The SSRM map showed a slight overall increase in resistivity,
with lower resistivity areas distributed evenly through thickness, consistent with the
uniform carbon distribution in the uncured pristine sample (Figure 3a). It should be noted
that the SSRM maps of cycled samples are typically lower quality compared to pristine
due to SEI formation, which can be scraped off the sample by the probe tip, become
adhered to the probe, and cause streak artifacts. The CR-FV maps (Figure 3c,d) show
more heterogeneity as compared to this pristine electrode (a greater range in modulus)
throughout the electrode thickness, although there are no distinct domains observed. The
average modulus is higher than in the pristine electrode.
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Figure 3. Images of uncured electrodes after 25 cycles showing (a) SSRM resistivity map and
corresponding (b) FV, (c) CR, and (d) height maps showing uniform resistivity and mechanical
properties through electrode thickness. Both measurements show no distinct domains, consistent
with images of the uncured pristine electrode showing homogeneous component distribution.

2.2.2. Cycled Cured Electrodes

We characterized a cured electrode after 25 cycles to determine if the carbon-Si segre-
gation was preserved during cycling and if it impacted other properties. EDS maps of the
cycled cured electrode show similar carbon bands and surrounding areas of Si (Figure 4a).
Additionally, SEM images show a crack-like morphology corresponding to the carbon-rich
areas. There is some carbon present in the Si-rich areas; this is expected, as the SEI consists
of various organic species originating from the electrolyte [4,21]. Fluorine, which is sourced
only from the electrolyte, appears more concentrated in carbon-rich regions, indicating that
SEI is preferentially formed in the region that is along the electrical current routes.



Batteries 2024, 10, 313 7 of 16

Batteries 2024, 10, x FOR PEER REVIEW 7 of 16 
 

in impedance after curing [7], but the results are not appropriate to compare directly with 

SSRM due to the fundamental differences of the techniques. Similar to the pristine cured 

sample, we observed low-resistivity carbon-rich bands in the cycled cured electrode. Like 

the cycled uncured electrode, the streak features in the SSRM scanning direction are 

caused by the adhesion of SEI materials to the probe during scanning. 

 

Figure 4. (a) SEM-EDS, (b) SSRM of multiple sites, and (c) FV, (d) CR, and (e) corresponding height 

maps of the cycled cured sample showing carbon and Si segregation and its impacts on resistivity 

and mechanical properties. All maps show domains with distinct properties matching the carbon 

segregation observed in cured pristine electrodes. 

CR-FV maps show that the mechanical properties changed significantly during cy-

cling (Figure 4c,d). CR, best suited for higher modulus materials, shows an “island”-like 

morphology of high-modulus material, surrounded by areas where CR data could not be 

collected. FV, best for lower modulus materials, shows nearly the inverse of CR, with 

bands of material only measured with FV. Because of the complementary measurement 

ranges of these two techniques, we can conclude that the “islands” have a much higher 

modulus than the surrounding “bands”. The CR-FV map morphology closely matches the 

carbon- (bands) and Si-rich (islands) areas seen in the EDS and SSRM maps of this sample. 

3. Discussion 

3.1. Carbon and Silicon Phase Segregation 

SEM-EDS and SSRM imaging of pristine electrodes showed the formation of a dis-

tinct band-like morphology, where the carbon separated from the Si during thermal cur-

ing (Figure 1). Similar imaging of a cured electrode after 25 cycles (Figure 4), as well as 

CR-FV mechanical maps, showed that this morphology was preserved during cycling, re-

sulting in non-uniform electrical and mechanical properties. 

One possible mechanism for the phase morphology evolution during curing is via 

binder flow during heating and the preferential adsorption of P84 binder to the C45 over 

the Si. Burdette-Trofimov et al., in a study with the same binder and conductive carbon 

along with milled Si, found that C45 could adsorb P84 binder up to 9.5 wt% in solution 

[22]. The Si could only adsorb 0.5 wt% of the binder. Because the binder preferentially 

Figure 4. (a) SEM-EDS, (b) SSRM of multiple sites, and (c) FV, (d) CR, and (e) corresponding height
maps of the cycled cured sample showing carbon and Si segregation and its impacts on resistivity
and mechanical properties. All maps show domains with distinct properties matching the carbon
segregation observed in cured pristine electrodes.

Resistivity maps of the same electrode (Figure 4b) show a slight overall increase
in resistivity, which is expected in cycled electrodes due to the resistive SEI formation
and material degradation, particularly of Si, during cycling, and the resistivity increase
has been observed in other types of Si electrodes measured with SSRM [14,16,17]. While
SSRM is a nm-scale mapping technique for local electronic resistivity of the electrode,
electrochemical impedance spectroscopy (EIS) that is widely used in battery area is a
macroscopic measurement and is dominated primarily by ion transport in a cell. EIS
previously conducted on the same type of electrodes in symmetric cells showed an overall
decrease in impedance after curing [7], but the results are not appropriate to compare
directly with SSRM due to the fundamental differences of the techniques. Similar to the
pristine cured sample, we observed low-resistivity carbon-rich bands in the cycled cured
electrode. Like the cycled uncured electrode, the streak features in the SSRM scanning
direction are caused by the adhesion of SEI materials to the probe during scanning.

CR-FV maps show that the mechanical properties changed significantly during cy-
cling (Figure 4c,d). CR, best suited for higher modulus materials, shows an “island”-like
morphology of high-modulus material, surrounded by areas where CR data could not be
collected. FV, best for lower modulus materials, shows nearly the inverse of CR, with bands
of material only measured with FV. Because of the complementary measurement ranges
of these two techniques, we can conclude that the “islands” have a much higher modulus
than the surrounding “bands”. The CR-FV map morphology closely matches the carbon-
(bands) and Si-rich (islands) areas seen in the EDS and SSRM maps of this sample.

3. Discussion
3.1. Carbon and Silicon Phase Segregation

SEM-EDS and SSRM imaging of pristine electrodes showed the formation of a distinct
band-like morphology, where the carbon separated from the Si during thermal curing
(Figure 1). Similar imaging of a cured electrode after 25 cycles (Figure 4), as well as CR-FV
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mechanical maps, showed that this morphology was preserved during cycling, resulting in
non-uniform electrical and mechanical properties.

One possible mechanism for the phase morphology evolution during curing is via
binder flow during heating and the preferential adsorption of P84 binder to the C45 over
the Si. Burdette-Trofimov et al., in a study with the same binder and conductive carbon
along with milled Si, found that C45 could adsorb P84 binder up to 9.5 wt% in solution [22].
The Si could only adsorb 0.5 wt% of the binder. Because the binder preferentially adsorbs to
the C45, it may be moved by the binder during curing while the Si is left behind, resulting
in the phase segregation observed. However, more study is required to identify the exact
mechanism that results in this morphology and what variables can be modified to adjust
and refine it.

3.2. Contact Resonance-Force Volume for Composite Electrodes

Quantitative CR-FV data are reliant on proper calibration based on a known reference
sample, the spring constant of the probe cantilever used in relation to the sample modulus,
and a known probe-sample contact area [23,24]. These requirements are challenging to meet
in a composite electrode system, so the absolute modulus values from CR-FV measurements
presented here should be considered qualitative. However, there is still utility for CR-FV
use in composite electrodes for the comparison of mechanical data across a sample set and
in the spatial mapping of sub-micron features within an image.

Nanoparticle composites exhibit complex mechanical behaviors and can be impacted
by multiple factors, including the mechanical properties of the particle material, particle
size and loading, interfacial chemistry between the particles and the polymer binder, and
properties of the polymer matrix itself. Additionally, reported SEI moduli vary significantly,
ranging from 100 s of MPa to over 50 GPa [25–27]. All these factors make it difficult to
predict the electrode material modulus [28,29]. Thus, a wide range of moduli may be present
in nanocomposite electrodes. The modulus range for which FV is most accurate is dictated
by the probe stiffness used to measure, while CR is somewhat less reliant on probe stiffness
but generally requires a stiff probe to measure resonant oscillation frequency [23,30,31]. To
accommodate the wide potential modulus range and for consistency across the sample
set, the same probe type with a relatively high stiffness (Bruker DDLTESP, nominal k =
95 N/m) was used for all measurements, which means that the moduli measured in the
cycled electrodes by CR is more accurate than as measured by FV.

Sample smoothness is also a challenge when measuring composite electrodes, as they
are inherently rough [16]. These electrodes were cross-sectionally polished with an Ar-ion
polisher, which improves sample smoothness compared to a surface measurement, but
due to porosity and small variations in polishing rates of the different materials, some
roughness (on the order of standard height deviation (Rq) of 20–100 nm) is unavoidable. CR
modulus measurements are calculated using probe-sample contact area, which is calculated
indirectly from known sample calibration. Increased roughness means less consistency in
the contact area, introducing a source of error [30–32].

An example of the CR-FV sensitivity/accuracy is seen when comparing the nanoinden-
tation and CR-FV data from the pristine cured electrode. The nanoindentation data, taken
on a pristine cured electrode, showed a small but measurable difference in the modulus of
the two phases, measuring 12.3 GPa as the carbon-rich average modulus and 8.9 GPa as
the Si-rich modulus (Figure 2a,b). The CR-FV maps for the same sample, however, showed
no distinguishable domains, with an FV average of 11.2 GPa and a CR average of 8.5 GPa.
(Figure 2c,d, Table 1), suggesting that the 3.4 GPa difference observed with nanoindentation
is below the accuracy limits of CR-FV for this sample. These values are likely influenced by
the polymer binder used, which has a reported modulus of 3–4 GPa [33,34].
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Table 1. Average CR-FV modulus values for all samples.

Sample Uncycled Cycled

FV Modulus
(GPa)

CR Modulus
(GPa)

FV Modulus
(GPa)

CR Modulus
(GPa)

Uncured 7.75 7.66 73.3 41.0

Cured 11.2 8.50
6.63 (low) 10.9 (low)

48.2 (high) 43.7 (high)

CR-FV mapping of the cycled samples provides useful information that cannot be
obtained with nanoindentation, as the resolution that is necessary for identifying domains in
1 µm or less is challenging to measure by nanoindentation, which has a large measurement
depth. The uncured cycled sample had an average FV modulus of 73.3 GPa and a CR
modulus of 41 GPa, a large increase from the pristine samples. The FV modulus with this
probe stiffness is less reliable at modulus ranges higher than approximately 10 GPa, which
is likely why the FV value is measured significantly higher than reported SEI modulus
estimates and higher than the CR value [35,36]. While CR-FV measurements are surface
sensitive, on the order of 100 nm, the exact depth sensitivity is dependent on a number of
variables, including probe flexural mode and mechanical properties, contact force applied,
and probe-surface contact area. Since not all these are easily controllable for these samples,
the precise measurement depth cannot be estimated accurately [37]. The SEI can range from
several to several 10s of nanometers in thickness as well and has a variable thickness on a
composite electrode due to particle dispersion and porosity, so CR-FV is likely measuring
both SEI and electrode material together. The CR modulus of 41 GPa is on the high end
of reported literature values for SEI modulus. The modulus for thin film amorphous Si is
reported as 80 ± 20 GPa, but nanoparticle mechanics can be significantly different than that
of bulk materials [38,39]. This increase in modulus as compared to the pristine samples is
therefore due to chemical and structural changes of Si as well as SEI formation that occur
during cycling.

CR-FV mapping of the cured cycled sample (Figure 4c,d) shows a significant change
from the other samples, with high modulus “islands” (FV modulus 48.2 GPa, CR mod-
ulus 43.7 GPa, Table 1) corresponding to the morphology of Si-rich domains (Figure 4a)
surrounded by a lower modulus domain (FV modulus 6.63 Gpa, CR modulus 10.9 Gpa,
Table 1) corresponding to the carbon-rich bands. Additional CR-FV data at a different
site showing similar domains can be found in Figure S3. FV measures the low modulus
domain effectively but is unable to obtain values for much of the high modulus domain, as
shown in Figure 4c, as dense blue bands and white island area (no valid data), again due to
the technique’s effective measurement range. CR measurements show distinct frequency
curves for both domains (Figure S4), with the high modulus domain showing clear resonant
frequency peaks around 0.8–0.9 MHz and the low modulus domain showing noisier and
more difficult to fit curves with resonant peaks around 0.45–0.65 MHz. The low modulus
domain curves correspond to less accurate data but still represent a clear contrast with the
high modulus curves and, thus, distinct mechanical properties. Contact resonance curves
are best fit at a small frequency range close to the resonance curve for the given material;
however, a larger frequency range was used for these measurements to account for the
range of material [23]. Because of this large frequency range, adjusting the fitting frequency
range to include both domain curves results in many curves with no fit (white pixels,
Figure 5b), making it difficult to distinguish any morphology, but adjusting to fit only the
high modulus domain frequencies (Figures 4d and 5c) shows high modulus domains that
are nearly inverse of the FV data. By overlaying the maps with both fitting ranges and by
using the built-in software-generated fill feature (Figure 5d,e), the high and low modulus
domains are more readily distinguishable. Additionally, the spatial map of CR frequency
curve amplitude (Figure 5f) shows a clear distinction between the high modulus (high
amplitude) and low modulus (low amplitude) domains. CR amplitude is related to the
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energy dissipation of the material, although the physical mechanisms for this contrast have
not been intensively studied. Thus, while modulus values for the cured cycled sample are
semiquantitative by this analysis, there is clear evidence of a higher mechanical modulus
in the Si-rich domains than in the carbon-rich domains measured consistently by both CR
and FV.
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Figure 5. Data from CR scan of cured cycled sample including (a) height map, (b) CR data fit adjusted
to both high and low modulus curves (white means no fit obtained), (c) CR data fit adjusted to the high
modulus domain only, showing distinct island features, (d) overlay of b and c showing high and low
modulus domains, (e) software-generated fill of b to more clearly show modulus domains, and (f) CR
frequency curve amplitude map that also shows variation between high and low modulus domains.

Both the CR and FV values for the high modulus domain in the cured cycled sample
are similar to the CR modulus obtained in the uncured cycled sample, suggesting that
the physical change in the Si-rich domain material and SEI formation is similar to that
in the cycled uncured homogenous electrode. However, SEM-EDS (Figure 4a) shows an
increased fluorine concentration corresponding to the carbon-rich areas, suggesting that
SEI is formed there preferentially. Carbon black can be a source of irreversible chemistry,
which may result in side reactions and concentrated SEI formation [40,41]. It is possible that
measuring more SEI material in the carbon-rich domains results in low modulus values, as
compared to the combination of both SEI and Si in the high modulus domains.

3.3. Electrochemical Performance

Previous work on Si@PEO electrodes describes their synthesis and demonstrates that
the curing step provides significant benefits to electrochemical performance during both
short and long-term cycling [7]. As shown in Figure 6a, the third-cycle areal capacity
improves with curing for all electrode thicknesses. While areal capacity increases with
increasing film thickness, the Si utilization decreases with increasing film thickness, from
nearly 100% in very thin electrodes (<6 µm) to roughly 55% in 25 µm thick electrodes,
changing in a wide range of Si utilization. The Si utilization is measured by the delithi-
ation capacity of each sample after the third cycle divided by the calculated theoretical
delithiation capacity of that sample, assuming Si delithiation capacity to be 3.5 A h g−1 and
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corrected for PEO mass loss. This trend (decreasing utilization with increasing thickness) is
observed for both cured and uncured electrodes.
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Figure 6. (a) Areal capacity and silicon utilization vs. electrode thickness for uncured and cured
electrodes. (b) Coulombic efficiency for uncured and cured electrodes over 1000 cycles. Si@PEO
electrodes were cycled against NMC811 between 4.2 and 3.0 V for 99 cycles at C/3 and 1 cycle at
C/10 10 times. The C/10 cycles were used to distinguish Li+ transport limitations from irreversible
processes. (c) Schematic diagram of how the lower modulus of the carbon-rich domains may
provide strain relief during Si expansion/compression during lithiation/delithiation. Arrows indicate
expansion and contraction of active Si material island during lithiation/delithiation. (a,b) Reproduced
from Ref. [9] with permission from the Royal Society of Chemistry.

The first cycle Coulombic efficiency (CE) in a full cell (Figure 5b) improves from
42% in an uncured electrode to 73% in a cured electrode [7]. Within the first 50 cycles,
the CE in cured electrodes remains stable at ≥99.75% in most data points. For uncured
electrodes, there is significant variation in the CE throughout the first 1000 cycles, averaging
between roughly 97.0–100.5% for the C/3 cycles. Cycling data for these specific electrodes
in 1–25 cycles without C/10 cycling, which shows the same behavior, can be found in
Figure S5.

These improvements in both utilization and CE are attributed to several mechanisms,
including the formation of thinner and more inorganic materials on the cured electrodes
and increased porosity from PEO removal during curing, which is observed during thermo-
gravimetric analysis (TGA) [7]. Further, as the relationship between electrode morphology
and both electronic conductivity and mechanical properties has been discussed above, the
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impacts of the curing-induced morphological, electrical, and mechanical changes to the
cycling performance here should be considered as well [42–44].

The carbon-rich bands may provide mechanisms for improving the Si utilization
and areal capacity by increasing electronic access to the silicon as compared to more
uniformly distributed carbon. Recent work has demonstrated that resistivity distribution
and conductive carbon morphology through electrode cross-sections have a clear link to Si
utilization [45].

Cross-sectional SSRM images of cured 1 µm- and 6 µm-thick electrodes (Figure S1)
showed similar phase segregation with the low-resistivity carbon particles clustering
together. However, due to the differences in electrode thickness, the carbon bands do
not necessarily result in the same behavior in the thinner electrodes. Many of the Si-
rich islands surrounded by carbon in the thick electrodes are larger than the total thin
electrode thickness (6 µm). In the thin electrodes, the carbon bands are extremely effective at
maximizing Si utilization, but as the electrode thickness increases, there is a less connected
network of carbon-rich bands to the current collector through electrical percolation, and
some Si remains electrically isolated. This variation in bands with electrode thickness
suggests that controlling the carbon-rich band sizes or density with increasing electrode
thickness or increasing carbon-Si ratio may be a route to improve electrode performance to
accommodate increased areal capacity.

Full cell cycling of Si@PEO electrodes for 1000 cycles (Figure 6b) shows improved
CE in the cured sample compared to uncured electrodes. The volumetric expansion of Si
that occurs during lithiation induces high strain within electrodes, leading to capacity fade
due to fracture and associated active material isolation [46]. While increased porosity is
believed to contribute to improved cycling performance, this study identifies another possi-
ble mechanism for improved cycling: the low-modulus carbon-rich bands shown in the
CR-FV maps of cured electrodes allow for strain relief during expansion by preferentially
compressing while still maintaining electrical contact, as shown in Figure 6c [7,17]. Me-
chanical failure leading to the isolation and loss of active material is known to be a source
of capacity fade in electrodes, particularly those made of Si [47,48]. This strain relief adds
flexibility to the electrode and prevents the Si-rich regions from mechanical delamination
and subsequent electrical connectivity loss to the electrode, thereby preventing capacity
fade [49]. Additionally, the carbon-rich regions may help maintain electronic contact as
well, aiding in preventing electronic isolation of the Si.

4. Conclusions

This study characterizes composite Si@PEO electrodes using SSRM, CR-FV, SEM-EDS,
and nanoindentation, demonstrating that thermal curing results in a phase-segregated
morphology in pristine electrodes with carbon-rich bands surrounded by silicon. This
morphology is distinct from the uncured electrodes, which have relatively uniformly
distributed carbon clusters in a Si matrix. These carbon-rich bands and associated electrical
conductivity were preserved after cycling. In contrast, the elastic moduli of the cycled cured
electrode changed distinctly, with a much larger modulus of the Si-rich island than the
surrounding carbon band, by cycling compared to the uniform modulus distribution in the
pristine electrode. While multiple variables can impact electrochemical performance, these
two factors—electrical conduction and modulus contrast—can improve electrochemical
performance, where the carbon-rich bands provide a Si deformation buffer and electrical
pathway. This work further indicates that engineering similar morphologies may be an
avenue for mitigating capacity loss issues in other silicon electrode systems.

5. Experimental Details
5.1. Electrode and Cell Fabrication and Cycling

Complete electrode and cell fabrication details can be found in Schulze et al. [7]. Briefly,
all electrodes are fabricated with PECVD Si NPs. The Si NPs were surface functionalized
in solution with PEO while heating, then purified in toluene and dried back to a powder
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form. The powder was then mixed in NMP with Timcal C45 conductive carbon black and
Ensigner Polyimide P84 binder (8:1:1 Si:C45:P84 by weight). This slurry was blade cast
on a copper current collector and dried under vacuum in an oven at 150 ◦C. The cured
electrodes were heated to 420 ◦C over 1 h under N2; then, the temperature was held at
420 ◦C for 1 h. This thermal processing also removed PEO attached to the Si NP [7]

Electrodes were assembled in full cell 2032 coin format against Lithium Nickel Man-
ganese Cobalt Oxide (NMC) 622 cathodes in GenF electrolyte, which is Gen2 (1.2 M lithium
hexafluorophosphate (LiPF6) in ethylene carbonate (EC): ethyl methyl carbonate (EMC)
(3:7 by wt%)) plus 10 wt% fluoroethylene carbonate (FEC) additive. Characterized cells
were cycled between 4.2 and 3.0 V at a C/3rate for 25 cycles.

5.2. SEM-EDS

Cross-section samples were made by sandwiching electrodes coated on copper foil
between silicon wafers with EpoTek conductive epoxy. The samples were then polished
under an argon ion beam of 5 kV energy and ~150 mA current using a JEOL cooling
cross-section polisher (JEOL CCP).

SEM-EDS images were collected with a Hitachi S-4800 SEM with an accelerating
voltage of 9 kV.

5.3. FIB-EDS for Air-Free Sample Transfer and Element Mapping

EDS was taken using the Nova 200 Dual-beam focused ion beam (FIB) with a Ther-
mofisher UtraDry EDS detector and an air-free transfer station attached. EDS data were
taken at both 10 kV and 20 kV using standard dual beam FIB methods. All SEM imaging
was acquired at 5 kV. The samples were loaded into an airtight transfer station inside an Ar
glovebox. The transfer station was then attached to the FIB. Once the instrument reached an
acceptable vacuum level, the transfer station was opened, and the sample was transferred
into the instrument for imaging.

5.4. SSRM

SSRM measures the total resistance between the probe and back contact, including the
sample spreading resistance (Rsp), probe/sample contact resistance (Rc), and back contact
resistance (Rb). Rb is very small compared to Rsp and Rc because of the large contact area.
Rc is minimized using high enough forces (~mN) that probe contact is maintained so that
the measured resistance is dominated by Rsp, which is further dominated by the local
sample resistivity beneath the probe [50].

SSRM measurements were taken using a Bruker Dimension Icon AFM with an SSRM
module installed in an Ar-filled glovebox. Bruker DDESP-V2 conductive diamond-coated
Si probes were used in AFM contact mode with a −0.25 V bias voltage applied to the
sample while the probe was floating-grounded. The data were processed using Bruker
Nanoscope (version 2.0), Gwyddion (version 2.54), and ImageJ software (version 1.54).

5.5. CR-FV

CR measures nm-scale viscoelastic properties [18]. By vibrating the sample at a selected
frequency range and then measuring the resonant frequencies induced in the probe/sample
system, the mechanical properties such as loss modulus and storage modulus are calculated
by comparing to a known reference sample made of Al, Cr, and Si. CR calculations combine
two mechanical models: (i) Euler–Bernoulli beam theory to relate tip/sample resonant
frequency to the stiffness between the tip and sample, and (ii) a combination of Hertz and
Derjaguin–Muller–Toporov (DMT) contact models to relate the tip-sample stiffness and the
sample modulus [18,19,24,51,52].

The second mechanical mapping method used, FV, records the force–distance (f–z)
curve of the AFM tip as it approaches the sample, interacts with the Van der Waals forces of
the sample surface, contacts the sample with a repulsion force, and lifts off [19]. Analyzing
the curve shape determines multiple properties, including modulus during contacting and
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adhesion during liftoff. Multiple contact mechanics models can be used to model the probe
and sample, similar to CR [53].

CR-FV measurements were conducted using the AFM setup described above, using
Bruker PeakForce QNM + CR mode and Bruker DDLTESP (k = 95 N/m) probes. CR and
FV data were collected simultaneously and processed using Bruker Nanoscope software
(version 2.0).

5.6. Nanoindentation

Nanoindentation tests were conducted with a diamond Berkovich indenter tip using
a KLA iMicro Nanoindenter inside an inert atmosphere glovebox. Thermal drift during
indentation was monitored and remained below 0.1 nm/s. Depth-controlled tests with a
constant strain rate of 0.01 s−1 (Hz) were used with a 10 s hold at maximum depth. The
target indentation depth was set to be 1000 nm. The Oliver–Pharr method was followed to
determine the elastic modulus and hardness of the material at the target depth.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/batteries10090313/s1, Figure S1: SSRM maps for 1 and 6 µm-thick cured
pristine electrodes, showing that carbon segregation is present in thinner electrodes; Figure S2: CR-FV
and corresponding height map for pristine uncured sample. A low and uniform overall modulus is
observed; Figure S3: Additional CR-FV and corresponding height maps of the cured cycled sample
showing high modulus islands surrounded by lower modulus domains; Figure S4: Contact resonance
frequency curves showing higher and cleaner resonant frequency peaks for the high modulus domain
(1) and lower and noisier peaks for the low modulus domain; Figure S5: Cycling for the cured and
uncured data over 25 cycles for the electrodes characterized in this work; Table S1: Area percentages of
identified domains from resistivity maps compared to calculated volume percentage to verify accuracy
to domain identification.
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