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Abstract: An accurate estimation of the state of health (SOH) of Li-ion batteries is critical for the
efficient and safe operation of battery-powered systems. Traditional methods for SOH estimation,
such as Coulomb counting, often struggle with sensitivity to measurement noise and time-consuming
tests. This study addresses this issue by combining incremental capacity (IC) analysis and a novel
neural network, Kolmogorov–Arnold Networks (KANs). Fifteen features were extracted from IC
curves and a 2RC equivalent circuit model was used to identify the internal resistance of batteries.
Recursive least squares were used to identify the parameters of the equivalent circuit model. IC
features and internal resistance were considered as input variables to establish the SOH estimation
model. Three commonly used machine learning methods (BP, LSTM, TCN) and two hybrid algorithms
(LSTM-KAN and TCN-KAN) were used to establish the SOH estimation model. The performance
of the five models was compared and analyzed. The results demonstrated that the hybrid models
integrated with the KAN performed better than the conventional models, and the LSTM-KAN model
had higher estimation accuracy than that of the other models. The model achieved a mean absolute
error of less than 0.412% in SOH prediction in the test and validation dataset. The proposed model
does not require complete charge and discharge data, which provides a promising tool for the accurate
monitoring and fast detection of battery SOH.

Keywords: SOH estimation; KAN; incremental capacity analysis; internal resistance; Li-ion battery

1. Introduction

Electric and hybrid vehicles have experienced rapid growth in recent years. Lithium-
ion (Li-ion) batteries are a critical component of electric vehicles (EVs) in providing power
for vehicles. The application scale of Li-ion batteries in EVs is far larger than other types of
batteries owing to several advantages of Li-ion batteries, including high energy density,
a long lifespan, low maintenance requirements, etc. [1]. A battery management system
(BMS) plays a key role in ensuring the safe and efficient operation of a vehicle’s battery
system. State of health (SOH) estimation is an indispensable function for the BMS, which
contributes to determining retained capacity and remaining useful life, optimizing the
charging/discharging process to extend the life and prevent the premature failure of
batteries [2].

While the SOH is crucial for a battery management system (BMS) to function effec-
tively, an accurate definition and calculation method for the SOH has not been universally
established [3]. Generally, capacity fading and the increase in internal resistance are com-
monly used indicators to assess the SOH of a battery. To obtain variation in capacity and
resistance, the most commonly used approaches are to measure the current and voltage
parameters of a battery to derive the two indicators. The approaches to acquiring the SOH
from the current and voltage data can be categorized into two types: direct computation [4]
or model-based machine learning [5]. The former method includes coulomb counting,
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internal resistance/impedance calculation, etc. The method based on machine learning
uses the current/voltage data or other variables derived from them to establish a neural
network model to predict the change in capacity and impedance.

Coulomb counting is an integral of current over time that uses a current sensor to mon-
itor the current during the charge/discharge process, and the maximum increased/elapsed
capacity can be calculated. The SOH of batteries can be determined through the ratio
of maximum capacity to the rated capacity [6]. Battery SOH can also be defined from
the perspective of internal resistance evolution. The internal resistance increases with the
degeneration of cells. The difference between the internal resistance at the end of battery life
and the fresh stage is regarded as a basis for evaluating the SOH [7]. This resistance, R, can
be obtained by Ohm’s law or parameter identification based on an equivalent circuit model.

These above approaches have their limitations. For instance, the Coulomb counting
method is only available in a full charge/discharge process to obtain the current maximum
capacity. The accuracy of resistance measurement is influenced by the battery state of
charge and the environmental temperature. Therefore, the SOH estimation method based
on the calculation of capacity and resistance is restricted by the working circumstance of
batteries and has low efficiency and poor scalability. To overcome this challenge, data-
driven approaches are proposed to predict the SOH based on the history data of the
current, voltage, capacity, etc., wherein the statistical analysis method and machine learning
are mostly used in the establishment of SOH estimation models, such as gray relation
analysis [8], support vector regression (SVR) [9], XGboost [10], back propagation (BP)
neural network [11,12], and Long Short-Term Memory (LSTM) network [13,14]. In May
2024, a team of researchers at the Massachusetts Institute of Technology introduced the
Kolmogorov–Arnold Network (KAN), a novel neural network architecture differing from
the multilayer perceptron (MLP) network [15]. This innovative approach is grounded
in the theoretical principles of the Kolmogorov–Arnold representation theorem, which
offers a powerful framework for decomposing complex multivariate functions into simpler,
univariate components [16].

The key steps of data-driven approaches are defining effective informative inputs and
establishing a robust estimation model. Commonly, the current, voltage, and temperature
data in the charge/discharge process are set as the inputs. Compared to the unprocessed
current and voltage data, the features derived from them can better describe the battery
aging mechanism and understand the materials’ properties, interfacial phenomena, and
electrochemical behavior inside cells, such as electrochemical impedance spectroscopy
(EIS), incremental capacity (IC), and differential voltage (DV). Incremental capacity analysis
is a widely used approach to identify and quantify the changes in electrochemical reactions
inside a battery [17–19]. It is assumed that the cell is at an equilibrium state during a
charge/discharge process with an extremely low current rate (C-rate). However, the low
C-rate charge/discharge process cannot be performed in field application due to the high
cost of time. For SOH estimation, it is unnecessary to pay more attention to the details of
the battery degradation process; rather, it is necessary to just focus on the remaining battery
capacity at a certain moment. Therefore, a pragmatic solution is proposed to replace a
low C-rate with a large C-rate. Therefore, there is increasing research on using IC curve
data for SOH prediction. Li et al. adopted the Gaussian filter to process IC curves and use
the position and height of the curve peak as the feature of interest for the SOH estimation
of a high-energy NMC li-ion battery [20]. In ref. [21], IC curves were used to estimate
battery SOH based on SVR. Beltran et al. investigated the performance of different machine
learning methods in the estimation of retained capacity, using IC curves [22].

The internal resistance of a battery comprises several components that collectively
determine how much opposition the battery presents to the flow of the electric current.
These components can be broadly categorized into three main types: ohmic resistance,
polarization internal resistance, and electrochemical impedance [23]. Ohmic resistance is
the straightforward electrical resistance of the battery’s conductive materials (electrodes,
electrolytes, and connectors) [24]. Electrochemical impedance is more complex and includes
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various factors associated with the battery’s electrochemical processes, including charge
transfer resistance, and solid electrolyte interphase (SEI) resistance [25]. As a battery
undergoes repeated charge and discharge cycles, various degradation will occur, such
as the growth of the SEI layer, electrolyte decomposition, and loss of active material.
These processes lead to an increase in the internal resistance of the battery. An increase in
internal resistance is a key indicator of these degradation processes [26,27]. It reflects the
battery’s reduced efficiency in conducting current, which is directly related to its aging and
SOH. Internal resistance is a valuable and reliable indicator for estimating the SOH of a
battery [28].

In the above works, only IC curve features were used as input parameters for modeling.
IC curve features are susceptible to the environmental temperature and current rate. In
this work, we employed both internal resistance parameters and IC features as inputs
to establish a hybrid model. Moreover, the aforementioned machine learning models
were based on MLP. KANs, as an emerging network structure, have the potential to
become an alternative to MLP. Therefore, we proposed an SOH estimation approach by
the combination of features extracted from IC curves and internal resistance based on the
KAN algorithm. First, an accelerated aging test was performed to prepare the degradation
data. Next, the raw data of charge cycles were processed to obtain the IC curves, and some
advanced filter algorithms were adopted to smooth the original IC curves. The peaks of
IC curves often correspond to phase transitions within the battery’s active materials. For
example, in lithium-ion batteries, lithium intercalates into or de-intercalates from electrode
materials. In some cases, an IC curve peak might indicate lithium plating, which is a form of
battery degradation [29,30]. The dips represent gaps between different intercalation stages
within the battery’s active materials. The peaks and dips of an IC curve of a battery provide
important insights into the battery’s state and characteristics. Therefore, the features of
IC curves were extracted as the inputs of SOH estimation models, including the height,
width, and position of peaks and dips. Then, a 2RC equivalent circuit model and the
recursive least squares (RLS) algorithm were used to identify the internal resistance of
batteries. Three commonly used machine learning methods were used to establish the SOH
estimation model, including BP, LSTM, and Temporal Convolutional Networks (TCNs),
and the KAN was adopted to build hybrid models (LSTM-KAN and TCN-KAN) for SOH
estimation. Furthermore, we compared the estimation performance of five models and
investigated the effect of adding the KAN on the original model performance. The model
with the best performance among the five was chosen to evaluate the accuracy of the SOH
estimation model with different input variables. To our best knowledge, this was the first
time the KAN was used to estimate the SOH of Li-ion batteries.

The rest of this paper is organized as follows. In Section 2, we describe the experiment
and data preparation in detail, including the battery aging test conditions, the feature
extraction from the IC curve, and internal resistance identification. The principle of LSTM-
KAN and the SOH estimation model framework based on LSTM-KAN are shown in
Section 3. The prediction results of the proposed SOH estimation model and the comparison
between different models and input parameters are shown in Section 4, and the conclusions
are drawn in Section 5.

2. Experiment and Data Preparation
2.1. Battery Aging Test

To obtain the aging data of batteries, a test platform was established, as shown in
Figure 1. A battery testing system, BTS4000 (Neware, Shenzhen, China), was used to
run the defined charge/discharge cycles. Eight commercial LiFePO4 batteries were tested
in the experiment, and cell specification is shown in Table 1. The cells were placed in
the temperature control chamber to maintain a stable ambient temperature during the
charging/discharging process. Capacity degeneration is closely related to the charging
environmental temperature. To accelerate the aging process, the ambient temperature
for charging and discharging was set at 35 ◦C. A standard charge/discharge regime was
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applied on the cells, which was composed of constant current (CC) charging with 1C to
the cut-off voltage, then constant voltage charging to the cut-off current of C/20, and CC
discharging with 1C to a cut-off voltage. The rest time between charge and discharge was
set to 0.5 h.
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Figure 1. Experiment setup for the aging test.

Table 1. Specification of cells used in the experiment.

Item

Nominal capacity 20 Ah
Nominal voltage 3.2 V

Charging cut-off voltage 3.65 V
Discharge cut-off voltage 2.5 V

Dimension 133 × 70 × 28 mm3

Temperature 35 ◦C
Sampling frequency 1 s

2.2. IC Curve Acquisition and Feature Extraction

Incremental capacity analysis is a widely used technique to obtain information on the
electrochemical properties of a cell and unveil degradation mechanisms. IC curves describe
the increment of battery capacity within an interval of voltage. The calculation formula is
given in Equation (3).

IC =
dQ
dV

=
∆Q
∆V

(1)

where ∆Q is the increment of capacity in the charge/discharge cycles. ∆V is the corre-
sponding voltage interval.

The IC curve reveals the phase-equilibrium-induced voltage plateau. The peaks of
curves are in the range of the voltage plateau. In the voltage plateau region, the capacity
increases rapidly with small voltage changes. Due to the limited voltage sampling frequency
of charging and discharging equipment, the linear interpolation method was used to obtain
the capacity with equal voltage intervals. A large voltage interval may miss some significant
information in this region. To obtain complete information on the IC curve as soon as
possible, the small voltage internal was set as 1 mV. The peak value of the IC curve and its
corresponding voltage platform are shown in Figure 2. The slope of the voltage capacity
(V-Q) curve has three obvious changes, which correspond to the three conspicuous peaks
of the IC curve. Each peak represents the phase transition point of the materials inside
cells, which can characterize the lithiation plateau, transforming into different lithiation
stages. The area enclosed by the curve and axis manifests the capacity change in the phase
transition. From the picture, it can be observed that the raw IC in the range of the voltage
plateau fluctuates greatly. Therefore, it is necessary to smooth the original curves through a
filtering algorithm. In this work, the Gaussian filter method was adopted to preprocess
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the raw IC curves, which can alleviate the effect of the interference in different cycles on
significant IC curve feature extractions.
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Figure 2. Capacity variation with voltage and IC curve during a charging cycle.

To investigate the relationship between the charge capacity and voltage, partial V-Q
curves during 700 cycles are demonstrated in Figure 3. The curves almost overlap in the
range from 2.7 V to 3.15 V. In the range of 3.15 V–3.65 V, the difference between curves is
relatively large due to capacity degeneration. From this view, as the cycle increases, the
position of the voltage plateau is offset to the right. This phenomenon suggests that the
peaks of IC curves shift as the battery ages. However, as the cycle progresses, this trend
becomes less significant. From the enlarged view, the slope of the voltage plateau becomes
slowed down from cycle 1 to cycle 701, especially in phase 3. In other words, the heights of
peaks decrease with battery degradation.
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To further verify these findings, all the IC curves during 701 cycles are demonstrated
in Figure 4. It is evident that the positions of curve peaks shift and the height of the
peaks changes, especially the third peak. Moreover, the initial and end voltage values
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of the voltage platform are also different. As a battery ages, the peaks may become less
pronounced, and the IC curve may flatten overall. This demonstrates that changes in the
positions, shapes, and heights of peaks and dips over time can provide information about
a battery’s state of health. Therefore, we extracted the features of IC curves considering
these changes, and the features include the positions of peaks (LP1, LP2, LP3), heights of
peaks (HP1, HP2, HP3), width of peaks (WP1, WP2, WP3), positions of dips (Ld1, Ld2, Ld3),
and heights of dips (Hd1, Hd2, Hd3), as shown in Figure 5. It was observed that all the
peak features were in the voltage range of 3.2 V to 3.5 V. The state of charge of batteries in
the voltage range was 20–85%, which is exactly the actual working range of most battery
systems such as electric vehicles.
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2.3. Internal Resistance Identification
2.3.1. Model Establishment

Equivalent circuit models are widely used to recognize and estimate the internal
parameters of batteries, which are crucial for understanding and managing battery perfor-
mance. These models provide a simplified representation of the complex electrochemical
processes occurring within the battery, making it easier to analyze and control. Commonly
used equivalent circuit models of batteries include Rint, Thevenin, 2RC, PNGV, and GNL
models. The Rint model is simple, involving only an OCV and a single resistor, which does
not capture the dynamic response of the battery to changing loads and conditions, leading
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to less accurate predictions of battery performance. The single RC branch in the Thevenin
model captures only basic transient behavior, leading to less accurate representations of
the battery’s dynamic performance, especially under varying load conditions. The PNGV
and GNL models are more sophisticated battery models, so the process of identifying and
calibrating the parameters is more complex and time-consuming compared to the 2RC
model. The 2RC model provides a more accurate representation of a battery’s behavior,
especially under varying load conditions. By including two RC pairs, this model captures
both the short-term and long-term dynamics of the battery, reflecting its real-world perfor-
mance more closely. Compared to the Thevenin model, the 2RC model can more effectively
represent these non-linearities, improving the predictive capability of simulations and
control systems. By capturing both fast and slow dynamics, the second-order RC model can
provide better insight into the SOH of the battery. This allows for more precise monitoring
and diagnostics of parameters like internal resistance and capacitance, which are indicative
of aging and degradation. A 2RC equivalent circuit model was used in this work, as
shown in Figure 6. R0, R1, and R2 represent the ohmic internal resistance and polarization
resistance of cells, respectively. The dynamics of 2RC circuits can be given as shown in
Equation (2) [31].

Uoc(t)− UL(t) = UP1(t) + UP2(t) + i(t)R0.
U1(t) =

i(t)
C1

− U1
C1R1.

U2(t) =
i(t)
C2

− U2
C2R1
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According to Equation (2), the complex frequency domain dynamics model of the 2RC
circuit can be given in

Uoc(s)− UL(s) = I(s)
(

R0 +
R1

R1C1s + 1
+

R2

R2C2s + 1

)
(3)

The transfer function is expressed as

G(s) =
Uoc(s)− UL(s)

I(s)
=

(
R0 +

R1

R1C1s + 1
+

R2

R2C2s + 1

)
(4)

The z-transform can be used to discretize the above continuous equation by the
following equation:

s =
2(1 − z−1)

T(1 − z−1)
(5)

Through a combination of Equations (4) and (5), the discrete transferring function can
be expressed as

G(z−1) =
a3 + a4z−1 + a5z−2

1 − a1z−1 − a2z−2 (6)
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a1 = 8τ1τ2−2T2

T2+4τ1τ2+2Tτ1+2Tτ2

a2 = 2Tτ1+2Tτ2−T2−4τ1τ2
T2+4τ1τ2+2Tτ1+2Tτ2

a3 = T2R1+T2R2+2TR1τ2+2TR2τ1
T2+4τ1τ2+2Tτ1+2Tτ2

a4 = 2T2R1+2T2R2
T2+4τ1τ2+2Tτ1+2Tτ2

a5 = T2R1+T2R2−2TR1τ2−2TR2τ1
T2+4τ1τ2+2Tτ1+2Tτ2

(7)

where T is the sampling interval. A1, a2, a3, a4, and a5 are the coefficients related to the
model parameters. τ1 = R1C1, and τ2 = R2C2.

The differential equation of the RC model is given as

U(k) = a1U(k − 1) + a2U(k − 2) + a3 I(k) + a4 I(k − 1) + a5 I(k − 2) (8)

The RLS algorithm is extensively employed in battery parameter identification due
to its efficiency and accuracy in the real-time estimation of dynamic systems. The RLS
algorithm is an adaptive filter algorithm that recursively finds the coefficients that minimize
a weighted linear least squares cost function relating to the input signals. It is well suited
for systems where parameters change over time, making it ideal for battery modeling. The
model can be described by the recursive process of the RLS algorithm as follows:

U(k) = φT(k)θ(k)
φ(k) = [U(k − 1), U(k − 2), I(k), I(k − 1), I(k − 2)]T

θ(k) = [a1, a2, a3, a4, a5]
T

(9)

Combining the above equations, the parameters can be expressed as

R0 = [a3 − a4 + a5]/[1 + a1 − a2]
R1C1R2C2 = [T2(1 + a1 − a2)]/[4(1 − a1 − a2)]
R1C1 + R2C2 = [T(1 + a2)]/[1 − a1 − a2]
R0 + R1 + R2 = [a3 − a4 + a5]/[1 − a1 − a2]
R0R1C2 + R0R2C2 + R1R2C1 + R1R2C2 = T[a5 − a3]/[1 − a1 − a2]

(10)

The parameters of the equivalent circuit model can be determined by calculating
Equation (10).

2.3.2. Identification Results

The Hybrid Pulse Power Characterization (HPPC) test profile was added in each dis-
charge cycle, as demonstrated in Figure 4, and was used to generate data for identifying the
parameters of 2RC models. Internal resistance varies with the environmental temperature,
the SOC of batteries, and the SOH. To eliminate the interference of temperature and the
SOC, testing was carried out in a constant environment temperature, and the HPPC test
was conducted in the same SOC state during the discharge phase. The data of HPPC
were used to identify the parameters of the 2RC model by the RLS algorithm, as shown
in Figure 7. As demonstrated in Figure 7a, the predicted terminal voltage was in good
agreement with the experimental one. The error between the predicted and experimental is
illustrated in Figure 7b, and the mean absolute error was less than 0.4 mV. This indicates
that the identified parameters accurately represented the battery’s behavior. The identified
parameters of the equivalent model are shown in Figure 7c,d. The average value of the
identification parameters during the relaxation phase was taken as the final value for
each parameter.
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Figure 7. Results of parameter identification for the 2RC equivalent circuit model. (a) the comparison
of simulated and experimental voltage; (b) the simulation error; (c) and (d) the identification value of
R0, R1, R2, C1, C2.

3. SOH Estimation Based on LSTM-KAN
3.1. LSTM-KAN Architecture

A Long Short-Term Memory Network is a special type of Recurrent Neural Network
(RNN) capable of learning long-term dependencies, which has since been widely adopted
for various tasks involving sequential data. The core component of an LSTM network is the
memory cell, which can maintain its state over time. This allows the network to remember
important information for long periods. LSTMs have three types of gates that regulate the
flow of information, including forget gate, input gate, and output gate. The forget gate
decides which parts of the cell state to forget. It takes the previous hidden state (ht−1) and
the current input (xt) and passes them through a sigmoid function, as follows:

ft = σ(W f · [ht−1, xt] + b f ) (11)

The input gate decides which new information to store in the cell state. It has two
parts: the input gate layer and candidate values. The former determines which values to
update, and the latter creates new candidate values to be added to the state. The formulas
of the input gate layer and candidate values can be described as follows:

it = σ(Wi · [ht−1, xt] + bi) (12)
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∼
Cn = tanh(Wc · [ht−1, xt] + bc) (13)

The new cell state is a combination of the old state and the new candidate values.

Ct = ft · Ct−1 + it ·
∼
Ct (14)

The output gate determines the next hidden state, which is a filtered version of the
cell state.

Ot = σ(Wo · [ht−1, xt] + bo) (15)

The hidden state output of the network node is described and calculated by this
equation, as follows:

ht = Ottanh(Ct) (16)

Kolmogorov–Arnold Networks (KANs) are a novel network architecture proposed
by the MIT team in May 2024, which were inspired by the Kolmogorov–Arnold repre-
sentation theorem [15], as shown in Figure 8. This theorem states that any multivariable
continuous function can be decomposed into a finite sum of continuous functions of one
variable and an additional continuous function. Leveraging this theoretical foundation,
Kolmogorov–Arnold Networks aim to simplify the representation of complex functions
and improve the efficiency and interpretability of neural networks.
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Figure 8. Kolmogorov–Arnold Network architecture.

The architecture of KANs typically involves a decomposition of the input space into
individual dimensions, followed by processing through one-dimensional functions before
combining the results. The theorem can be expressed as follows:

f (x1, . . . , xn) =
2n+1

∑
q=1

Φq

(
n

∑
p=1

φq,p(xp)

)
(17)

where φq,p are univariate functions that map each input variable xp, and Φq are continuous
functions. This enables a KAN to model complex interactions in high-dimensional data by
breaking them down into compositions of simpler univariate functions.

A KAN layer with nin-dimensional inputs and nout-dimensional outputs can be defined
as a matrix of 1D functions.

Φ =
{

ϕq,p
}

, p = 1, 2, . . . , nin, q = 1, 2, . . . , nout (18)

where the ϕq,p is parametrized functions with l trainable parameter.
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A deeper KAN is composed of multiple KAN layers with a strong ability to model
more complex functions. The architecture of a deeper KAN can be expressed as follows:

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ . . . ◦ Φ0)(x) (19)

LSTM-KAN combines the strengths of LSTM networks with the theoretical insights of
Kolmogorov–Arnold Networks to model complex, time-dependent relationships in high-
dimensional data. This hybrid approach leverages an LSTM’s ability to handle sequential
data and a KAN’s capacity for simplifying multivariate functions into compositions of
univariate functions. The hybrid network is implemented by integrating a KAN directly
into the hidden layer of an LSTM network. This can be especially useful for applications
requiring both temporal sequence analysis and complex feature interactions.

3.2. SOH Estimation Model Framework

In the above section, the features of IC curves and the parameters of internal resistance
were obtained. Next, the extracted features and internal resistance were taken as input
parameters, and the output was the SOH. From Figure 4, it is observed that the IC curves
did not all shift to the right as the cycle increased; rather, the curve offset presented a time
series characteristic. Here, the LSTM network was used to process the IC curve features
and internal resistance parameters and capture the temporal dependencies. In the hidden
layer before output, the KAN layer was used to replace the standard fully connected layers
in the LSTM. The structure of the proposed SOH estimation model based on LSTM-KAN
is shown in Figure 9. This framework provides a robust approach to estimate the battery
SOH using LSTM-KAN and features derived from IC curves, leveraging the strengths of
the LSTM in handling sequential data and the KAN in decomposing complex multivariate
functions to achieve accurate and reliable SOH predictions. The input parameter matrix
consists of 18 parameters, including 15 IC features, and 5 parameters of 2RC equivalent
circuit models.
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3.3. Evaluation of the Error of the SOH

Evaluating the error of SOH estimation models is critical in order to ensure their
accuracy and reliability. Three error metrics are utilized to evaluate the performance of
different estimation models.

Mean Absolute Error (MAE)

MAE =
1
n

n

∑
i=1

∣∣∣yi −
⌢
y i

∣∣∣ (20)
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Mean Absolute Error (MAPE)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣yi −
⌢
y i

yi

∣∣∣∣∣ ∗ 100% (21)

Mean Absolute Error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(yi −
⌢
y i)

2
(22)

where yi and
⌢
y i are the real value and predicted value at test cycle I, and n is the total of

the test cycles.

4. Results of SOH Estimation
4.1. The SOH Estimated by the LSTM-KAN Model

The data used in this experiment come from the accelerated aging test, and eight
batteries with different initial SOHs were selected as the samples. Four fresh cells and
four cells with the same specifications were selected for the aging tests. The initial SOH
and aging cycles experienced are shown in Table 2. Selecting batteries with different SOH
values not only enriches the sample types in the training data but can also be used to verify
the generalization ability of the estimation model under different SOH conditions.

Table 2. SOH initial values and the experienced cycles of battery samples.

Bat. #1 Bat. #2 Bat. #3 Bat. #4 Bat. #5 Bat. #6 Bat. #7 Bat. #8

SOH 100% 100% 100% 100% 90.3% 87.9% 88.09% 96.18%
Cycles 500 1070 930 380 550 375 320 590

The training dataset is composed of the IC features and parameters of the equivalent
circuit of six batteries (Bat. #1, #2, #3, #6, #7, and #8). The data of Bat. #4 and Bat. #8 are
used as the test and validation dataset, respectively. The SOH of Bat. #4 was estimated
using the three most commonly used machine learning methods and the hybrid models
based on the KAN, as shown in Figure 10. The actual SOH shows a steady decline over
the cycle range, from 0 to 600. The SOH value predicted by the five models follows the
general trend in the actual SOH but with different degrees of fluctuation. From the picture,
the SOH predicted by the BP model has significant deviation from the actual value. The
values estimated by the LSTM-KAN and TCN-KAN models are better matched with the
actual SOH. The results indicate that while the conventional models can capture the overall
degradation trend, they show some noise or variability in their predictions. The SOH
predicted by hybrid models closely follows the actual value with less fluctuation.

To ensure the trained model’s robustness and generalization ability, a validation
dataset was used to evaluate its performance. The data for Bat. #5 were used as the valida-
tion dataset. The results of the validation are illustrated in Figure 11, which demonstrates
that the trained models also have good performance on the validation dataset. The values
predicted by the five models show a similar trend to the actual SOH but with a noticeable
offset from the actual SOH in the BP and TCN models. From the enlarged view, it can be
observed that the SOH predicted by the LSTM-KAN model is closer to the actual value.
Similar to the results of the test data, the prediction error of the BP model is the largest in
the validation dataset.

The results of the test and validation data confirm the superior performance and
generalization ability of the hybrid model compared to the standalone network. The
consistency of the hybrid model’s performance across both the training and validation
datasets suggests that it effectively captures the underlying patterns of battery degradation.
This demonstrates that the hybrid model not only performs well on the training data but
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also maintains high accuracy and stability when applied to new data. The error metrics of
the five models on the test and validation dataset are shown in Table 3. It demonstrates that
the prediction errors of the BP model are the largest among the five models. All the errors of
the hybrid model are smaller than those of the original model. In the test dataset, the LSTM-
KAN model has the fewest errors, and the MAE, MAPE, and RMSE are 0.412%, 0.462%,
and 0.570%, respectively. In the validation dataset, the MAE of the LSTM and LSTM-KAN
are 0.438% and 0.256%, which is in good agreement with the results of the test data. The
SOH estimation performance of the LSTM-KAN and TCN-KAN models is comparable. The
above results demonstrate that combining the KAN can effectively improve the estimation
performance of conventional machine learning models, and the LSTM-KAN model has
the best performance in SOH estimation, with a comprehensive comparison of testing and
validation data results. Therefore, the LSTM-KAN model was used to further investigate
the model performance under different input parameters. The training time of each model
is shown in Figure 12. In Refs. [11,12], the SOH estimation models are established based
on similar methods, but the estimation error (MAE: 1.16%, 1.957%) of the model in the
literature is far larger than that proposed in this work (MAE: 0.412%).

Batteries 2024, 10, x FOR PEER REVIEW 14 of 18 
 

training time of each model is shown in Figure 12. In Refs. [11,12], the SOH estimation 
models are established based on similar methods, but the estimation error (MAE: 1.16%, 
1.957%) of the model in the literature is far larger than that proposed in this work (MAE: 
0.412%). 

Table 3. SOH estimation errors of two models in different datasets. 

 MAE MAPE RMSE 
Test-BP 0.811% 0.921% 1.028% 

Test-TCN 0.472% 0.528% 0.607% 
Test-LSTM 0.519% 0.585% 0.641% 

Test-LSTM-KAN 0.412% 0.462% 0.570% 
Test-TCN-KAN 0.426% 0.476% 0.572% 
Validation-BP 0.531% 0.569% 0.727% 

Validation-TCN 0.461% 0.495% 0.547% 
Validation-LSTM 0.438% 0.472% 0.490% 

Validation-LSTM-KAN 0.256% 0.278% 0.378% 
Validation-TCN-KAN 0.251% 0.268% 0.365% 

 
Figure 10. Predicted SOH of Bat. #4 for the test dataset. Figure 10. Predicted SOH of Bat. #4 for the test dataset.

Batteries 2024, 10, x FOR PEER REVIEW 15 of 18 
 

 
Figure 11. SOH of Bat. #5 predicted by the trained model. 

 
Figure 12. Training time of each model. 

4.2. The SOH Estimated by the LSTM-KAN Model with Different Input Variables 
To investigate the improvement of the model after integrating internal resistance pa-

rameters into the input variables, the training data were divided into two groups: group Ⅰ 
and group Ⅱ. The input variables in model Ⅰ include 15 features extracted from IC curves 
and internal resistance parameters, and those in model Ⅱ only contain 15 features ex-
tracted from IC curves, as demonstrated in Table 4. The corresponding SOH estimation 
models, model Ⅰ and model Ⅱ, were trained using datasets from group Ⅰ and group Ⅱ, 
respectively. Figure 13 illustrates the SOH of Bat. #5 predicted by two models. The results 
show that the predicted SOH is closely aligned with the actual value. Model Ⅱ shows 
greater variability and deviations from the actual SOH compared to model Ⅰ. The perfor-
mance of the two models on the validation samples is demonstrated in Figure 14. Simi-
larly, model Ⅰ demonstrates better prediction performance than that of model Ⅱ. From the 
subplots, model Ⅰ has a lower MAE in the test and validation dataset. This indicates that 
the integration of internal resistance parameters into the input parameters can improve 
the model’s performance. 

Figure 11. SOH of Bat. #5 predicted by the trained model.



Batteries 2024, 10, 315 14 of 17

Table 3. SOH estimation errors of two models in different datasets.

MAE MAPE RMSE

Test-BP 0.811% 0.921% 1.028%
Test-TCN 0.472% 0.528% 0.607%

Test-LSTM 0.519% 0.585% 0.641%
Test-LSTM-KAN 0.412% 0.462% 0.570%
Test-TCN-KAN 0.426% 0.476% 0.572%
Validation-BP 0.531% 0.569% 0.727%

Validation-TCN 0.461% 0.495% 0.547%
Validation-LSTM 0.438% 0.472% 0.490%
Validation-LSTM-

KAN 0.256% 0.278% 0.378%

Validation-TCN-
KAN 0.251% 0.268% 0.365%
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4.2. The SOH Estimated by the LSTM-KAN Model with Different Input Variables

To investigate the improvement of the model after integrating internal resistance
parameters into the input variables, the training data were divided into two groups: group
I and group II. The input variables in model I include 15 features extracted from IC
curves and internal resistance parameters, and those in model II only contain 15 features
extracted from IC curves, as demonstrated in Table 4. The corresponding SOH estimation
models, model I and model II, were trained using datasets from group I and group II,
respectively. Figure 13 illustrates the SOH of Bat. #5 predicted by two models. The
results show that the predicted SOH is closely aligned with the actual value. Model II
shows greater variability and deviations from the actual SOH compared to model I. The
performance of the two models on the validation samples is demonstrated in Figure 14.
Similarly, model I demonstrates better prediction performance than that of model II. From
the subplots, model I has a lower MAE in the test and validation dataset. This indicates
that the integration of internal resistance parameters into the input parameters can improve
the model’s performance.
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Table 4. Input and output variables of model I and model II.

Input Output

Model I LP1, LP2, LP3, HP1, HP2, HP3, WP1, WP2, WP3, Ld1, Ld2, Ld3, Hd1, Hd2, Hd3, R0, R1, R2, C1, C2 SOH
Model II LP1, LP2, LP3, HP1, HP2, HP3, WP1, WP2, WP3, Ld1, Ld2, Ld3, Hd1, Hd2, Hd3 SOH
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5. Conclusions

In this paper, we presented an innovative approach for estimating the SOH of Li-ion
batteries by integrating incremental capacity analysis and internal resistance identification,
using a hybrid model of traditional machine learning models and a KAN. The results
demonstrate that the proposed hybrid model has good performance for SOH estimation
in the test and validation dataset. The hybrid model integrated with the KAN effectively
captured the complex relationships among the input features, leveraging its architecture
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to improve estimation performance. The accuracy of the hybrid models is higher than
that of conventional models, which illustrates that hybrid models combined with KANs
can enhance the accuracy and reliability of SOH predictions. The comparison of models
with different inputs showed that including internal resistance as input parameters can
enhance the accuracy of the model compared to using only IC features. All input features
of the model were extracted from the charge data within the SOC range of 20% to 80%. The
proposed model does not require full charge and discharge data. This framework shows
promising application prospects in battery management systems of electric vehicles, which
can facilitate more accurate monitoring and fast detection of battery SOHs.
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arXiv 2024, arXiv:2404.19756.
16. Vaca-Rubio, C.J.; Blanco, L.; Pereira, R.; Caus, M. Kolmogorov-arnold networks (kans) for time series analysis. arXiv 2024,

arXiv:2405.08790.

https://doi.org/10.1016/j.jpowsour.2019.226692
https://doi.org/10.1016/j.jpowsour.2012.10.060
https://doi.org/10.1016/j.rser.2015.11.042
https://doi.org/10.1016/j.apenergy.2008.11.021
https://doi.org/10.1038/s41467-023-38458-w
https://doi.org/10.3390/en13040812
https://doi.org/10.1016/j.measurement.2017.11.016
https://doi.org/10.1016/j.jpowsour.2018.10.069
https://doi.org/10.1016/j.jpowsour.2013.02.012
https://doi.org/10.3390/en15165981
https://doi.org/10.1016/j.energy.2022.125234
https://doi.org/10.1016/j.est.2022.106277
https://doi.org/10.1016/j.jpowsour.2020.228863
https://doi.org/10.1016/j.est.2022.105046


Batteries 2024, 10, 315 17 of 17

17. Pastor-Fernández, C.; Uddin, K.; Chouchelamane, G.H.; Widanage, W.D.; Marco, J. A Comparison between Electrochemical
Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-ion Diagnostic Techniques to Identify and Quantify
the Effects of Degradation Modes within Battery Management Systems. J. Power Sources 2017, 360, 301–318. [CrossRef]

18. Zheng, L.; Zhu, J.; Lu, D.D.-C.; Wang, G.; He, T. Incremental capacity analysis and differential voltage analysis based state of
charge and capacity estimation for lithium-ion batteries. Energy 2018, 150, 759–769. [CrossRef]

19. Jiang, B.; Dai, H.; Wei, X. Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering
charging condition. Appl. Energy 2020, 269, 115074. [CrossRef]

20. Li, Y.; Abdel-Monem, M.; Gopalakrishnan, R.; Berecibar, M.; Nanini-Maury, E.; Omar, N.; van den Bossche, P.; Van Mierlo, J. A
quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter. J.
Power Sources 2018, 373, 40–53. [CrossRef]

21. Li, X.; Yuan, C.; Wang, Z. State of health estimation for Li-ion battery via partial incremental capacity analysis based on support
vector regression. Energy 2020, 203, 117852. [CrossRef]

22. Beltran, H.; Sansano, E.; Pecht, M. Machine learning techniques suitability to estimate the retained capacity in lithium-ion
batteries from partial charge/discharge curves. J. Energy Storage 2023, 59, 106346. [CrossRef]

23. Raccichini, R.; Amores, M.; Hinds, G. Critical Review of the Use of Reference Electrodes in Li-Ion Batteries: A Diagnostic
Perspective. Batteries 2019, 5, 12. [CrossRef]

24. Barai, A.; Uddin, K.; Widanage, W.D.; McGordon, A.; Jennings, P. A study of the influence of measurement timescale on internal
resistance characterisation methodologies for lithium-ion cells. Sci. Rep. 2018, 8, 21. [CrossRef] [PubMed]

25. Meddings, N.; Heinrich, M.; Overney, F.; Lee, J.-S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberšček, M.; et al.
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