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Abstract: In the current context of increasing energy demand, ionic liquids (ILs) are presented
as possible candidates to replace conventional electrolytes and to develop more efficient energy
storage devices. The IL 1-Methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide
has been selected for this work, due to the good thermal and chemical stabilities and good
electrochemical performance of the pyrrolidinium cation based ILs. Binary mixtures of this IL and
lithium salt with the same anion, [TFSI], have been prepared with the aim of assessing them, as
possible electrolytes for lithium batteries. These mixtures were thermally and electrochemically
characterised through DSC and dielectric spectroscopy studies. The ionic conductivity decreases
as the salt concentration increases, finding values ranging between 0.4 S/m and 0.1 S/m at
room temperature. Additionally, a wide liquid range was found for the mixtures, which would
reduce or even eliminate some of the most common problems of current electrolytes, such as
their crystallisation at low temperatures and flammability. Finally, the toxicity of pure IL and the
intermediate salt concentration was also evaluated in terms of the bioluminescence inhibition
of the Alivibrio Fischeri bacteria, observing that, although the toxicity increases with the salt
addition, both samples can be classified as practically harmless.

Keywords: ionic liquids; battery safety; non-aqueous electrolyte; DSC; BBDS; Microtox®

1. Introduction

One of the biggest challenges for contemporary society is the transition to a new
energy model based on renewable resources instead of fossil fuels. This transition in-
volves many demanding tasks that must be taken up by science and the whole society,
including sustainable consumption, material recycling, and the circular economy. An-other
fundamental aspect that needs to be addressed is the primary issue posed by renewable
sources: their intermittency. Their output depends on environmental factors, seasonal
variations, weather conditions, and the day/night cycles. As a result, peak production
frequently does not coincide with peak demand, underscoring the necessity for systems to
store surplus energy. For this reason, the development and innovation of energy storage
systems is currently a strategic line. The actual battery market is dominated by lithium-
ion batteries (LIBs) due to their numerous advantages over other battery systems. These
include high specific capacity and voltage, a wide operation temperature range, excellent
cycling performance, minimal self-discharge, and the absence of memory effects [1].

Nowadays, most LIBs are composed of a carbonate(s) in combination with a lithium
salt [2]. Nevertheless, common carbonates have a flash point near room temperature,
making them highly inflammable if exposed to extreme thermal, electrical, or mechanical
conditions, in which can lead to serious events such as fire or explosion [3]. While the risk
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of failure in a single cell is minimal, the risk increases significantly when thousands of cells
are enclosed in a single battery pack.

Aqueous-based electrolytes present advantages over carbonate-based ones in terms of
safety and cost. Nevertheless, they exhibit lower energy densities, narrower electrochemi-
cal stability windows, and limitations at temperatures below the crystallisation point of
water [4].

Ionic liquids (ILs) have recently attracted considerable interest because of their excep-
tional properties and potential applications across diverse fields. The ILs are composed
entirely of ions and exist in the liquid state at temperatures below 100 ◦C. The identifying
characteristic of ILs is their low volatility, which makes them environmentally friendly
alternatives, reducing the risk of air pollution and flammability [5,6]. One of the most
intriguing aspects of ILs is their tunability. By selecting different combinations of cations
and anions, it is possible to customize their physical and chemical properties to match
a particular application. This adaptability extends to their thermal and electrochemical
stability, solubility, viscosity, and ionic conductivity [4]. For instance, ILs can be designed to
dissolve a large sort of substances, including organic, inorganic, and polymeric substances,
making them highly effective solvents for chemical reactions and extractions [7].

Moreover, ILs have unique solvation properties with significant implications for
green chemistry, where ILs are used to replace volatile organic solvents, minimizing the
environmental impact [7]. So, to overcome the problem of common carbonates, ionic liquids
(ILs) and their blends with electrochemically relevant salts emerge as a viable alternative.
These mixtures offer enhanced safety, non-flammability [8] and thermal stability, without
compromising electrochemical performance [9].

The effectiveness of ionic liquid–Li-ion electrolyte solutions is directly influenced by
Li-ion mobility, which is intricately linked to their local environment, including solubility
and solvation properties, [7,10].

Between the practically unlimited combinations of ILs, pyrrolidinium based ILs
emerge as a clear alternative due to their exceptional thermal and electrochemical sta-
bility, versatility, and compatibility with Li-based battery materials [11,12]. N-methyl-
N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([C3C1Pyrr][TFSI]) was se-
lected due to the favourable characteristics of pyrrolidini-um-based ionic liquids [13].
Since ILs are not inherently electroactive, their use in LiBs requires mixing with lithium
salts. Instead of the frequently used LiPF6 for the electrolytes preparation, lithium
bis(trifluoromethanesulfonyl) imide (LiTFSI) was selected, whose high conductivity,
resistance to moisture, and extraordinary thermal and electrochemical stability makes it
a good alternative to the LiPF6 salt [14].

The aim of this study is to advance the properties knowledge of ILs and their
mixtures and their subsequent potential use in energy storage systems. Therefore, we
propose a comprehensive analysis of the thermal behaviour, electrical conductivity, and
ecotoxicity of mixtures of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)
imide ([C3C1Pyrr][TFSI]) and lithium bis(trifluoromethanesulfonyl)imide ([Li][TFSI])
at different concentrations.

2. Materials and Methods
2.1. Chemicals

The IL, 1-Methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide
([C3C1Pyrr][TFSI]) provided by IoLiTec, was selected for this work due to its promising elec-
trochemical properties as it is reported by different authors [15–17] and, as is also mentioned
before, their non-flammable character. The salt lithium bis(trifluoromethylsulfonyl)imide
([Li][TFSI]) was provided by Sigma Aldrich, sharing the anion with the IL. Table 1
summarizes the key characteristics of the ionic liquid and the salt, being the stated
purity of both higher than 0.99. To know the effect of salt concentrations on the physic-
ochemical and biological properties, mixtures of four different concentrations (mole of
salt per litre) ranging from 0.2 m to 1 m were analysed (Table 2).
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Table 1. Reagent used in this study.

Name Molecular Mass (g·mol−1) Structure Short Name
CAS Number

1-Methyl-1-propylpyrrolidinium
bis(trifluoromethylsulfonyl)imide 408.38
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Molality/mol kg−1 mLiTFSI/g

0.2 57.42
0.5 143.55

0.75 215.32
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2.2. Differential Scanning Calorimetry

The thermal behaviour and thermal transitions of the mixtures IL + salt were anal-
ysed using the Differential Scanning Calorimeter DSC Q2000 (Waters-TA Instruments.
New Castle, DE, USA) with hermetically sealed aluminium pans, samples mass of
(5–8) mg and nitrogen atmosphere. For the experimental part two heating-cooling cycles
between −80 ◦C and 100 ◦C at two different rates, 10 ◦C min−1 and 5 ◦C min−1, have
been carried out, after an initial ramp from room temperature to 125 ◦C at 40 ◦C min−1

with an iso-thermal step at 125 ◦C for 45 min, to remove possible volatile impurities.
Transition temperatures were determined as the onset point of the different peaks from
the DSC curves during the reheating and re-cooling ramps. Transition temperatures
were estimated with an uncertainty of 2 ◦C at 95% confidence [18]. Further details can
be found in previously published papers [19,20].

2.3. Ionic Conductivity

Ionic conductivities were measured through broadband dielectric spectroscopy using
an Agilent RLC precision meter HP 4284A (Agilent Technologies, Santa Clara, CA, USA)
with a precision of 0.05% in the measurements. The applied frequency range was 20 Hz
to 0.2 MHz to ensure a good fitting of the ohmic regime with a tolerance for the slope
of the imaginary part of the dielectric constant of −1.00 ± 0.02 described thoroughly
by J. Leys [21]. The mixtures were analysed using a symmetric two-electrode Swagelok
configuration with stainless-steel electrodes, this setup ensures that the distance between
electrodes remains constant. To control the temperature, the Swagelok cell was placed in a
climate chamber (Memmert ICP400, Schwabahc, Germany); measurements were pursued
in the range of 0 ◦C to 50 ◦C, starting with the lowest temperature. The experiment was
done following a static isothermal method with an extra 15 min to assure the thermal
equilibrium inside the chamber before performing the measurement.

2.4. Toxicity

The toxicity of the pure [C3C1Pyrr][TFSI] and the mixture of intermediate concentra-
tion (0.5 m) with [Li][TFSI], selected based on melting and conductivity results, was
assessed using the Microtox® Toxicity Test kit (M500 Analyzer—Modern Water, Rema
Tek LLC, Bonsall, CA, USA), following the procedure detailed in previous studies [22,23].
The Microtox® test measures the luminescence inhibition in the Gram-negative marine
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bacterium Aliivibrio fischeri (A. fischeri) by targeting a quorum sensing mechanism. When
exposed to a toxic substance, bacterial respiration is disrupted, leading to a de-crease in
bioluminescence, which correlates directly with the metabolic activity of the bacterial
population. The results were compared with previous data on ILs of the same and
different nature.

A range of diluted aqueous solutions (0 to 81.9%) of each compound was prepared
for the acute toxicity test, with exposure times of 5, 15, and 30 min. The resulting data
were used to estimate the effective concentrations causing 50%, 20%, and 10% (EC50, EC20,
and EC10, respectively) luminescence inhibition. The 95% confidence intervals were also
calculated using non-linear regression and the least-squares method to fit the data to the
logistic equation [22,23].

Passino and Smith [24] proposed six toxicity levels in their widely used toxicity classi-
fication based on EC50 values at 30 min, as follows: EC50 > 1000 mg/L: relatively harmless;
1000 mg/L > EC50 > 100 mg/L: practically harmless; 100 mg/L > EC50 > 1 mg/L: toxic;
1 mg/L > EC50 > 0.1 mg/L: highly toxic; 0.1 mg/L > EC50 > 0.01 mg/L: extremely toxic
and EC50 < 0.01 mg/L: super toxic.

3. Results
3.1. DSC Results

The comparison of DSC curves registered on cooling and on subsequent heating
at 5 C min−1 for mixtures of [C3C1Pyrr][TFSI] + [Li][TFSI] and pure IL, are presented
in Figure 1. As it can be observed, pure IL shows a unique peak on both, cooling and
heating scans, which correspond to freezing and melting processes, respectively. The
shift between the onset temperatures of these two peaks, around 20 ◦C; known as the
super-cooling effect, is common in ILs due to the difficulty of crystallization that these
com-pounds present where in addition to the Coulomb forces, Van der Waals interactions
have great importance [20,25].
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Table 3 summarizes the values of the characteristic temperatures and enthalpies,
determined as the onset temperature and area of the corresponding peak respectively.
Onset temperatures corresponding to the melting and freezing of the pure IL are in good
con-cordance with findings reported by other researchers [26–33].
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Table 3. Temperature of glass transition (tg), melting (tf), freezing (tc), and cold crystallisation (tcc)
and freezing, melting, and cold crystallisation enthalpies obtained from DSC curves.

Sample tg/◦C tf/◦C tm,1/◦C tm,2/◦C tcc/◦C ∆ccH
/J g−1

∆fH
/J g−1

∆fH
/kJ mol−1

∆mH
/J g−1

∆mH
/kJ mol−1

[C3C1Pyrr][TFSI] -- −12 9 -- -- -- −33 −13 36 15

0.2 m -- −25 0.3 6 −46 −2.6 −22 −10 34 15

0.5 m −74 −25 0.7 10 −39 −13.9 −10 −5 34 16

0.75 m −69 −19 −0.1 19 -- -- −24 −12 27 13

1.0 m -- −15 −1.4 19 -- -- −24 −13 23 12

The thermal behaviour of IL + salt mixtures reflects important differences com-
pared to the pure IL, and they are highly dependent on both the molar fraction of the
[Li][TFSI] salt and the scanning rate, as shown in Figures 2 and 3. Thus, DSC curves
upon heating corresponding to the 10 ◦C min−1 (blue) and 5 ◦C min−1 (red), presented
in Figure 2, show that the scanning rate does not influence the thermal behaviour of
pure IL, as the onset and peak area of the melting peak are similar for both experiments,
although this is not fulfilled for the mixtures with the lithium salt. As observed, the
cycle at 10 ◦C min−1 presents an exothermic cold crystallization peak upon heating for
mixtures of 0.2, 0.5 and 0.75 m of [Li][TFSI] samples; but these peaks became smaller or
even disappeared after recooling and reheating the sample at 5 ◦C min−1. In all cases,
the onset of cold crystallization as well as the area of the corresponding peak change
with the scanning rate. This is due to the fact that this event is a kinetically controlled
process, and crystallization is challenging at high scanning rates, even though it is the
most stable form; which subsequently causes additional crystallization of the sample
upon heating. However, at lower rates, the sample completely crystallizes during the
cooling ramp, and therefore the exothermic peak upon heating, the cold crystallization
process, disappears. This can be seen in Figure 3, in which the cooling-heating cycles
of the mixture of IL + [Li][TFSI] 1 m at 10 ◦C min−1 and 5 ◦C min−1 are presented, and
the reduction of the cold crystallization peak with decreasing scanning rate is clearly
visible. It is important to highlight that the melting process is a thermodynamically
controlled transition, and the onset of the corresponding peak does not depend on the
scanning rate.

Another notable observation is the splitting of the initial melting peak into two dis-
tinct peaks of different sizes as salt is introduced into the mixture, even though the
molar heats associated with the overall process remains similar to those correspond-
ing to the pure IL, as shown in Table 3. With increasing molar fraction of lithium salt,
the resolution of both peaks increases, and the second peak even becomes the most
intense at the highest salt concentration. This suggests the coexistence of two different
polymorphic states, which is in good concordance with the findings of Hendersson
and Passerini [29] for these mixtures and recent results from our group with different
mixtures of IL + inorganic salt [34,35]. By increasing the salt concentration in the mix-
ture, the crystallinity tends to decrease, that means an increase of amorphous behaviour,
reflected by the disappearance and reduction of crystallization and fusion peaks and
the appearance of glass transitions at higher temperatures. For pure IL and lower molar
fractions, no glass transitions were detected within the experimental temperature range
(T > −80 ◦C). Although, in our case, crystallization and melting peaks appear for all
the mixtures, a clear loss of peak definition with higher salt concentration is observed,
connected to the increase of amorphous behaviour with salt addition.
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3.2. Ionic Conductivity Results

Dielectric measurements were carried out from high to low temperatures to use the
supercooling effect of these samples, as previously pointed out. The ionic conductivity
of binary mixtures of [C3C1Pyrr][TFSI] and [Li][TFSI] are shown in Figure 4a against
molality of [Li][TFSI] and Figure 4b against temperature in Arrhenius representation.
The ionic conductivity for pure [C3C1Pyrr][TFSI] agrees with previously published
results [15–17,26]. Regarding [C3C1Pyrr][TFSI] + [Li][TFSI] mixtures, their ionic con-
ductivity follows the expected pattern, a decrease with higher molalities of salt [36],
reaching 0.1180 S/m at 298 K at the highest molal concentration. This decrease is related
with the increment of the viscosity. However, other authors pointed that the formation
of diffusing [Li(TFSI)n]−(n−1) ionic species in the solutions might lead to a decrease in
conductivity [17,28]. Table 4 shows the ionic conductivities of all mixtures.
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Table 4. Ionic conductivities (in S.m−1) of pure IL and IL + [Li][TFSI] salt for different concentrations
and temperatures.

Temperature/◦C IL Pure 0.2 m 0.5 m 0.75 m 1.0 m

0 0.1138(37) 0.0936(71) 0.0394(15) 0.02764(17) 0.020539(95)
10 0.200(11) 0.155(20) 0.0810(50) 0.06148(62) 0.04694(32)
20 0.308(21) 0.267(41) 0.1364(99) 0.1125(19) 0.0905(10)
25 0.397(38) 0.305(48) 0.180(15) 0.1504(30) 0.1180(16)
40 0.645(59) 0.48(10) 0.325(40) 0.2726(89) 0.2412(57)
50 0.77(11) 0.64(14) 0.373(49) 0.32(11) 0.2998(79)

The ionic conductivity behaviour against temperature (shown in Figure 4b) is widely
described in the literature by the Vogel-Fulcher-Tammann (VFT) equation (Equation (1)).
At low temperatures the relaxation and transport properties become slower due to the glass
transitions that these ILs typically present [37] giving a non-monotonic behaviour against
temperature, described by this VFT-equation:

log σ = log σ∞ − B
(T − T0)

(1)

In the VFT equation, σ∞ represents the ionic conductivity at infinite temperature, B
is the fragility index or strength index, which inversely correlates with liquid´s kinetic
fragility, and T0, also known as Vogel temperature, is the temperature at which mobility
vanishes. The VFT parameters obtained from the individual fitting of the samples are
compiled in Table 5. The conductivity at infinite temperature shows small variations
with salt concentration, as previously reported [35]. A similar behaviour is observed for
B and T0.

Although VFT model fits to experimental data, the resulting dependence on salt
concentration shows behaviours that are challenging to explain physically. None of the
fitted parameters represent a clear relation with salt concentration, as also observed by
Tsamopoulos & Wang [38]. In their work, they demonstrated that the fitted values of T0
fails to follow the variations in glass transition temperature with salt concentration, and
likewise, unphysical fluctuations in σ∞ and B are found.
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Table 5. Fitting parameters of VFT and Arrhenius equations for all samples.

Sample
VFT-Equation Arrhenius Equation

Log σ∞ B/K−1 T0/K log (σ∞) Ea (10−1)/eV R2

IL pure 2.49(54) 326(98) 203(13) 10.36(71) 2.93(18) 0.98
0.2 m 2.38(72) 351(95) 199(21) 10.01(69) 2.89(17) 0.98
0.5 m 1.66(69) 274(87) 217(11) 11.6(11) 3.46(28) 0.97

0.75 m 1.40(47) 246(64) 223.3(86) 12.5(12) 3.75(33) 0.96
1.0 m 2.19(54) 372(89) 211.8(94) 13.7(11) 4.10(29) 0.98

In the case where T >> T0, a linear behaviour in the Arrhenius plot can be obtained,
and the approximation of the VFT equation by the Arrhenius equation is valid.

log σ = log σ∞ − Ea

kBT
(2)

where Ea represents the activation energy per molecule and kB the Boltzmann constant.
The fittings for all the samples to the Arrhenius equation were calculated and presented

in Table 5 and represented in Figure 5a.
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Figure 5. (a) Arrhenius plot of the ionic conductivity vs. temperature for mixtures with different
[Li][TFSI] contents and their fitting to the VFT equation, and (b) activation energy and log (sigma)
dependence on the molal concentration of lithium salt.

Regarding the physical meaning of the fitted parameters, it is clear that both activation
energy and log σ∞ follow an increasing monotonic behaviour with salt concentration for all
IL and salt mixtures, as shown in Figure 5b. The monotonic increase with salt concentration
of the exponential factor in the Arrhenius equation is related to the increase in the dielectric
constant [39]. The linear increase in activation energies with salt concentration indicates
that ion conduction in the electrolyte requires more energy to take place, which is consistent
with the decrease in ionic conductivity.

3.3. Toxicity Evaluation

Figure 6 shows the bioluminescence inhibition of bioluminescence in A. fischeri after
30 min of exposure to varying concentrations of the pure IL and its mixture with lithium
0.5 m. This concentration was selected due to its melting point being slightly lower
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than that of the other concentrations. Despite a 50% reduction in conductivity at 298 K
compared to the pure IL, it still maintains a high conductivity value.
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The inhibition responses for the analysed samples were fitted to a logistic equation.
EC50, EC20, and EC10 values after 5, 15, and 30 minutes of exposure are calculated from
these fitting equations and presented in Tables 6 and 7. As noted earlier, EC10 and EC20
provide initial benchmarks on the estimation of the lowest observed effect concentra-
tion, with EC10 being a particularly useful for assessing minimal environmental risks
independently of concentration. Bacterial bioluminescence serves as a key indicator of
cellular metabolism, where a decrease in luminescence reflects reduced cellular respira-
tion [40,41]. Remarkably, the observed trend in toxic effects remains consistent across
the different exposure times, suggesting a uniform mechanism of action on bacteria
throughout the entire exposure period.

Table 6. Effective concentration values in mg/L for [C3C1Pyrr][TFSI] and the corresponding 95%
confidence intervals, determined after of the three selected exposure times to the marine bacteria
A. fischeri.

[C3C1Pyrr][TFSI]

Exposure Time/min EC50/mg L−1 EC20/mg L−1 EC10/mg L−1

5 925.88 (741.93; 1109.83) 400.03 (258.09; 541.96) 244.70 (123.27; 366.13)
15 629.53 (423.12; 835.94) 291.98 (123.92; 460.04) 186.18 (39.69; 332.68)
30 516.32 (299.31; 733.32) 246.77 (63.47; 430.07) 160.13 (15.24; 312.40)

Table 7. Effective concentration values in mg/L for [C3C1Pyrr][TFSI] + [Li][TFSI] 0.5 m and the
corresponding 95% confidence intervals, determined after of the three selected exposure times of the
marine bacteria A. fischeri.

[C3C1Pyrr][TFSI] + [Li][TFSI] 0.5 m

Exposure Time/min EC50/mg L−1 EC20/mg L−1 EC10/mg L−1

5 178.72 (152.97; 204.48) 79.19 (59.39; 98.98) 49.16 (32.62; 65.70)
15 129.34 (107.09; 151.59) 56.92 (39.86; 73.97) 35.19 (21.04; 49.33)
30 109.88 (85.34; 134.42) 47.19 (28.78; 65.61) 28.77 (13.75; 43.79)

Although no literature results were found for this compound or its mixture with
lithium for A. fischeri, the EC50 values at 30 min are slightly lower than [C4C1Pyrr][TFSI].
This observation correlates well with the trend that the longer the alkyl chain, the higher
the toxicity [24,41–43].
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As highlighted in a previous study of our research group [23], the EC values decrease
approximately 4 times after the addition of [Li][TFSI] for all exposure times. This effect was
also observed for [C4C1Pyrr][TFSI] and [C4C1C1Im][TFSI] [23]. Even though the toxicity
of the salt itself is lower than that of the pure IL [43], this reduction can be attributed to
the increased concentration of [TFSI]- anions resulting from the salt addition. The highest
[TFSI]− concentration enhances the hydrophobicity of the sample, which is directly related
to the bioluminescence inhibition in A. Fischeri. Despite this, according to the classification
by Passino and Smith [24], both compounds can be classified within the same toxicity level:
practically harmless.

4. Conclusions

In this work, the thermal and electric properties of pure [C3C1Pyrr][TFSI] IL and its
binary mixtures with [Li][TFSI] at four different concentrations were studied, as well as the
toxicity of these compounds, which was also analysed in the study. The main conclusions
of the work are as follows:

• The increase in concentration of [Li][TFSI] makes the crystallization of the samples
more challenging, particularly at highest scanning rate. This results in increased
amorphous behaviour of the mixtures, evident from the broadening of the peaks and
the appearance of the glass transition that takes place at higher temperatures when
salt concentration is increased. Despite this, peaks related to crystalline behaviour
(freezing and melting) remains observable for all the salt concentrations.

• The ionic conductivity of [C3C1Pyrr][TFSI] + [Li][TFSI] mixtures, whose behaviour
against temperature is well described by the Vogel-Fulcher-Tammann (VFT) equation,
decreases with [Li][TFSI] concentration. A linear increase in activation energies with
salt concentration was found when fitting to Arrhenius equation, indicating that ion
conduction in the electrolyte requires more energy to take place.

• The addition of salt significantly increases the toxicity of the mixture, as indicated
by EC50 values. However, this increase does not change the toxicity classification
according to the criteria used in this study.
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