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Abstract: Health assessment is necessary to ensure that lithium-ion batteries operate safely and
dependably. Nonetheless, there are the following two common problems with the health assessment
models for lithium-ion batteries that are currently in use: inability to comprehend the assessment
results and the uncertainty around the chemical reactions occurring inside the battery. A rule-based
modeling strategy that can handle ambiguous data in health state evaluation is the belief rule base
(BRB). In existing BRB studies, experts often provide parameters such as the initial belief degree,
but the parameters may not match the current data. In addition, random global optimization meth-
ods may undermine the interpretability of expert knowledge. Therefore, this paper proposes a
lithium-ion battery health assessment method based on the double optimization belief rule base
with interpretability (DO-BRB-I). First, the belief degree is optimized according to the data distribu-
tion. Then, to increase accuracy, belief degrees and other parameters are further optimized using
the projection covariance matrix adaptive evolution strategy (P-CMA-ES). At the same time, four
interpretability constraint strategies are suggested based on the features of lithium-ion batteries to
preserve interpretability throughout the optimization process. Finally, to confirm the efficacy of
the suggested approach, a sample of the health status assessment of the B0006 lithium-ion battery
is provided.

Keywords: lithium-ion battery; belief rule base; health assessment; belief degree optimization;
interpretability; modelling strategy; P-CMA-ES

1. Introduction

Because of its high energy density, extended cycle life, and environmental friendliness,
lithium-ion batteries find extensive application in a variety of fields, including aerospace,
special equipment, and microgrid energy storage [1,2]. Lithium-ion batteries will pro-
gressively transition to an unstable state as a result of an internal chemical reaction with
prolonged operation. Lithium-ion batteries have the potential to explode and destroy
equipment if they are used in an unstable state. Lithium-ion battery health must, therefore,
be evaluated in a precise, secure, and trustworthy manner [3].

In general, the micro-health parameters of lithium-ion batteries refer to microscopic
indicators that can reflect the performance of the active substances and electrolytes inside
the battery. Changes in these parameters are usually related to the chemical reaction
of the battery, the aging of the material, and changes in the internal structure of the
battery [4]. By monitoring changes in micro-health parameters, the internal health state of
the battery can be determined. Current studies based on the health status assessment of
lithium-ion batteries are mainly divided into the following three types: data-driven model,
physical model, and hybrid model. The physical method of the lithium-ion battery health
assessment is to determine the health status of the battery by analyzing its electrochemical
reaction, internal structural changes, and electrical performance parameters. Amuta et al.
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proposed a method for evaluating the health status of lithium-ion batteries based on voltage
integration [5]. The method calculates the health status of a similar battery by integrating
the voltage at a given ambient temperature and constant current charge. Su et al. proposed
a method for evaluating the health status of lithium-ion batteries based on the distribution
of relaxation time (DRT) [6]. Asiedu–Asante proposed a method for monitoring the health
status of lithium-ion batteries via a frequency–domain reflectometry (FDR), which assesses
battery aging by analyzing the correlation between the impedance measured by FDR and
the equivalent series resistance (ESR) measured by EIS [7]. Wang et al. proposed a variable
separation algorithm based on first- and second-order quasi-Newton methods to estimate
and predict the health state of a battery by reducing the dimension and increasing the
convergence rate [8]. However, the accuracy of physics-based techniques is limited because
of intricate electrochemical reactions that occur inside lithium-ion batteries [9].

A data-driven approach enables accurate assessment of lithium-ion battery health
through historical data and machine learning. Singh et al. proposed a deep machine learn-
ing prediction technique that utilizes encoders and decoders to extract important features
and achieve high-precision Li-ion battery charge state prediction through time series analy-
sis [10]. Teixeira et al. proposed a model for estimating the health state curve of lithium-ion
batteries using gated cycle unit (GRU) neural networks, which provides a high-precision
estimation of the state charge curve for smartphone battery exchange applications with
low computational complexity and cost advantages [11]. Alwabli proposed a method for
battery health analysis using logistic regression and convolutional neural networks, which
further improved the performance indicators of convolutional neural networks through
particle swarm optimization, a process that is significantly superior to other models [12].
Lin et al. suggested using feature optimization and convolutional neural networks to
estimate the health state of lithium-ion batteries [13]. The method extracts a variety of elec-
trical, thermodynamic and electrochemical characteristics; combines principal component
analysis and convolutional neural network; and optimizes the feature dimension to achieve
good experimental results. While most data-driven models can yield relatively accurate
estimates, these methods are often black-box models and lack interpretability.

The hybrid approach to lithium-ion battery health status assessment is to improve
the accuracy and reliability of the assessment by combining two or more assessment
techniques and feature extraction methods for modeling. Wen et al. proposed an N-
CatBoost hybrid framework for accurate estimation of lithium-ion battery health status
and its uncertainty, demonstrating superior accuracy and interpretability to other machine
learning algorithms [14]. Wang et al. proposed an MFE–GRU TCA hybrid model to
accurately predict the health status, which showed root–mean–square errors (RMSE) of less
than 0.832% and 0.614% on the NASA and CALCE datasets, respectively [15]. Yang et al.
proposed an evidential inference rule health assessment method for lithium-ion batteries
based on dynamic reference values [16]. This method improves the accuracy and robustness
of the assessment through the dynamic adjustment and whale optimization algorithm
(WOA), and the experimental results show that it has good generalization ability. Yuan et al.
proposed a hybrid neural network based on variational mode decomposition and CNN–
Transformer for efficient prediction of lithium-ion battery health, which performs well on
CALCE datasets and has good generalization ability on NASA datasets [17]. However,
based on variational mode decomposition and CNN–Transformer, it is a modeling method
that combines the two models. This fusion method will not only increase the complexity of
the algorithm, but also has higher requirements for the fusion strategy [18]. The DO-BRB-I
model proposed in this paper can directly integrate expert knowledge and experience
into the model, and has good interpretability. At the same time, because the BRB model
adopts evidential reasoning (ER) for inference, its structure is simple, transparent, and
easy to understand. This approach avoids the black-box characteristics of complex deep
learning models and provides a more transparent decision-making basis when dealing
with uncertainty and nonlinear problems of complex systems. The hybrid model is usually
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a balance of the physical model and data-driven model, which has better accuracy and
interpretability [19].

The belief rule base (BRB) is a hybrid model based on data and knowledge [20]. It
is a model proposed by Yang et al. in 2006 through the Dempster–Shafer (D–S) theory
and IF–THEN rule [21]. A nonlinear modeling technique called BRB can represent several
types of uncertain information, including ignorance and randomness [22]. In addition,
because of its modeling method that combines expert knowledge and IF–THEN rules,
BRB has strong causal reasoning ability and good interpretability [23]. Therefore, in
recent years, many researchers have used BRB to evaluate the health status of lithium-
ion batteries. For example, Han et al. proposed a lithium-ion battery health assessment
model based on interpretability belief rule base (BRB-I), which addresses uncertainty and
interpretability deficiencies and improves optimization results through WOA [3]. Zhao
et al. proposed a method that combines an approximate belief rule base with a hidden
Markov model to estimate lithium-ion battery capacity in orbit, using historical data and
expert knowledge [24]. The model is validated with satellite battery performance data and
has proved effective for in-orbit capacity estimation.

However, in these studies, parameters such as belief degree were directly divided
by experts. While expert knowledge can provide broad and scientific guidance in one
context, there may be limitations to the applicability of such guidance to more specific data
sets. In addition, the problem that the randomness of the optimization algorithm in BRB
will destroy the interpretability of BRB should be further studied. Therefore, this paper
proposed a lithium-ion battery health assessment method based on the double optimization
belief rule base with interpretability (DO-BRB-I). In this method, the belief degree is doubly
optimized, and four interpretability constraint strategies are proposed in the optimization
process, which further enhances the interpretability of the model. The main contributions
of this paper are as follows:

(1) A belief degree optimization method for Gaussian membership function with Bayesian
updating (GMF-B) is proposed. This method can optimize the belief degree according
to the data distribution while maintaining the original expert knowledge.

(2) To improve the accuracy of the model, the projection covariance matrix adaptive
evolution strategy (P-CMA-ES) is used to further optimize the other parameters, such
as the belief degree, to form a double optimization.

(3) In view of the randomness of the optimization algorithm, four interpretability con-
straint strategies are proposed to constrain the interpretability based on the character-
istics of lithium-ion batteries.

The structure of this paper is as follows: Problem formulation and construction of
DO-BRB-I model are presented in Section 2. The optimization process of the model is
presented in Section 3. Section 4 provides the reasoning process of the model. Section 5
contains a case study. Finally, the conclusion is given in Section 6.

2. Problem Formulation and DO-BRB-I Model Construction

This part first describes the problems existing in the health status assessment of
lithium-ion batteries based on BRB. Then, the DO-BRB-I model is constructed.

2.1. Problem Formulation

This study aims to solve the following three problems in the health status assessment
model of lithium-ion batteries based on BRB:

Problem 1: How to obtain a more reasonable belief distribution by combining the data
distribution while maintaining the original expert knowledge.

Although experts can provide extensive and scientific guidance on the classification
of belief degrees, this guidance is often based on the accumulation of experience and
theory [25]. However, in the application of specific data sets, this guidance may have
certain limitations. In particular, expert recommendations are often directed at general
trends or phenomena, while in actual data, the true characteristics of the data may not
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be fully reflected due to environmental factors, differences in data distribution, or other
complexities. Therefore, a new GMF-B method is proposed in this paper. This method can
combine the reference values of the data set and the antecedent attributes, and then obtain
a more reasonable belief distribution through Gaussian membership function and Bayesian
updating. The process of the method can be described as follows:

βr = g(A, βe, x) (1)

where A represents the reference value of the preceding attribute, βe represents the initial
reference value determined by expert knowledge, and x represents the input data. βr
represents a more reasonable belief degree after optimization, and g(·) represents a function
of the GMF-B method.

Problem 2: How to get a more realistic belief distribution and then further enhance
the accuracy of the model.

After solving problem 1, according to the data distribution, the confidence degree
divided by experts is adjusted to obtain a more reasonable belief distribution. The initial
belief degree of these optimizations provides a good basis for subsequent optimizations.
The belief degree is optimized using P-CMA-ES to increase the model’s accuracy even
further. At the same time, in this step, rule weights and attribute weights, two important
parameters that affect the model results, are optimized for the first time. The whole
optimization process can be described as follows:

Ω = {βr, θ, δ} (2)

Ωbest = optimize(x, y, p, o) (3)

where Ω represents the set of parameters in the optimization process, which includes belief
degree βr, rule weight θ, and attribute weight δ. x represents the input data, y represents
the inference function, and o represents other parameters in the optimization process.

Problem 3: How to restrain the behavior that destroys interpretability in optimiza-
tion process.

The P-CMA-ES adopted in problem 2 is a global optimization algorithm with random-
ness. During optimization, this randomness may destroy the interpretability of the initial
parameters [20]. Therefore, it is necessary to propose a series of constraint strategies to
limit the behavior that destroys interpretability. These strategies are described as follows:

Strategies : {S|S1, S2, . . . , St } (4)

where t represents the number of constraint strategies.
After adding constraints to the optimization algorithm, Equation (3) should be updated

as follows:
Ωbest = S − optimize(x, y, p, o) (5)

2.2. Construction of DO-BRB-I Model

Lithium-ion battery health status assessment model based on DO-BRB-I supplemented
the original BRB model with reasonable adjustment to the initial expert setting belief degree,
and added interpretability constraint strategy in the optimization process. It is the k-th rule
is described as follows:

Rk : IF X1 is Ak
1 ∧ X2 is Ak

2 ∧ . . . ∧ XM is Ak
M,

THEN y is
{
(H1, β1,k), (H2, β2,k), . . . , (HN , βN,k)

}
WITH rule weight θ1, θ2, . . . , θk

AND attribute weight δ1, δ2 . . . , δM,

IN S1, S2, . . . , St

(6)
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where Xi(i = 1, . . . , M) refers to the indicators of lithium-ion battery health status as-
sessment, Ai(i = 1, . . . , M) represents the reference value set of the assessment indicators,
Hi(i = 1, . . . , N) is the N health status assessment results of DO-BRB-I, βi(i = 1, . . . , N) rep-
resents the belief degree corresponding to each result under the belief rule k, θi(i = 1, . . . , K)
represents the rule weight of the i-th belief rule, and K represents the number of belief
rules. δi(i = 1, . . . , M) represents the attribute weight of the i-th assessment indicator, and
M represents the number of assessment indicators. S1, S2, . . . , St stands for t interpretable
constraint strategies.

The constructed DO-BRB-I model for lithium-ion battery health status assessment is
shown in Figure 1. The whole framework can be divided into the following steps:
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Figure 1. Lithium-ion battery health assessment model based on DO-BRB-I.

Step 1: Create the basic BRB model using the expert knowledge and input data.
Step 2: The GMF-B method constructed in this paper is used to optimize the belief de-

gree constructed by the initial expert knowledge, and a more reasonable belief distribution
is obtained.

Step 3: To further improve the progress of the model, the P-CMA-ES optimization
algorithm is used to further optimize other parameters such as the belief degree. However,
to prevent the interpretability of expert knowledge from being destroyed in the optimization
process, four interpretability constraint strategies are added.

Step 4: According to the optimal parameters, the evidential reasoning (ER) algorithm
is used to deduce the final lithium-ion battery health status results.

3. Optimization Process of DO-BRB-I Model

In this section, the initial optimization of the belief degree based on the data distri-
bution is first performed in Section 3.1. The interpretability constraint strategy is then
described in Section 3.2. The belief degree and other parameters are optimized twice in
Section 3.3.

3.1. The First Optimization Based on GMF-B

Initial belief degrees provided by experts are correct in the general direction, but may
not be completely accurate for specific data sets and application scenarios, such as specific
battery models. However, a good initial belief degree is an important guide for subsequent
optimization. Therefore, it is very important to obtain a reasonable initial belief degree.
The Gauss membership function provides a statistical and probabilistic representation of



Batteries 2024, 10, 323 6 of 20

the membership degree of elements to fuzzy sets in fuzzy systems [26]. This membership
degree reflects the influence of the data distribution on belief degree to some extent, but
the initial expert knowledge reflects the expert’s guidance and consideration in the overall
direction. Therefore, the initial expert knowledge must be integrated when optimizing
the belief degree. Bayesian updating is a method that uses new evidence to update prior
probabilities, and it is very effective in many statistical and machine learning tasks. There-
fore, a new GMF-B method is proposed in this section, which can be combined with the
initial belief distribution and data distribution to optimize and obtain more reasonable
belief degree, to further improve the accuracy and reliability of the model. The specific
steps of this method are as follows:

Step 1: Preliminary preparation
Firstly, reference values of the preceding attributes and results of expert knowledge

are A and H, respectively, which will be used to calculate the subsequent membership
degree. Then, according to the initial belief degree defined by experts, a prior probability
distribution matrix is generated, denoted as P.

Step 2: Calculate the membership of the reference value
The membership degree for the reference value of the preceding attribute and the

membership degree for the result reference value are calculated, respectively, according
to the calculation formula of the Gaussian membership degree function, as shown in the
following formulas:

ϕA(xH , σ, H) = e−
(xH−H)2

2σ2 (7)

ϕH(xA, σ, A) = e−
(xA−A)2

2σ2 (8)

Equation (7) is used to calculate the membership degree between the reference value of
the preceding attribute and the input data. Equation (8) is used to calculate the membership
degree between the reference value of the result and the input data. σ stands for standard
deviation based on the data distribution.

Step 3: Calculate the comprehensive membership degree
The comprehensive membership corresponding to the result can be obtained by

multiplying the membership of the reference value of the preceding attribute in the current
rule with the membership of the result. The formula is as follows:

ψi = (ϕA
1 × ϕA

2 , . . . ,×ϕA
M)ϕH

i , (i = 1, . . . , N) (9)

where ψi represents the comprehensive membership degree corresponding to the i-th
result in the current rule, ϕA

1 , ϕA
2 , . . . , ϕA

M represent the membership degree of M antecedent
attribute reference values, and ϕH

i represents the membership degree of the i-th result.
Step 4: Perform Bayesian updates
The above three steps calculate the comprehensive membership degree of the result

according to the input data and reference values. This membership can be used as the
data’s influence on belief degree. Therefore, the initial expert knowledge is used as the
prior probability distribution, and the above membership degree is used as new evidence to
update the prior probability by Bayesian method. This process can be expressed as follows:

P(H|Ci ) =
N

∑
i=1

ψi (10)

P(Ci|H ) = P(H|Ci )P(Ci) (11)

where P(H|Ci ) is the likelihood function expressed as the sum of the comprehensive
membership degree. P(Ci) is the prior probability of the current combination and P(Ci|H )
is the posterior probability of the current combination.

Step 5: Normalized operation
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Repeat the first four steps to calculate the posterior probability of each set of input data
and each combination, and carry out normalization to get the final posterior probability
distribution matrix. This posterior probability distribution matrix is the belief distribution
of the expert knowledge optimized by the data distribution.

3.2. Interpretability Constraint Strategy

After completing the preliminary optimization of belief degree in Section 3.1, a more
reasonable belief distribution is obtained. To further improve the accuracy of the model, it is
beneficial to further optimize the belief degree and other parameters. However, the P-CMA-
ES selected in this paper is a random global optimization, and, if it is not constrained, the
interpretability of the original expert knowledge will be seriously damaged. Therefore, four
interpretability constraint strategies are proposed in this section to constrain the second
optimization process of the model according to the actual lithium-ion battery health status
background. The following is a detailed introduction to these four strategies:

Strategy 1. Ensure that activated rules participate in optimization and reasoning
The interpretive BRB model incorporates every potential state combination for evaluat-

ing the health status of lithium-ion batteries. However, due to the possibility of inadequate
observational data, not all rules may be activated by the input data [25]. Experts create a
comprehensive rule base from an international standpoint, and data gathered from a partic-
ular lithium battery type may not activate all the rules, leaving some of them dormant and
excluded from the BRB reasoning process. To keep valuable expert original information,
certain non-activation rules should not be included in training. However, earlier research
treated each parameter as an individual in a population and utilized a global optimization
approach for model optimization. In global optimization, these individuals go through an
evolutionary process, but for non-activation rules in BRB, this approach is not reasonable.
Therefore, it is necessary to consider a reasonable way to identify non-active rules and
retain their original relevant parameters as shown by the following:

Ω =
{

θ1, . . . , θk, δ1, . . . , δM, β1,k, . . . , βN,k
}

(12)

Activation weights can be used to identify rules that are not activated. The activation
of the k-th rule can be expressed as follows:

Qk = {w1, w2, . . . , wE}, k = 1, 2, . . . , L (13)

where E indicates the number of input data, and w1, w2, . . . , wE represents the active weight
of the current rule for all input data. If all activation weights are 0, the current rule is never
activated. Therefore, for this rule, the parameters in the Ω should be preserved.

Strategy 2. Set the optimization range of the parameter
Expert knowledge provides important guidance in the assessment of the health status

of lithium-ion batteries [20]. However, when it comes to a specific battery type, it needs
to be optimized according to the actual situation to ensure the accuracy of the model. To
maintain the integrity of expert knowledge in the optimization process, it is necessary to
set a reasonable optimization range for each parameter. This approach not only makes
use of expert experience, but can also be effectively adjusted in the actual application of a
specific battery model, thus achieving a balanced optimization result. This process can be
described as follows:

Ωlow ≤ Ω ≤ Ωup :{
θk,low ≤ θk ≤ θk,up, k = 1, 2, . . . , L

δm,low ≤ δm ≤ δm,up, m = 1, 2, . . . , M
βn,k,low ≤ βn,k ≤ βn,k,up, n = 1, . . . , N

} (14)

where Ωup and Ωlow represent the upper and lower bounds of the optimization range,
respectively.
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Strategy 3. Ensure reasonable belief distribution
Due to the randomness of the optimization algorithm, some rules that do not conform

to the health status of lithium ions may be generated to blindly obtain higher accuracy [25].
In Figure 2, several belief distributions that may be presented during the optimization

process are shown, and, H1 to H4, respectively, represent several health states of lithium-ion
batteries. The several scenarios shown in Figure 2b are unreasonable because the health
of a lithium-ion battery cannot be both good and bad at the same time [3]. Therefore,
a reasonable belief distribution should be either monotonic or convex. Therefore, the
distribution of belief should be strictly constrained in the optimization process to make it
conform to a reasonable distribution. The constraints on belief can be expressed as follows:

βi ∼ Ki (i = 1, 2, . . . , L)

Ki ∈ {{β1 ≤ β2 ≤ . . . ≤ βn}
or{β1 ≥ β2 ≥ . . . ≥ βn}
or{β1 ≤ . . . ≤ max(β1, β2, . . . , βn) ≥ . . . ≥ βn}}

(15)
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Strategy 4. Punish behavior that goes beyond limits.
Although the boundary constraint is added in the optimization process, the step

length setting of the optimization algorithm may not be suitable for all parameters and
iteration processes. In the process of optimization algorithm exploration, there may still
be a phenomenon that exceeds the boundary. Although this parameter may obtain higher
precision, its transgression behavior has destroyed the original interpretability, so it needs
to be punished for this behavior. The principle of punishment is to add an extra value to
this parameter so that it will be eliminated in the subsequent screening process. This value
is calculated as follows:

punishment =
g

∑
i=1

max(0, Ωi − Ωi,up) +
g

∑
i=1

max(0, Ωi,low − Ωi) (16)

where Ωi represents the initial population generated by the optimization algorithm.

3.3. The Second Optimization Based on P-CMA-ES

To improve the accuracy of the model, this part uses P-CMA-ES [27] to optimize
the attribute weight, rule weight, and GMF-B adjusted belief degree of DO-BRB-I. This
method can dynamically adjust the search strategy to better adapt to the characteristics of
the current optimization problem. However, the original P-CMA-ES algorithm takes the
form of random scattering points and iterates continuously to find the optimal parame-
ter [20]. This type of random global optimization may result in optimized parameters that
deviate excessively from the original parameters, erasing the original expert knowledge
and making the model difficult to comprehend. Thus, the incorporation of interpretability
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constraint techniques improves the original P-CMA-ES method. The enhanced P-CMA-ES,
the optimization method that emerged as a result, is best explained as follows:

outputresult =
N

∑
n=1

u(Hn)βn (17)

The DO-BRB-I modeling accuracy is represented by the mean square error (MSE). In
this section, the rule weights, attribute weights, and belief degrees are optimized parame-
ters, so the MSE can be expressed as follows:

MSE(θ, δ, β) =
1
T

T

∑
t=1

(outputresult − outputactual)
2 (18)

where T is the training data volume, outputactual is the actual output value and outputresult
is the predicted output value of the system. Therefore, the optimization objective is to
minimize the MSE through iterative refinement. The specific process is as follows:

Step 1 (Initial operation): Provide the initial parameters as follows:

Ω0 = {θ1, . . . , θk, δ1, . . . , δM, β1, . . . , βn} (19)

where wg = Ω0 is the optimized parameter set.
Step 2 (Sampling operation): The initial population can be determined by the following:

Ωg+1
i ∼ wg + εgN(0, Cg) i = 1, . . . , λ (20)

where Ωg+1
i represents the i-th solution of the (g+1)-th generation, ω represents the mean

of the population, ε represents the step size, N represents the normal distribution, and Cg

represents the covariance matrix of the g-th generation.
Step 3 (Constraint operation): In this step, the four constraint strategies introduced

by Equations (12)–(16) are added to the optimization process of the model. These four
constraint strategies not only retain the parameters of rules that have never been acti-
vated, but also impose detailed constraints on them. Ensuring that expert knowledge is
not compromised.

Step 4 (Projection operation): The solutions produced by sampling operations may
not satisfy the constraints, thus necessitating projection operations to ensure adherence to
the constraints:

Ωg+1
i (1 + ne × (j − 1) : ne × j) = Ωg+1

i (1 + ne × (j − 1) : ne × j)− AT
e × (Ae × AT

e )
−1

×Ωg+1
i (1 + ne × (j − 1) : ne × j)× Ae

(21)

A hyperplane can be represented as AeΩg
i (1 + ne × (j − 1) : ne × j) = 1, where

ne represents the number of equality constraint variables in solution Ωg
i , j = 1, . . . ,

N + 1 represents the number of equality constraints in solution Ωg
i wg+1 =

τ

∑
i=1

hiΩ
g+1
i:λ , and

Ae = [1 · · · 1]1×N represents a parameter vector.
Step 5 (Selection operation): Update the mean value by performing selection opera-

tions using the following formula:

wg+1 =
τ

∑
i=1

hiΩ
g+1
i:λ (22)

where hi represents the weight coefficient of the i-th equation. Ωg+1
i:λ represents the i-th

solution in the (g+1)-th generation. τ represents the subpopulation size.



Batteries 2024, 10, 323 10 of 20

Step 6 (Updating operation): Update the covariance matrix through adaptive opera-
tions and determine the population search range and direction. The calculation process is
illustrated in the following formula:

Cg+1 = (1 − a1 − a2)Cg + a1 pg+1
c (pg+1

c )
T
+ a2

τ

∑
i=1

hi


(

Ωg+1
i:λ − ωg

)
εg


(

Ωg+1
i:λ − ωg

)
εg

T

(23)

where a1 and a2 represent the learning rates. pg+1
c represents the evolutionary path of the

covariance, and 0 is the initial evolutionary path.
To sum up, the overall optimization process of DO-BRB-I is shown in Figure 3.
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4. Reasoning Process of DO-BRB-I

The ER is an inference rule for evidence composition. The method is mainly used to
solve uncertainty and fuzziness problems, and it uses the concepts of Dempster–Shafer
theory and Bayesian reasoning. The essence of the ER algorithm is to integrate information
from multiple independent pieces of evidence to form a comprehensive and reliable conclu-
sion or prediction [28]. This fusion improves the reliability and accuracy of decision-making
and achieves good results, so ER is often used in BRB reasoning. The DO-BRB-I model
developed in this study is derived from the fundamental BRB model. The ER has been
selected as the inference engine for this model. Its detailed process is described as follows:

Step 1: Calculate the degree of matching, which indicates the flexibility of the rules,
between the input sample information and belief rules. The matching degree of the k-th
rule for the i-th input is calculated as follows:

ak
i =


Al+1

i −xi

Al+1
i −Al

i
, k = l, Al

i ≤ xi ≤ Al+1
i

1 − ak
i , k = l + 1

0, i = l . . . K, k ̸= l, l + 1

(24)

where ak
i represents the degree of matching, A represents the reference value of the prereq-

uisite attribute, and x represents the input data. This membership function ensures that at
least one rule can be activated for each input of data.

Step 2: Determine the activation weight through the following calculation:

wk =
θk ∏M

i=1 (ak
i )

δi

∑K
i=1 θl ∏M

i=1(al
i)

δi
(25)
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where δi(i = 1, . . . , M) represents the attribute weight for the kth index.
Step 3: Calculate the ultimate belief degree by applying rule inference with the ER

analysis algorithm using the following formula:

βn =

µ ×
[

L
∏
i=1

(
wl βn,l + 1 − wl

N
∑

i=1
βi,l

)
−

L
∏
l=1

(
1 − wl

N
∑

i=1
βi,l

)]
1 − µ ×

[
L
∏
l=1

(l − wl)

] (26)

µ =
1

N
∑

n=1

L
∏
l=1

(wl βn,l + 1 − wl
N
∑

i=1
βi,l)− (N − 1)

L
∏
l=1

(1 − wl
N
∑

i=1
βi,l)

(27)

where βn represents the belief degree from the final belief distribution.
Step 4: Calculate the expected utility value. The final belief distribution result and

utility conversion formula are as follows:

y = {(Hn, βn), n = 1, . . . , N} (28)

µ
(
S
(

A′)) = N

∑
n=1

µ(Hn)βn (29)

where A′ is the actual input vector, µ(Hn) is the utility of Hn, and µ(S(A′)) is the expected
utility at the end. S(·) is a set composed of belief distributions. This methodology, which
combines the IF–THEN rule-based and utility-based methods, enhances the reliability
of initial information and facilitates logical adjustments to belief structures during the
inference process.

5. Case Study

This section will use a case study of a real-world lithium-ion battery health assessment
to verify the effectiveness of the DO-BRB-I approach. The data used in this paper are from
the NASA Ames Prognostics Center of Excellence and contain information on aging of
18650 LiCoO2 batteries. The aging data of 167 B0006 lithium-ion batteries are selected in
this experiment, of which 112 are training data. All data are test data.

5.1. Construction of the DO-BRB-I Model

This article identifies the constant current (CC) and constant voltage (CV) stages of
lithium-ion batteries as the first characteristics. The CC stage involves charging lithium-ion
batteries with a steady current of 1.5 A until the battery voltage reaches 4.2 V. In the CV
stage, the charging process occurs at a consistent voltage of 4.2 V until the current decreases
to 20 mA. In a complete charging stage, if the CC stage is longer and the CV stage is
shorter, it indicates that the health status is the best. Based on the operating process and
historical knowledge of the battery, set four reference points for each attribute, namely
Long (L), Normal (N), Little Short (LS), and Short (S). Attribute weights are also set for each
attribute. These values are displayed in Table 1. The capacity of the battery as a test result
is divided into safe (S), normal (N), small bad (LB), and very bad (VB), as shown in Table 2.
The changes of CC and CV stages of the battery in the data set are shown in Figure 4a,
and the changes of battery capacity are shown in Figure 4b [29]. The part highlighted
in the pink circle is due to the instability of the chemical reactions that take place inside
lithium-ion batteries. Using the Cartesian product to construct the initial BRB, the expert
assigns belief degree to each rule result, and the initial belief rule base is shown in Table A1
in the Appendix A. In addition, the rule weight for each rule is initialized to 1.
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Table 1. The reference values of antecedent attribute.

Attribute Attribute Weight VL L N S

PC-time-CC 1 0.93 0.72 0.48 0.22
PC-time-CV 1 0.53 0.48 0.42 0.34

Table 2. The reference value of health status.

Health Status S N LB VB

Reference value 2.04 1.67 1.38 1.14
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After this process is performed, the initial BRB model for lithium-ion battery health
assessment is constructed. Then, the GMF-B belief degree optimization method introduced
in Section 3.1 is used for the first optimization of belief degree, and the P-CMA-ES opti-
mization algorithm with four constraint strategies introduced in Section 3.3 is used for the
second optimization of other parameters such as the belief degree. Finally, ER is used to
deduce the model, and the final evaluation result of lithium-ion battery health status can
be obtained.

5.2. Experimental Analysis of DO-BRB-I
5.2.1. Analysis of Experimental Results

In the previous section, a DO-BRB-I based lithium-ion battery health status assessment
model was constructed. The DO-BRB-I evaluation results have an MSE of 0.0007, while
the initial BRB model built on expert knowledge has an MSE of 0.0144. Figure 5 shows
the comparison of the true value, estimated value by DO-BRB-I, and estimated value by
expert knowledge. As can be seen from the figure, DO-BRB-I has very accurate evalua-
tion results, and DO-BRB-I strictly follows the four interpretability constraint strategies
proposed in Section 3.2 in the optimization process. Therefore, the model constructed
in this paper greatly improves the accuracy of the model on the premise of maintaining
good interpretability.
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5.2.2. The Effectiveness Analysis of the Optimization Process

The DO-BRB-I model constructed in this paper has a dual optimization process. The
initial optimization is mainly for the belief degree of expert division. Because the belief
degree given by experts is not necessarily applicable to the current specific data set, it is
not targeted. Therefore, the GMF-B proposed in Section 3.1 of this paper is used for the
initial optimization of belief degree, which can update the belief degree according to the
data set while maintaining the original expert knowledge to obtain a more reasonable
belief distribution. This process plays a good guiding role in the subsequent optimization.
The secondary optimization is mainly to further improve the accuracy of the model, and
further optimize the belief degree obtained from the initial optimization, as well as the
attribute weights and rule weights. The optimization information of attribute weights and
rule weights is shown in Tables 3 and 4. Information about belief levels is presented in
Table A1 in the Appendix A. Table 5 shows the comparison of MSE, root–mean–squared
error (RMSE), mean absolute error (MAE), mean absolute percent error (MAPE) of the
model after two optimizations, and the initial BRB model, where GMF-B-BRB represents
the model optimized once by GMF-B. The table shows that every optimization raises the
original BRB mode’s accuracy.

Table 3. The optimization information for the attribute weights.

Attribute Initial Value Constraint Range The Optimized Value

PC-time-CC 1 0.6~1.0 0.9438
PC-time-CV 1 0.2~0.8 0.5070

Table 4. The optimization information for the rule weights.

Rule Number Initial Value Constraint Range The Optimized Value

1 1 0.2~1.0 0.2854
2 1 0.4~1.0 0.6305
3 1 0.4~1.0 0.6995
4 1 0.6~1.0 1
5 1 0.4~1.0 0.5169
6 1 0.6~1.0 0.8144
7 1 0.4~1.0 0.5580
8 1 0.6~1.0 1
9 1 0.6~1.0 0.9978
10 1 0.6~1.0 0.9986
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Table 4. Cont.

Rule Number Initial Value Constraint Range The Optimized Value

11 1 0.4~1.0 0.7850
12 1 0.6~1.0 0.9279
13 1 0.6~1.0 1
14 1 0.6~1.0 0.8592
15 1 0.6~1.0 0.9673
16 1 0.4~1.0 0.6865

Table 5. The comparison of various indicators in the optimization process.

Model MSE RMSE MAE MAPE

Initial BRB 0.0144 0.1199 0.1080 0.0712
GMF-B-BRB 0.0049 0.0700 0.0624 0.0409
DO-BRB-I 0.0007 0.0265 0.0153 0.0096

5.2.3. Interpretability Analysis of the Model

The P-CMA-ES optimization algorithm used in the second optimization is a random
global optimization. Therefore, to keep the original interpretability of the model from being
destroyed, this paper proposes four interpretability constraint strategies to constrain the
interpretability of the model. In this section, these four strategies will be analyzed in the
context of actual lithium-ion battery health assessment.

Strategy 1: Figure 6 shows the activation of all the rules in this experiment. As can be
seen from the figure, the activation weights of rules 4, 8, and 13 are always 0 for all input
data, which means that these three rules have never been activated. Therefore, according
to interpretability strategy 1, expert knowledge in these three rules should be retained. If
expert knowledge is not constrained, the situation shown in the circle in Figure 7 occurs.
The original expert knowledge is severely damaged. It can be seen from Table 4 that their
rule weights are retained, and the belief degrees of these three rules in Figure 8 are also
retained, as shown in the green ellipse.
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Strategy 2: Interpretability constraint strategy 2 mainly constrains the boundary
range of the optimized parameter. In this experiment, the optimized parameters are
attribute weight, rule weight, and belief degree. Therefore, Table 3, Table 4, and Table A1
in Appendix A give the constrained ranges and optimized results of these parameters,
respectively. Figure 8 shows the comparison results before and after optimization with
belief degree constraints, while Figure 7 shows the comparison results before and after
optimization without constraints. It can be seen from the figure that the two curves in
Figure 8 are more consistent, while the randomness of the optimization algorithm in
Figure 7 obviously damages the original distribution form; several rules drawn in the pink
ellipse seriously damage the interpretability of the original rules.

Strategy 3: This strategy is mainly restricted for the occurrence of unreasonable belief
distribution, which seriously violates the normal distribution of lithium-ion battery health.
After reduction, all the belief distributions are convex or monotonic, as shown in Figure 7.

Strategy 4: This strategy is mainly aimed at the fact that there are still many trans-
gressive behaviors in the offspring after the boundary constraint of strategy 2. As shown
in Figure 9, the red and blue lines are the upper and lower bounds, respectively. The
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population values produced in the offspring were then counted, and the points that crossed
the line had been marked pink. According to strategy 4, such points should be punished,
so that these points are eliminated in the subsequent screening. After being constrained
by strategy 4, as shown in Tables 3 and 4, and Table A1 in the Appendix A, all optimized
parameters are strictly within the constrained range.
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5.3. Comparative Study

This section will compare the DO-BRB-I model with other BRB models based on
different optimization algorithms and other data-driven approaches, focusing on evaluating
its accuracy and interpretability. The accuracy of the model is measured by the MSE,
while interpretability is measured by DMSE. The calculation formula of MSE is given in
Equation (18). The calculation method of DMSE was proposed by Han et al., as follows [3]:

DMSE =
MSEex − MSEop

ρ(hn, hn
′)

(30)

where MSEex represents the MSE value of the initial BRB model constructed by expert
knowledge and MSEop represents the MSE value of the optimized model. The difference
in Euclidean distance between the original and improved parameters created by experts is
represented by ρ(hn, hn

′). A higher DMSE value means that the model has a better balance
of interpretability and accuracy.

As shown in Table 6, in the comparison with BRB model, the BRB model based
on P-CMA-ES and WOA optimization algorithm is selected. In comparison with other
data-driven methods, back propagation neural network (BPNN), radial basis function
(RBF), support vector machine (SVM), DBN, long short-term memory (LSTM), and echo
state network (ESN) are chosen. In Table 6, DMSE represents the degree to which the
optimized model and the original model expert knowledge are preserved in the BRB model.
Therefore, the original BRB model and other non-BRB models cannot calculate DMSE,
which is indicated by “*” in the table. Figure 10 shows a comparison of these methods.
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Table 6. The comparison results of various indicators of each model.

Part Model MSE DMSE RMSE MAE MAPE

Part I

Initial BRB 0.0144 * 0.1199 0.1080 0.0712
P-CMA-ES-BRB 0.0011 0.0072 0.0337 0.0192 0.0117

WOA-BRB 0.0009 0.0035 0.0297 0.0207 0.0134
DO-BRB-I 0.0007 0.0106 0.0265 0.0153 0.0096

Part II

BPNN 0.0009 * 0.0294 0.0194 0.0121
RBF 0.0012 * 0.0363 0.0251 0.0153
SVM 0.0011 * 0.0344 0.0259 0.0165
DBN 0.0017 * 0.0424 0.0331 0.0221
LSTM 0.0009 * 0.0306 0.0182 0.0138
ESN 0.0028 * 0.0528 0.0390 0.0244
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Analyzing the data in Table 6 can be summarized as follows:

(1) The DO-BRB-I adds a double optimization and interpretability constraint strategy to
the original BRB. The DO-BRB-I has the lowest MSE, RMSE, MAE, MAPE, and the
highest DMSE compared to other BRB models. The results show that the proposed
model not only has outstanding performance in prediction accuracy, but also has
better error control ability and overall stability, and has stronger adaptability. These
characteristics further illustrate the effectiveness and advantages of the proposed
method, which can better complete the health status assessment of lithium-ion bat-
teries. Although the accuracy of WOA–BRB is close to that of DO-BRB-I, the DMSE
values are very different. These differences show that although WOA–BRB has good
accuracy, the interpretability is seriously damaged in the optimization process.

(2) Compared with other data-driven methods, although the original BRB model based on
P-CMA-ES optimization algorithm also has better accuracy, it is still slightly inferior
to BPNN and LSTM. However, the method proposed in this paper makes a double
optimization of the belief degree and further improves the accuracy of the model. It is,
therefore, ahead of the models listed in Part II in terms of accuracy. Furthermore, the
model developed in this study can be traced back to its sources, the modeling process
is transparent, and it employs the ER analysis algorithm for reasoning. Additionally,
during the optimization phase, the interpretability of the model is constrained using
four different interpretability constraint strategies. Therefore, the DO-BRB-I model
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constructed in this paper is highly interpretable. However, DBN and BPNN models
are black-box models, the decision-makers are not clear about their internal working
principle, and they are not interpretable.

In summary, the DO-BRB-I model developed in this paper has a strong ability in the
assessment of the health status of lithium-ion batteries.

6. Conclusions

This paper presents a lithium-ion battery health assessment method based on DO-BRB-
I. This approach can accurately and completely analyze the health status of lithium-ion
batteries while maintaining high interpretability of the model. The innovation of the
method proposed in this paper mainly includes the following points:

(1) A new belief degree optimization method for GMF-B is proposed. This method can
adjust the belief degree delimited by experts according to some prior data to obtain a
more reasonable belief distribution.

(2) Based on the features of the lithium-ion battery health assessment background, four
interpretability constraint strategies are proposed for the second optimization. These
four strategies strictly constrain the behaviors that destroy interpretability in the
optimization process.

The method proposed in this paper is to optimize the belief degree independently
according to the data distribution before the P-CMA-ES optimization algorithm, which
further improves the accuracy and interpretability of the model. However, the BRB model
based on the original P-CMA-ES is still slightly inferior to other models. Therefore, it
is the future research direction to further explore the tuning methods of belief degree
and other parameters in P-CMA-ES algorithm to achieve better accuracy under single
optimization. In addition, the DO-BRB-I proposed in this paper is a general method, and it
is also meaningful to extend the application of this model in more backgrounds.
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Appendix A

Table A1. Belief degree optimization information.

No.
Attribute

Initial Belief Degree Initial Optimization
Belief Degree The Range of Belief Degree Optimization Second Optimization

Belief DegreeCC ∧ CV

1 VL ∧ S {1.00, 0.00, 0.00, 0.00} {1.00, 0.00, 0.00, 0.00} {0.90~1.00, 0.00~0.10, 0.00~0.05, 0.00~0.05} {0.95, 0.01, 0.04, 0.00}
2 VL ∧ N {0.80, 0.20, 0.00, 0.00} {0.73, 0.27, 0.00, 0.00} {0.70~0.85, 0.15~0.30, 0.00~0.05, 0.00~0.05} {0.83, 0.15, 0.02, 0.00}
3 VL ∧ L {0.70, 0.20, 0.10, 0.00} {0.69, 0.31, 0.00, 0.00} {0.60~0.75, 0.10~0.30, 0.00~0.20, 0.00~0.15} {0.68, 0.12, 0.16, 0.04}
4 VL ∧ VL {0.65, 0.25, 0.10, 0.00} {0.62, 0.38, 0.00, 0.00} {0.50~0.65, 0.20~0.35, 0.05~0.20, 0.00~0.10} {0.68, 0.32, 0.00, 0.00}
5 L ∧ S {0.60, 0.30, 0.10, 0.00} {0.31, 0.65, 0.04, 0.00} {0.25~0.35, 0.40~0.68, 0.00~0.20, 0.00~0.05} {0.28, 0.50, 0.19, 0.03}
6 L ∧ N {0.50, 0.40, 0.10, 0.00} {0.21, 0.75, 0.04, 0.00} {0.20~0.35, 0.40~0.75, 0.00~0.15, 0.00~0.05} {0.24, 0.58, 0.15, 0.03}

https://aistudio.baidu.com/datasetdetail/171099
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Table A1. Cont.

No.
Attribute

Initial Belief Degree Initial Optimization
Belief Degree The Range of Belief Degree Optimization Second Optimization

Belief DegreeCC ∧ CV

7 L ∧ L {0.40, 0.40, 0.10, 0.10} {0.17, 0.78, 0.05, 0.00} {0.05~0.20, 0.60~0.80, 0.05~0.25, 0.00~0.05} {0.15, 0.68, 0.15, 0.02}
8 L ∧ VL {0.30, 0.45, 0.15, 0.10} {0.11, 0.80, 0.09, 0.00} {0.05~0.10, 0.50~0.80, 0.10~0.30, 0.05~0.15} {0.11, 0.80, 0.09, 0.00}
9 N ∧ S {0.00, 0.20, 0.60, 0.20} {0.00, 0.01, 0.96, 0.03} {0.00~0.05, 0.00~0.05, 0.75~1.00, 0.00~0.20} {0.00, 0.00, 0.91, 0.09}
10 N ∧ N {0.00, 0.10, 0.50, 0.40} {0.00, 0.00, 0.91, 0.09} {0.00~0.05, 0.05~0.20, 0.75~0.95, 0.00~0.10} {0.05, 0.20, 0.75, 0.00}
11 N ∧ L {0.00, 0.10, 0.40, 0.50} {0.00, 0.00, 0.84, 0.16} {0.00~0.10, 0.00~0.20, 0.65~0.85, 0.15~0.25} {0.04, 0.08, 0.65, 0.23}
12 N ∧ VL {0.00, 0.00, 0.40, 0.60} {0.00, 0.00, 0.80, 0.20} {0.00~0.10, 0.00~0.10, 0.65~0.85, 0.15~0.25} {0.10, 0.10, 0.65, 0.15}
13 S ∧ S {0.00, 0.15, 0.25, 0.60} {0.00, 0.00, 0.28, 0.72} {0.00~0.05, 0.00~0.40, 0.10~0.30, 0.40~0.75} {0.00, 0.00, 0.28, 0.72}
14 S ∧ N {0.00, 0.10, 0.20, 0.70} {0.00, 0.00, 0.21, 0.79} {0.00~0.10, 0.00~0.10, 0.15~0.25, 0.65~0.80} {0.02, 0.02, 0.20, 0.76}
15 S ∧ L {0.00, 0.00, 0.20, 0.80} {0.00, 0.00, 0.19, 0.81} {0.00~0.05, 0.00~0.05, 0.00~0.20, 0.80~1.00} {0.00, 0.00, 0.00, 1.00}
16 S ∧ VL {0.00, 0.00, 0.00, 1.00} {0.00, 0.00, 0.00, 1.00} {0.00~0.05, 0.00~0.05, 0.00~0.20, 0.90~1.00} {0.00, 0.00, 0.00, 1.00}
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